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The Problem: Leftmost Eigenspace of a Matrix

Given n X n matrix pencil (4, B), A= A!, B= B! = 0 with

(unknown) eigen-decomposition
A [Ul Un} =B [Ul ’Un} diag()\ly---a)\n)
T
[Ul vn} B[Ul vn} —
M < A<...< )\,
Given integer p with 0 < p < n.
Compute the minor p-dimensional eigenspace col(vy, ..., vp).

Consider Inverse Iteration and Rayleigh Quotient Iteration



Preliminaries (1): Inverse Iteration (INVIT)

A‘lazk
L1 — —
A=z

Properties:

e Global convergence to {+v1,...,tv,}.
e Stable convergence to v only.
e Local linear convergence, with ratio i—;

e Computing a new iterate is expensive.



Preliminaries (2): Rayleigh Quotient lteration (RQI)

Properties:

e Cubic local convergence.
e Converges to “nearest” eigenvector.

e Computing a new iterate is expensive.



The Ideal Algorithm

. Global convergence:

e Convergence to some eigenvector for all initial
conditions.

e Stable convergence to the minor eigenvector +v; only.

. Superlinear (cubic) local convergence to t+v;.

3. No factorization of A.

Matrix A only utilized as operator x — Ax.

. Low storage requirements.



A Hybrid Approach

Combine INVIT and RQI in two phases:
e Phase I: Use INVIT to reach domain of attraction of vy

e Phase II: Use RQI to yield superlinear convergence

There are two problems with this approach:

e Need a practical and reliable switching criterion!

o Exact INVIT and RQI are expensive!



Proposed Remedy (1)

Phase I: Replace INVIT with Basic Tracemin (Sameh and
Wisniewski [SW82], Sameh and Tong [ST00])

Basic Tracemin uses
e successive approximate minimization of...
e inexact local quadratic models...
e of the generalized Rayleigh quotient.

Similar to INVIT; equivalent when using exact preconditioner.

However, rate of convergence is only linear!



Proposed Remedy (2)

We desire a superlinear method for Phase II that is reliable and

less expensive than RQI.

The recently proposed Riemannian Trust-Region (RTR)
algorithm (Absil, Baker and Gallivan [ABGO04]) is

e globally convergent
e superlinear convergence near the solution
e “matrix-free” and low-memory

Trust-region mechanism can prevent RTR from fully exploiting

a good preconditioner.



Proposed hybrid method

Phase I: Tracemin

Phase II: RTR

Result: Efficient, globally convergent method with a

superlinear rate of convergence near the solution.

We unify both methods in an adaptive model-based framework

for minimizing the generalized Rayleigh quotient
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Optimization Formulation of SGEP

Goal: compute the p leftmost eigenpairs of the generalized
eigenproblem, where A and B are symmetric and positive
definite:

(?}1, )\1), e o ey (?)p, )\p)

)\1§...§)\p<)\p+1

Subspace V,, = col(vy, ..., vp) is the column space of any

minimizer of the Generalized Rayleigh cost function:

fiRP? S R: X trace (X' BX) H(XTAX))
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Successive Model Minimization

Given X € RY™?, produce a correction S s.t. f(X +8) < f(X)
Choose S from Tx := {Z € R"*?: Z'BX = 0}.

Successive minimizations attempt to minimize the function
Fx(8) := trace (Y + S)TB(Y +9))71((Y + S)TA(Y + S))),
for S e Tx.

We will perform this minimization using a trust-region method

on a quadratic model mx of fX
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Trust-region Strategy

Init: XJ BXo = I,
for £ =0,1,2,...
Obtain Sj, as approximate solution of model minimization:
minmy, (5) s.t. [|S]|| < Ag, S €Ty
mx, (S) == f(Xi) + (2PAXy, S) + 5(Hx, [5], S)

Compute pg = Tiggzg;{fgg)

Update the trust-region radius and iterate:

Xi11 = X or via B-orthonormalization of (X + Sk)
end for

P=1-BX(X'B*’X)'X'B (X,Y) = trace(X1Y)
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Solving the TR Subproblem

To solve the model minimization, we use a preconditioned
truncated conjugate gradient algorithm (Steihaug [Ste83] and
Toint [Toi81]).

Method has low-memory requirements and is matrix-free with

respect to A and B.

For a preconditioner M, we use Olsen formula to solve
(PMP)R = R, for PR = R and PR = R:

~

R=M'R-M'BX(X'"BM'BX)"'X"BM™R
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Truncated CG

Set Sy =0, Ry = 2PAX},, Ry = (PMP)'Ry, Dy = —Ry
for 7 =0,1,2,... until an inner stopping criterion is satisfied
if (Dj, Hx,|D;]) <0
Compute 7 such that S = S; + 7D; minimizes m(S5)
and || S|y = A; return S;
Set a; = (Rj, R;)/(Dj, Hx,[Dj]); Set Sj1 = Sj + a;Dy;
if ||Sjt1llar = A
Compute 7 > 0 such that S = S; + 7D, satisfies
|S]|ar = A; return S;

Generate 7,41 and D;;1 using the standard CG recurrences

end for.
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Choice of the model

mx(S) := f(X) + (2PAX, S) + %(HX 5], S)

Hx is allowed to be any symmetric operator:

e Tracemin-like:

Hx|S] :=2PAPS
e Exact Hessian from quadratic expansion of f X!

Hx[S] :==2P (AS — BS(X'BX) (X" AX))

17



Properties of Tracemin model

Recall that A >~ 0.

Tracemin-like model Hessian: Hx[S] := 2PAPS.

e Hx > 0 = the stationary point of the model is a

minimizer.

e mx(5) <mx(0) = f(X +5) < f(X)

Can take trust-region radius A = oo

A large S returned by a good preconditioner is always accepted!
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Two-Phase Strategy

This dictates parameters for two phases of algorithm:
Phase I: Tracemin Phase

Use Hy, [S] := PAPS and A := +o0.
Phase II: RTR Phase

Use exact Hessian and Ay < oo.

Regardless of switching criteria, algorithm always converges to

leftmost eigenspace!
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Results
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Distance to target versus approximate number of operations.

BCSST24 with Incomplete Cholesky preconditioner
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Results
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BCSST24 with exact (Cholesky) preconditioner after approximate

minimum degree permutation.
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Conclusion

e We presented a combination Basic Tracemin and
Riemannian Trust Region for computing the leftmost

eigenpairs of a symmetric positive definite pencil.

e The method is globally convergent with superlinear

convergence.

e The appropriate combination is more efficient than the

constituent methods.

Future research involves finding switching criteria to maximize

the efficiency of the algorihtm.
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