Using networks to explore, quantify, and summarize phylogenetic tree space

Jeremy M. Brown¹, Guifang Zhou², Wen Huang², Jeremy Ash¹, Melissa Marchand², Kyle Gallivan², and Jim Wilgenbusch³
${ }^{1}$ Louisiana State University, Dept. of Biological Sciences
2 Florida State University, Dept. of Mathematics
${ }^{3}$ Florida State University, Dept. of Scientific Computing

The Team

Overview

- Motivation
- Our network approaches
- Some applications
- Initial results
- Software

Motivation

Summarizing Tree Sets

- Consensus trees

Summarizing Tree Sets

- Consensus trees
- Agreement subtrees

Summarizing Tree Sets

- Consensus trees
- Agreement subtrees
- Clustering

Statistically based postprocessing of phylogenetic analysis by clustering
Cara Stockham ${ }^{1}$, Li-San Wang ${ }^{2, *}$ and Tandy Warnow ${ }^{2}$

Report multiple consensus trees, while attempting to minimize the amount of information lost from the full distribution.

Summarizing Tree Sets

- Consensus trees
- Agreement subtrees
- Clustering
- Dimensionality Reduction

Networks of Trees

Networks of Trees

Networks of Bipartitions

Bipartition Covariances

Bipartition Covariances

Bipartition Covariances

Networks of Bipartitions

Networks of Bipartitions

Two Equally
Frequent Topologies

Network Visualizations

Network Visualizations

Network Visualizations

Assessing Model Fit

Using parametric bootstrapping or posterior prediction, we can compare network structures between observed and simulated datasets.

Empirical

Simulated

Detecting Distinct Phylogenetic Signals

Two Equally
Frequent Topologies

Detecting Distinct Phylogenetic Signals

Two Equally
Frequent Topologies

Network Visualizations

Completely distinct signals in two genes

Network Visualizations

Partially overlapping signal

Proof of Principle

Topologies used for simulating two halves of an alignment.

Proof of Principle

Simulate

Proof of Principle

Majority-Rule Consensus Tree

Proof of Principle

Networks Detect Strong Conflict

TreeScaper

Wen Huang. Tuesday morning iEvoBio Lightning Talk.

Web Interface (future)

TreeScaper Online

Input
Create Networks
Community Detection
Report Network Stats
Visualizations

Acknowledgements

- Computing support from FSU's Research Computing Center and HPC@LSU
- Financial support from NSF (DBI 1262571)

