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ABSTRACT
Motivation: Phylogenetic analyses often produce thou-
sands of candidate trees. Biologists resolve the conflict by
computing the consensus of these trees. Single-tree con-
sensus as postprocessing methods can be unsatisfactory
due to their inherent limitations.
Results: In this paper we present an alternative approach
by using clustering algorithms on the set of candidate
trees. We propose bicriterion problems, in particular using
the concept of information loss, and new consensus trees
called characteristic trees that minimize the information
loss. Our empirical study using four biological datasets
shows that our approach provides a significant improve-
ment in the information content, while adding only a small
amount of complexity. Furthermore, the consensus trees
we obtain for each of our large clusters are more resolved
than the single-tree consensus trees. We also provide
some initial progress on theoretical questions that arise in
this context.
Availability: Software available upon request from the au-
thors. The agglomerative clustering is implemented using
Matlab (MathWorks, 2000) with the Statistics Toolbox. The
Robinson-Foulds distance matrices and the strict consen-
sus trees are computed using PAUP (Swofford, 2001) and
the Daniel Huson’s tree library on Intel Pentium worksta-
tions running Debian Linux.
Contact: E-mail : lisan@cs.utexas.edu
Supplementary Information:
http://www.cs.utexas.edu/users/lisan/ismb02/
Keywords: consensus methods; clustering; phylogenet-
ics; information theory; maximum parsimony.

INTRODUCTION
Phylogenetic analysis can be divided into three stages. In
the first stage, a researcher collects data (such as DNA
sequences) for each of the different taxa (genes, species,
etc.) under study. In the second phase, she applies a tree re-
construction method to the data. Many tree reconstruction

∗To whom correspondence should be addressed.

methods produce more than one candidate tree for the in-
put dataset. For example, the maximum parsimony (Swof-
ford et al., 1996) method returns those binary trees with
the lowest parsimony score. (The parsimony score of a tree
is the minimum tree length, i.e., the sum of distances be-
tween two endpoints across all edges, obtained by any way
of labeling the internal nodes.) Very often the number of
trees can be in the hundreds or thousands. In the last phase,
a consensus tree of the candidate trees is computed so as
to resolve the conflict, summarize the information, and re-
duce the overwhelming number of possible solutions to
the evolutionary history.

Many consensus tree methods are available, but a
common feature to all of them is that they produce one
tree. There are several shortcomings of this approach
including loss of information and sensitivity to outliers.

In this paper we present a different approach to post-
processing. The set of candidate trees is divided into sev-
eral subsets using clustering methods. Each cluster is then
characterized by its own consensus tree. We pose several
theoretical optimization problems for these kinds of out-
puts, and present some initial progress on these problems;
these are presented in the section on Clustering Criteria.
The bulk of our paper is focused on an empirical study,
which is presented in the Experiments section. We con-
clude our study and propose additional research problems
in the Conclusions section.

BACKGROUND
Phylogenetic trees
A leaf-labeled tree topology can be decomposed into a
set of bipartitions in the following manner. Each edge,
when deleted from the tree, induces a bipartition of the
leaves; thus, we can identify each edge with its induced
bipartition. Let t1 and t2 be two trees on the same leaf
set, and let E(t1) and E(t2) denote their sets of internal
edges. The quantity |E(t1)!E(t2)| = |(E(t1) − E(t2)) ∪
(E(t2) − E(t1))| is called the Robinson-Foulds (RF)
distance (Robinson and Foulds, 1981) between the two

c⃝ Oxford University Press 2002 S285
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FIGURE 7. Comparison of trees generated from two different
Bayesian MCMC analyses of the same data set. Both Bayesian anal-
yses were conducted under the same conditions (see text). Each color
represents the trees from a different analysis. (a) Analysis based on un-
weighted Robinson-Foulds distances; (b) analysis based on weighted
Robinson-Foulds distances.

be a useful means for describing the Bayesian MCMC
approach in classes and workshops on phylogenetics
(see http://lewis.eeb.uconn.edu/lewishome/software.
html for another useful MCMC instruction tool).

FIGURE 8. Progress in a Bayesian MCMC analysis. The progress in
the search can be visualized in the Tree Set Visualization program, as a
demonstration of how an MCMC analysis functions. In the visualiza-
tion, the progress of the chain through tree-space moves from regions of
low optimality scores (blue) to regions of high optimality scores (red).

Another common problem in phylogenetics is the dis-
covery of several distinct “tree islands” of equally opti-
mal or near-optimal phylogenetic solutions for a given
dataset (Maddison, 1991). In analyzing a particular data
set, one might discover that there are a large number of
solutions that fit the data equally well. A consensus of
these trees may show little or no resolution. However,
an unresolved consensus tree does not necessarily indi-
cate that all potential solutions fit the data equally well.
Separate summaries of each of the tree islands is likely to
show a much higher degree of resolution, and the sepa-
rate tree islands may represent alternative phylogenetic
solutions for the data set. Tree Set Visualization can be
used to identify and analyze these tree islands, as shown
in Figure 9.

Potential Limitations of MDS for Visualizing Tree-Space
Multidimensional scaling based on RF distances is

clearly not the only way (and is not necessarily even
the best way) to visualize and represent tree-space. We
have found this approach to the problem to be useful for
exploring large sets of phylogenetic trees, but we also
recognize that the approach has some limitations. For in-
stance, any reduction of high-dimensional space into two
dimensions necessarily will result in some distortions. As
an example of distortion, consider the MDS visualization
of trees shown in Figure 10. In this case, a reference tree
is shown in blue, and a series of trees that differ from
the reference tree by one bipartition each (RF = 2) are
shown in red. All of the trees are equally distant from the
reference tree in tree-space, and in multiple dimensions
would form a “multidimensional sphere” around the
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Assessing Model Fit
Using parametric bootstrapping or posterior 
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Web Interface (future)
www.treescaperonline.org
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