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List of projects

e Symmetric Generalized Eigenvalue Problem (with A.
Sameh)

e H,, norm computation (with P. Van Dooren)

e Methods for model reduction (with P. Van Dooren)
— Gramian-based
— (Tangential) interpolation
— H,-based
— Manifold-based
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Why eigenproblem? Modal Analysis for Model Reduction

e Conceptually simple: project the system to the eigenspace

corresponding to some eigenvalues.

e In structural mechanics, projection to the lower modes of
vibration.

~» Computation of the leftmost eigenpairs of stifilness-mass
pencil (K, M).

e Useful as an initial step for very large sparse systems, to
produce an intermediate transfer function of acceptable

degree.

e Does not require a selection of input and output.



Modal Approximation of Structures (1)

M + Cq + Kq = bu(t)

Assume proportional damping (C is a linear combination of M
and K). Assume that M is positive definite and K positive
semi-definite. Then there exist a modal basis (X(S))szl _ such
that

I T 2 T
X(r)MX(S) — 57“87 X(T)KX(S) — wrcsrs, X(T)CX(S) — QCTwT(STSy

and 0 < wi < ... <w,.



Modal Approximation of Structures (2)

Mg + Cq + Kq = bu(t)

Decomposing the response in the modal basis,

and replacing in (1) yields the n decoupled equations

Eims + 2Csws(.lms + qums — bmsu(t), S = 1, “ .

where

d(t) = > dmsX(s);
s=1

T
bms = X(S)b.
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Modal Approximation of Structures (3)

Mg + Cq + Kq = bu(t)

n

q(t) — Z X(S)X%;)b

s=1

where wgg = wsy/1 — (2.

Modal truncation consists in approximating q(t) by retaining

1

Wsd

t
/ e s =T) gin (weq(t — 7)) u(T)dr,
0

(2)

only a few dominant terms in the development (2).



Modal Approximation of Structures (4)

Dominance of a mode s depends on two factors:

o A spatial factor
T
X(s) bms — X(s) X(S)b

that only depends on the spatial distribution b of the load.
The factor by sis called modal participation factor for the
considered mode; see [GR9I7, §2.5].

o A temporal factor

t
0s(t) := ! / e~ (=T) gin (weg(t — 7)) u(7)dT
0

Wsd

that only depends on wu(t).



Why model trust region? (1)

e Initial observation about single vector iterations for
computing the leftmost eigenvector of a matrix
A=A" »0:

— Unshifted inverse iteration: global convergence, but

only linear.

— Rayleigh quotient iteration: cubic convergence, but no

global convergence.

— Hybrid method that retains the best of both??



Why model trust region? (2)

e Numerical Optimization:

— For superlinear convergence, use Newton’s method.
At each step, compute the stationary point of the local

quadratic model of the cost function.

— For global convergence to local minima, introduce a

trust-region constraint.

— For numerical efficiency and low memory requirements,
solve approrimately the TR subproblems using
truncated CG (Steihaug-Toint). Convergence properties

are preserved!
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e How does TR apply to the extreme symmetric generalized

eigenproblem?

e Are we better off with a TR-based eigensolver?
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Outline

Extreme symmetric GEP as optimization on manifold.
Trust-region in R".

Trust-region on Riemannian manifolds.

— Description.

— Convergence analysis.

Application: Extreme Component Analysis.

— Algorithm details.

— Links with other methods.

— Numerical experiments.
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The optimization problem

Given is n x n pencil (4, B), A= A!, B = B! = 0, with

(unknown) eigensystem

Alvy|...|lvn] = Bluy| ... |v,] diag(Ag, ..., An)

1] .. Joplt Blot].. . Jopl =1, M <Xa<...< A

The problem is to compute the “leftmost” eigenspace

V = col(vy, ..., vp).
Solution: V = col(arg miny cgr(p n) trace (YTAY(YTBY)_l)).

Difficulty: continuum of minimizers Y.

13



Optimization problem on the Grassmann manifold

I \
col(Y) > trace (YTAY (Y'BY) 1)

Then the leftmost p-dimensional eigenspace V of (A, B) satisfies

V=arg min f(J))

YeGrass(p,n)

where

f: Grass(p,n) — R : col(Y) — trace(YTAY (Y1 BY)™1).

14
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Trust-region in R".

Trust-region on Riemannian manifolds.

— Description.

— Convergence analysis.

Application: Extreme Component Analysis.

— Algorithm details.

— Links with other methods.

— Numerical experiments.
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Principle of Trust-Region (TR) in R"

Consider a cost function f in R™. Let x; be the current iterate.
Build a model my(s) of f around x;. The model should agree to
f at x; to the first order at least, and to the second order if
superlinear convergence is sought.

Find (up to some precision) a minimizer s of the model within
a “trust-region”, i.e., a ball of radius A, around z;.

Compute the ratio

_ flaw) — flak + si)

mk(()) — mk(sk)

to compare the actual value of the cost function at the proposed

new iterate with the value predicted by the model.
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Principle of Trust-Region (TR) in R™ (cont'd)

5. Shrink, enlarge or keep the trust-region radius according to the

value of p.

6. Accept or reject the proposed new iterate x; + s, according to
the value of p.

7. Increment k and go to step 2.

For more detail, see e.g. INW99, CGT00].
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Principle of Trust-Region (TR) in R"

18




Principle of Trust-Region (TR) in R"

My (SE _ x/ﬁLl)

19
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Principle of truncated CG (tCG)

=

Level curves of my,

Trust region at k



Stopping criterion for tCG

Reasons for stopping tCG (inner iteration):

e The line-search algorithm hits the trust-region boundary.
(This happens in particular when the model has a negative
curvature along the current direction of search.)

e The norm of the residual has become sufficiently small.
Criterion:

. 0
751l < llrol| min(f7o]l", ).
Note that r,, = 0 in exact arithmetic (theory of linear CG).

— Expected order of convergence: min{f + 1,2}.

If cost fn symmetric around the limit point: min{# + 1, 3}.

21
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Trust-region on Riemannian manifolds.

— Description.

— Convergence analysis.

Application: Extreme Component Analysis.

— Algorithm details.

— Links with other methods.

— Numerical experiments.
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Trust-region methods on Riemannian manifolds: difficulties

In general, coordinates systems can be scaled without
restriction: If ¢ is a chart, then a¢ is still a chart, with a € R.

23



Trust-region methods on Riemannian manifolds: remedies

To define a notion of trust-region on Riemannian manifolds,

one has to use charts with some “rigidity” property.

To assign a “locally rigid” chart to any point on a manifold M,
we use the concept of retraction introduced (7) in Adler et
al. [ADM™02].

24



Trust-region methods on Riemannian manifolds: remedies (cont'd)

Concept of retraction:

X

T,M

M

1. R, is defined and one-to-one in a neighbourhood of 0, in
T, M.

2. R;(0;) = .

3. DR.(0,) = idr,as, the identity mapping on T, M, with the
canonical identification Ty T, M ~ T, M.

25



Trust-region methods on Riemannian manifolds: remedies (cont'd)

Retraction as a mapping from the tangent bundle T'M to M.

TM

26



1b.

Trust-region methods on Riemannian manifolds

Given: smooth manifold M; Riemannian metric g; smooth
cost function f on M; retraction R from the tangent
bundle T'M to M; current iterate xy.

Lift up the cost function to the tangent space 1, M:

fm:foRx-

Build a model mg(s) of fx around xp.
Find (up to some precision) a minimizer s; of the model

within a “trust-region”, i.e., a ball of radius Ay around x.

27



Trust-region methods on Riemannian manifolds (cont'd)

Compute the ratio

_ f($k) - f<R33kSk’)

mk(O) — mk(sk)

(note the presence of R;, !) to compare the actual value of
the cost function at the proposed new iterate with the
value predicted by the model.

Shrink, enlarge or keep the trust-region radius according to
the value of p.

Accept or reject the proposed new iterate R, si according
to the value of p.

Increment £ and go to step 2.

28



Solving the TR subproblem: truncated CG

e Start from the point s = 0.

e Compute the first search direction 8 = —grad f(xy).

e Minimize the model myg(s) along dg within the trust region.
This yields s'. If the boundary is reached, then stop.

e Compute the conjugate-gradient direction 6.

e Minimize the model along s' + ad?. If the boundary if
reached, then stop.

e ... Repeat the procedure until some stopping criterion is

satisfied, and return s := 7.

Stopping criteria are based on the norm of the residual

Vmy(s?).

29



Principle of TR on Riemannian manifold

T, M

30




Required ingredients for Riemannian TR

Manifold M, Riemannian metric g, and cost function f on

M.

Practical expression for 1), M.
Retraction Ry, : Ty, M — M.

Function fy, (s) := f(Rus, (s)).

Gradient grad f,, (0).
Hessian Hess f, (0).

31
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Trust-region on Riemannian manifolds.

— Description.

— Convergence analysis.

Application: Extreme Component Analysis.

— Algorithm details.

— Links with other methods.

— Numerical experiments.
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Global convergence result

Let {x} be a sequence of iterates generated by the RTR
algorithm with p’ € (0, i) Suppose that f is C? and bounded
below on the level set {x € M : f(z) < f(xo)}. Suppose that
|grad f(z)|| < B, and ||Hess f(x)|| < By for some constants [y,
B, and all x € M. Moreover suppose that

|7 @ Btell < Bp (3)

for some constant Gp, for all £ € TM with ||£|| = 1 and all

t < dp, where % denotes the covariant derivative along the
curve t — Rt&. Further suppose that all approximate solutions
s;. of the trust-region subproblems produce a decrease of the

model that is at least a fixed fraction of the Cauchy decrease.

33



Global convergence result (cont'd)

It then follows that

lim grad f(zy) = 0.

k— 00

And only the local minima are stable (the saddle points and

local maxima are unstable).

34



Local convergence result

Consider the RTR-tCG algorithm. Suppose that f is a C? cost

function on M and that

|Hy — Hess fu, (01)]| < Brllgrad f(zx)]. (4)

Let v € M be a nondegenerate local minimum of f, (i.e.,

grad f(v) = 0 and Hess f(v) is positive definite). Further
assume that Hess ka is Lipschitz-continuous at 0, uniformly in
x in a neighborhood of v, i.e., there exist 31 > 0, 0; > 0 and

d2 > 0 such that, for all x € Bs, (v) and all £ € Bs,(0;), it holds

|Hess fu, (€) — Hess f, (0a,) | < Brali€]l ()

35



Local convergence result (cont'd)

Then there exists ¢ > 0 such that, for all sequences {x}
generated by the RTR-tCG algorithm converging to v, there
exists K > 0 such that for all £ > K,

dist(zpi1,v) < ¢ (dist(zy, v))e0+12} (6)

where 6 governs the stopping criterion of the tCG inner

1teration.
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Case p = 1: Trust-region on the sphere

T,,S"" R

Sn—l

38



Trust-region for extreme SGEVP: principles

Given: n X n symmetric matrices A and B, with B > 0.

Problem: compute the ‘leftmost’ eigenvector v; of pencil

(A, B).
Ingredients of the Riemannian trust-region method:

1. Manifold: M = {y cR" :y!' By =1} = {y : |ly|lz = 1}.

2. Tangent space: T,M = {z : y! Bz = 0}.

3. Metric: g,(2q, 2p) = 21 2.

4. Retraction: R,(2) = (y+ 2)/||ly + #||B-

5. Cost function: f:{y:|ly[|lp=1} =2 R:y— z;gg

Underlying fact: v; = argmin f(y).

39



Trust-region for extreme SGEVP: details

Lifted cost function:
¢ _ _ +s \ _ (y+s)" A(y+s) _
fy(S) — f(Ry(eS)) = f (IIyy—|—s||B> = (z+S)TB(Z—I—s)’ yTBS = 0.

Let (u,v) = u'v denote the classical inner product on R”, and
let P denote the orthogonal projector onto {s: y! Bs = 0},
that is

P=1-By(y"B*) 'y' B. (7)

40



Trust-region for extreme SGEVP: details

One has:
T T
A y- Ay y* As
fuls) = + 2
(%) yI'By “yTBy
1 T ?JTAZJ T 3
+yTBy (3 As — yTByS Bs | + O (]s]]°)

= f(y) +2(PAy,s)

+%(2P(A — f(y)B)Ps,s) + O (||s]]°) -

41



Trust-region for extreme SGEVP: details

The second order approximation of fy(s) is thus

my(s) = £(u) + 2APAy, )+ S(P(A~ [(4)B)Ps,s), y"Bs =0,

(8)

Exact trust-region method: compute

s* = argming (g 5)<A2 My(s) (yI Bs =0).

Inexact trust-region: compute an approximate solution s using
truncated CG.

Update: yy = R,(5) = (y+ 35)/||ly + 3| B-

42



Trust-region for BLOCK extreme SGEVP: principles

Given: n X n symmetric matrices A and B, with B > 0.

Problem: compute the ‘leftmost’ eigenvectors vy, ..., v, of
pencil (A, B).

Ingredients of the Riemannian trust-region method:

1. Manifold: M = {p — dimensional subspaces of R"}

(Grassmann manifold).

2. Representations: ) represented by any
Y e R"P:col(Y) = D).

3. Tangent space: formally, Ty M = {Z €¢ R"*? : Y1 BZ = 0}.
4. Metric: formally, gy (Z,, Zy) = trace (Y1 BY )12l Z).

43



5. Retraction: formally, Ry (Z) = (Y + Z)M, where arbitrary

M serves for normalization.

6. Cost function: formally,
f(Y) = trace (Y'BY) }(YTAY)).

Underlying fact: |v1]...|v,|M minimizes f(Y) for all M

invertible.

44



Trust-region for BLOCK extreme SGEVP: details

Lifted cost function:

—1

A

fv(2) = f(Ry(2)) = trace (((Y +2)"BY +2)) (v +2)"AY + Z)))
— trace ((YTBY)_lYTAY) + 2trace ((YTBY)_lZTAY)

+trace (Y7 BY) 2" (42 - BZ(y" AY))) + HOT
— trace ((YTBY)_lYTAY> + 2trace ((YTBY)—lzTPBy,BYAY)

+ trace ((YTBY)_lzTPBY,BY (AZ _ BZ(YTAY))> + HOT,

where PBY,BY =1 — BY(YTBQY)_lyTB.
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Trust-region for BLOCK extreme SGEVP: details

The second order approximation of fy(Z ) is thus

1
my (Z) = [(Y) + gy (grad f(Y), Z) + 5 9v (Hy Z, Z)
= trace ((Y' BY)"'YTAY) + 2trace (Y' BY) ™' Z" AY)
+trace (Y'BY)™'Z" (AZ — BZ(Y'BY) 'Y AY)).
Exact trust-region method: compute
Z* =argming, z n<pzmy(Z)  (Y'BZ =0).

Inexact trust-region: compute an approximate solution Z using
truncated CG.

~ ~

Update: Yy = Ry (Z) = (Y + Z)M.
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Properties of the algorithm

Algorithm: Riemannian Trust-Region method on the sphere
with truncated-CG algorithm for minimizing the Rayleigh

quotient.

Properties:

For all initial conditions, {yx} converges to an eigenvector.
Only the minor eigenvector +v; is stable.
Superlinear rate, with exponent min{6 + 1, 3}.

No factorization of A.

A e

Minimal storage space needed (CG process).

47
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Numerical experiments: exact simple tracemin, RQIl, RTR

10 T T T T

—— tracemin

—— RTR
RQI

-10

10—12 |

14 | | | |
0 5 10 15 20 25

10

Distance to target versus number of outer iterations.

Simple symmetric positive-definite eigenvalue problem.
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Numerical experiments: exact simple tracemin, RQIl, RTR

10 T T T T T T
—— tracemin
—— RTR

0 H— R RQI

-14 | | | | | |
0 5 10 15 20 25 30 35

Distance to target versus number of outer iterations.

Simple symmetric positive-definite eigenvalue problem.
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Numerical experiments: RTR vs Krylov [GY02]

10 T T

—*— RTR
GY

o M\\\ v v |

107 F 5 .

10 + .

10—10 | _

12 | |
0 500 1000 1500

10

Distance to target versus matrix-vector multiplications.

Symmetric/positive-definite generalized eigenvalue problem.
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Numerical experiments: RTR vs Lanczos (p > 1)

—*— RTR
BL

10° I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

Distance to target versus matrix-vector multiplications.

Block version, standard symmetric eigenvalue problem.
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Link with Basic TraceMin

Basic Tracemin computes (assuming that A > 0, too)

7Z* = argmintrace(Y + 2)TA(Y + 2), Y!'BZ =0.

Notice that
trace(Y + Z2)V A(Y + 2)
= trace (Y'BY)'YTAY) + 2trace (Y'BY) ' Z" AY)
+trace (Y'BY) 12T AZ) .
Useful property: with Y, := (Y + Z)M, one has

trace (Y] BY;) 'Y/ AY}) < trace (V' BY)'Y"AY).

But superlinear convergence is lost — dynamic shift strategy.
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Link with “pure” Newton method

Remove the trust-region aspect and define the next iterate as
Y. =Y +2Z2 M
where Z* solves the Newton equation
Dmy (Z*) = 0,

that is
Pgypy (AZ — BZ(Y"AY)) = —Pgy gy AY.

In the JD framework, this is called the Jacobi equation. Actually, it

is just a (Grassmann-)Newton equation; see Edelman et al. [EAS9S|.

Global convergence to minor eigenspace is lost.
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Subspace acceleration

Much like the pure Newton method and the Tracemin algorithm,
the RTR-tCG approach lends itself to Davidson subspace

acceleration enhancement. The subspace is appended with the
RTR-tCG update vector Z.

Numerical experiments in progress.
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Towards unification

The above-metioned (inexact-)Newton-like methods differ along the

following lines:

1. Choice of the local model m (~ choice of shifts: Rayleigh shifts,
no shifts...).

2. Stopping criterion for inner iteration.
3. Subspace acceleration enhancements.

4. Preconditioning.
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A hybrid Tracemin / TR method

Collaboration with Ahmed Sameh.

e Trust-region confinement may hamper efficient preconditioning
far away from the solution.

~» Use preconditioned Basic Tracemin in Phase I.

e (Close to the solution, Basin Tracemin is linear.
~» Use TR method in Phase II.

58



Hybrid Tracemin / TR

(BCSSTK24,BCSSTM24)

dist to solution
|_\
o

10
10°
10—10
0 2 4 6 8 10 12 14
number ops x 108

With exact preconditioner after symamd.
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Are we better off with TR-based schemes?

“Matrix-free” method: shift-and-inverse not needed.
Superlinear convergence.
Detailed global and local convergence analysis.

Subspace acceleration enhancements; adaptive local models;

preconditioning.
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Future work

e Eigenvalue problem:

— Metacode for the extreme symmetric GEP: TR method with
adaptive local models and various subspace acceleration

enhancements.
— Case B positive semi-definite.
— Compute interior eigenvalues.
— Quadratic eigenvalue problem.
— Nonsymmetric eigenvalue problem.

e Optimization-on-manifolds approach to model reduction (with

Paul Van Dooren).
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Future work

THE END
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Review of Newton-like methods for extreme EVP

Pure Newton: Ritz shifts, exact solve, preconditioning irrelevant.
RTR-tCG: Ritz shifts, tCG inner stopping criterion.

Dynamic tracemin: Ritz shifts pushed to the left, dynamic inner

stopping criterion.

JD: various shifts (usually Ritz values), various inner stopping
criteria (usually a fixed number of inner iterations), Davidson

acceleration.

Lanczos (?7): shifts irrelevant, only one step of inner solve (i.e.,

use RHS), subspace acceleration.
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Tentative classification of methods for extreme EVP

The following classification is inspired from Arbenz and
Lehoucq [ALO3].

1. Inexact-Newton-based methods (optimize successive

models of the Rayleigh quotient).

2. Nonlinear-CG-based methods for optimizing the Rayleigh

quotient.

3. Lanczos-based methods (build Krylov subspaces and

restart with best approximation from the subspace).

Apparently, most methods clearly fall within one category.
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Classification: Newton methods

‘Pure’” Newton method on manifolds for the Rayleigh quotient:
Smith [Smi94|, Edelman, Arias and Smith [EAS98], Lundstrom
and Eldén [LE02].

Dynamic Tracemin of Sameh, Wisniewski and
Tong [SW82, ST00]: Newton method with “shifted Ritz shifts”.

Jacobi-Davidson of Fokkema, Sleijpen, van der Vorst: see,
e.g., [FSvdV98, SvdVM9IS|.

Vast and recent literature on inexact Newton and inverse
iteration: [SP99, GY00, SE02, Not03, KNO3]...

Notay [Not02]: Newton, CG inner iteration, Davidson

acceleration.
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Classification: nonlinear CG

e Farly work of Bradbury and Fletcher [BF66].
e [Longsine and McCormick [LM80].

e Deflation-accelerated (nonlinear) CG (DACG) of
Ganbolati, Pini and collaborators |GSF92, BGP97].

e Knyazev’s Locally Optimal Block Preconditioned
(nonlinear) CG (LOBPCG) [Kny01].
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Classification: Lanczos methods

Cullum and Donath [CD74a, CD74b], Golub and
Underwood [GU77]: block Lanczos algorithms for the
standard EVP.

Scott [Sco81]. Restarted Lanczos method for the
generalized eigenproblem, superlinear convergence, without
matrix inversion. But the storage space becomes very large

to ensure superlinear convergence. No proof of convergence.

Golub and Ye [GY02]. Restarted Lanczos method for the
generalized eigenproblem. But linear convergence (unless

ideal preconditioning).

(many other references)
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Conclusion (1)

Trust-region method on Riemannian manifolds.

1. Convergence to stationary points for all initial conditions.

. Stable convergence to the nondegenerate local minima.

3. Superlinear local convergence to the nondegenerate local

minima.

4. Approximate Hessian ‘H only utilized as operator s — Hs.

. Minimal storage space required.
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Conclusion (I1)

The “ideal” minor component algorithm

. Convergence to some eigenvector for all initial conditions.
. Stable convergence to the leftmost/rightmost eigenvector
only.

. Superlinear local convergence to Fv;.

. Matrix A only utilized as operator x — Aux:

e No exact system solve with matrix A.

e No factorization of A.

. Minimal storage space required.
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Current work and challenges

Hybrid, “cross-classification” methods: Newton, nonlinear
CG, Krylov.

Go for interior eigenvalues.
Nonsymmetric eigenvalue problem.

Quadratic eigenvalue problem.
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THE END
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