Using networks to explore, quantify, and summarize phylogenetic tree space

Jeremy M. Brown¹, Guifang Zhou², Wen Huang², Jeremy Ash¹, Melissa Marchand², Kyle Gallivan², and Jim Wilgenbusch³

¹ Louisiana State University, Dept. of Biological Sciences
² Florida State University, Dept. of Mathematics
³ Florida State University, Dept. of Scientific Computing

The Team

Overview

- Motivation
- Our network approaches
- Some applications
- Initial results
- Software

Motivation Our Approaches Applications

Initial Results

Consensus trees

Motivation

Our Approaches

Applications

Initial Results

- Consensus trees
- Agreement subtrees

Motivation Our Approaches Applications In

Initial Results

- Consensus trees
- Agreement subtrees
- Clustering

Statistically based postprocessing of phylogenetic analysis by clustering

Cara Stockham¹, Li-San Wang^{2,*} and Tandy Warnow²

Report multiple consensus trees, while attempting to minimize the amount of information lost from the full distribution.

Software

Motivation Our Approaches Applications Initial Results

- Consensus trees
- Agreement subtrees
- Clustering
- Dimensionality Reduction

Motivation Our Approaches Applications Initial Results Software

Networks of Bipartitions

Motivation **Our Approaches** Applications Initial Results

Bipartition Covariances

Motivation **Our Approaches** Applications

Initial Results

Bipartition Covariances

Motivation **Our Approaches** Applications

Initial Results

Bipartition Covariances

Motivation

Networks of Bipartitions

Uniform Distribution of Topologies

Motivation

Our Approaches

Applications

Initial Results

Networks of Bipartitions

Two Equally Frequent Topologies

Motivation

Our Approaches

Applications

Initial Results

Motivation Our Approaches Applications Initial Results Software

Motivation Our Approaches Applications Initial Results

Motivation Our Approaches Applications Initial Results Software

Assessing Model Fit

Using parametric bootstrapping or posterior prediction, we can compare network structures between observed and simulated datasets.

Empirical

Simulated

Motivation Our Approaches Applications Initial Results Software

Two Equally Frequent **Topologies**

Our Approaches Motivation **Applications**

Initial Results

Two Equally Frequent **Topologies**

Our Approaches **Initial Results** Motivation **Applications**

Completely distinct signals in two genes

Motivation

Our Approaches Applications

Initial Results

Partially overlapping signal

Motivation

Our Approaches Applications

Initial Results

Topologies used for simulating two halves of an alignment.

Motivation Our Approaches Applications Initial Results Software

Motivation

Our Approaches

Applications

Initial Results

Majority-Rule Consensus Tree

Motivation Our Approaches Applications Initial Results Software

Motivation Our Approaches Applications

Initial Results

Networks Detect Strong Conflict

Motivation

Our Approaches

Applications

Initial Results

TreeScaper

	triangle.txt	browse	Log:	
rooted	trees 🗆 v	weighted trees		
	Load all Tre	ees		
	Bipartition M	latrix		
	Covariand	ce		
Consider	ed Trees: (•) range) index file		
From start to end		end		
	list.txt	browse		
List File:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Wen Huang. Tuesday morning iEvoBio Lightning Talk. Motivation Our Approaches Applications Initial Results **Software**

Web Interface (future)

000	TreeScaperOnline														\mathbf{z}^{R}			
	(2) (+ Q WWW	.treesc	aperonl	ine.org												Reade	r (0
□ IIII myL	SU Phyleauxgenetics	GMaps	Pandora	Evol Ed *	LSU Ŧ	News *	Networks *	Weather *	Sports *	Blogs =	Bodega	BodegaLogin	Phylo Labs *	Computational Resources *	LA-DOT Cams	Apple	>>	+

TreeScaper Online

DB | ACD

AD I OBO

BC I OA

OD I ABO

BD I OA

CD I OAB

= + Cov = - Cov

Input

Create Networks

Community Detection

Report Network Stats

Visualizations

Motivation Our Approaches App

Applications

Initial Results

Acknowledgements

- Computing support from FSU's Research Computing Center and HPC@LSU
- Financial support from NSF (DBI 1262571)

