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The Problem: Leftmost Eigenspace of a Matrix

Given n × n matrix pencil (A, B), A = AT , B = BT " 0 with

(unknown) eigen-decomposition

A
[

v1 . . . vn

]

= B
[

v1 . . . vn

]

diag (λ1, . . . , λn)

[

v1 . . . vn

]T
B

[

v1 . . . vn

]

= I

λ1 < λ2 ≤ . . . ≤ λn

Given integer p with 0 < p < n.

Compute the minor p-dimensional eigenspace col(v1, . . . , vp).

Consider Inverse Iteration and Rayleigh Quotient Iteration
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Preliminaries (1): Inverse Iteration (INVIT)

xk+1 =
A−1xk

‖A−1xk‖

Properties:

• Global convergence to {±v1, . . . ,±vn}.

• Stable convergence to ±v1 only.

• Local linear convergence, with ratio λ1

λ2
.

• Computing a new iterate is expensive.

4



Preliminaries (2): Rayleigh Quotient Iteration (RQI)

ρk =
xT

k Axk

xT
k xk

xk+1 =
(A − ρkI)−1xk

‖(A − ρkI)−1xk‖

Properties:

• Cubic local convergence.

• Converges to “nearest” eigenvector.

• Computing a new iterate is expensive.
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The Ideal Algorithm

1. Global convergence:

• Convergence to some eigenvector for all initial

conditions.

• Stable convergence to the minor eigenvector ±v1 only.

2. Superlinear (cubic) local convergence to ±v1.

3. No factorization of A.

Matrix A only utilized as operator x &→ Ax.

4. Low storage requirements.
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A Hybrid Approach

Combine INVIT and RQI in two phases:

• Phase I: Use INVIT to reach domain of attraction of v1

• Phase II: Use RQI to yield superlinear convergence

There are two problems with this approach:

• Need a practical and reliable switching criterion!

• Exact INVIT and RQI are expensive!
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Proposed Remedy (1)

Phase I: Replace INVIT with Basic Tracemin (Sameh and

Wisniewski [SW82], Sameh and Tong [ST00])

Basic Tracemin uses

• successive approximate minimization of...

• inexact local quadratic models...

• of the generalized Rayleigh quotient.

Similar to INVIT; equivalent when using exact preconditioner.

However, rate of convergence is only linear!
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Proposed Remedy (2)

We desire a superlinear method for Phase II that is reliable and

less expensive than RQI.

The recently proposed Riemannian Trust-Region (RTR)

algorithm (Absil, Baker and Gallivan [ABG04]) is

• globally convergent

• superlinear convergence near the solution

• “matrix-free” and low-memory

Trust-region mechanism can prevent RTR from fully exploiting

a good preconditioner.
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Proposed hybrid method

Phase I: Tracemin

Phase II: RTR

Result: Efficient, globally convergent method with a

superlinear rate of convergence near the solution.

We unify both methods in an adaptive model-based framework

for minimizing the generalized Rayleigh quotient
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Optimization Formulation of SGEP

Goal: compute the p leftmost eigenpairs of the generalized

eigenproblem, where A and B are symmetric and positive

definite:

(v1, λ1), . . . , (vp, λp)

λ1 ≤ . . . ≤ λp< λp+1

Subspace Vp = col(v1, . . . , vp) is the column space of any

minimizer of the Generalized Rayleigh cost function:

f : R
n×p
∗ → R : X &→ trace

(

(XT BX)−1(XT AX)
)
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Successive Model Minimization

Given X ∈ R
n×p
∗ , produce a correction S s.t. f(X + S) < f(X)

Choose S from TX := {Z ∈ Rn×p : ZT BX = 0}.

Successive minimizations attempt to minimize the function

f̂X(S) := trace
(

((Y + S)T B(Y + S))−1((Y + S)T A(Y + S))
)

,

for S ∈ TX .

We will perform this minimization using a trust-region method

on a quadratic model mX of f̂X
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Trust-region Strategy

Init: XT
0 BX0 = Ip

for k = 0, 1, 2, . . .

Obtain Sk as approximate solution of model minimization:

minmXk
(S) s.t. ‖S‖ ≤ ∆k, S ∈ TX

mXk
(S) := f(Xk) + 〈2PAXk, S〉 + 1

2〈HXk
[S], S〉

Compute ρk = f̂(Sk)−f̂(0)
m(Sk)−m(0)

Update the trust-region radius and iterate:

Xk+1 = Xk or via B-orthonormalization of (Xk + Sk)

end for

P = I − BX(XT B2X)−1XT B 〈X, Y 〉 = trace(XT Y )
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Solving the TR Subproblem

To solve the model minimization, we use a preconditioned

truncated conjugate gradient algorithm (Steihaug [Ste83] and

Toint [Toi81]).

Method has low-memory requirements and is matrix-free with

respect to A and B.

For a preconditioner M , we use Olsen formula to solve

(PMP )R̃ = R, for PR̃ = R̃ and PR = R:

R̃ = M−1R − M−1BX(XT BM−1BX)−1XT BM−1R
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Truncated CG

Set S0 = 0, R0 = 2PAXk, R̃0 = (PMP )†R0, D0 = −R0

for j = 0, 1, 2, . . . until an inner stopping criterion is satisfied

if 〈Dj ,HXk
[Dj ]〉 ≤ 0

Compute τ such that S = Sj + τDj minimizes m(S)

and ‖S‖M = ∆; return S;

Set αj = 〈Rj , R̃j〉/〈Dj ,HXk
[Dj ]〉; Set Sj+1 = Sj + αjDj ;

if ‖Sj+1‖M ≥ ∆

Compute τ ≥ 0 such that S = Sj + τDj satisfies

‖S‖M = ∆; return S;

Generate Rj+1 and Dj+1 using the standard CG recurrences

end for.
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Choice of the model

mX(S) := f(X) + 〈2PAX, S〉 +
1

2
〈HX [S], S〉

HX is allowed to be any symmetric operator:

• Tracemin-like:

HX [S] := 2PAPS

• Exact Hessian from quadratic expansion of f̂X :

HX [S] := 2P
(

AS − BS(XT BX)−1(XT AX)
)
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Properties of Tracemin model

Recall that A " 0.

Tracemin-like model Hessian: HX [S] := 2PAPS.

• HX " 0 ⇒ the stationary point of the model is a

minimizer.

• mX(S) ≤ mX(0) ⇒ f(X + S) ≤ f(X)

Can take trust-region radius ∆ = ∞

A large S returned by a good preconditioner is always accepted!
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Two-Phase Strategy

This dictates parameters for two phases of algorithm:

Phase I: Tracemin Phase

Use HXk
[S] := PAPS and ∆ := +∞.

Phase II: RTR Phase

Use exact Hessian and ∆k < ∞.

Regardless of switching criteria, algorithm always converges to

leftmost eigenspace!
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Results
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Conclusion

• We presented a combination Basic Tracemin and

Riemannian Trust Region for computing the leftmost

eigenpairs of a symmetric positive definite pencil.

• The method is globally convergent with superlinear

convergence.

• The appropriate combination is more efficient than the

constituent methods.

Future research involves finding switching criteria to maximize

the efficiency of the algorihtm.
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