The H_{∞} -norm calculation for large sparse systems

Y. Chahlaoui^{*}, K. Gallivan^{*}, P. Van Dooren[†]

* CSIT, Florida State University, USA

† CESAME, UCL, Belgium

Model Reduction Project

- Rice University A. Antoulas and D. Sorensen
- Purdue University A. Sameh, A. Grama, C. Hoffmann
- FSU/UCL P. Van Dooren, K. Gallivan

Develop efficient and effective techniques and codes for large scale model reduction for applications in:

- simulation
- control

Problem Statement

Given a system

$$G(z) = C(zI_n - A)^{-1}B + D,$$

define the H_{∞} -norm by

$$\gamma^* := \|G(z)\|_{\infty} := \sup_{\omega} \|G(e^{j\omega})\|_2.$$

Problem Statement

Given a system

$$G(z) = C(zI_n - A)^{-1}B + D,$$

define the H_{∞} -norm by

$$\gamma^* := \|G(z)\|_{\infty} := \sup_{\omega} \|G(e^{j\omega})\|_2.$$

Conditions:

- discrete time, stable
- A is an $(n \times n)$, non-symmetric large sparse matrix
- \square $n \gg m, p$ where p inputs and m outputs

Motivation

Large system T(z) system and reduced order approximation $\hat{T}(z)$ approximate H_{∞} -norm of

$$G(z) = T(z) - \hat{T}(z)$$

to evaluate global quality. Needed when $\hat{T}(z)$ is generated by:

- Iarge scale Approximate Balanced Truncation methods (Antoulas and Sorensen) driven by global error considerations
- Rational and Tangential Interpolation methods (Grimme, Vandendorpe, Van Dooren, and Gallivan) – driven by local error considerations
- Passive Reduced System methods via rational interpolation at selected spectral zeros (Antoulas and Sorensen) driven by preserving structure
- Hybrid methods

Consider the para-hermitian transfer functions and their spectra

$$\Phi(z) = G_*(z) G(z) \qquad \Phi_{\gamma}(z) = \gamma^2 I_m - \Phi(z)$$

where $G_*(z) := D^T + z B^T (I - z A^T)^{-1} C^T$

Consider the para-hermitian transfer functions and their spectra

$$\Phi(z) = G_*(z) G(z) \qquad \Phi_{\gamma}(z) = \gamma^2 I_m - \Phi(z)$$

where $G_*(z) := D^T + z B^T (I - z A^T)^{-1} C^T$

Basis of method:

$$\Phi_{\gamma}(e^{j\omega}) \succ 0 \Leftrightarrow \gamma > \gamma^* = \|G(z)\|_{\infty} \quad \text{for} \ \omega \in [-\pi, +\pi]$$

Consider the para-hermitian transfer functions and their spectra

$$\Phi(z) = G_*(z) G(z) \qquad \Phi_{\gamma}(z) = \gamma^2 I_m - \Phi(z)$$

where $G_*(z) := D^T + z B^T (I - z A^T)^{-1} C^T$

Basis of method:

$$\Phi_{\gamma}(e^{j\omega}) \succ 0 \Leftrightarrow \gamma > \gamma^* = \|G(z)\|_{\infty} \quad \text{for} \ \omega \in [-\pi, +\pi]$$

Define eigenvalue bounds for $\Phi(e^{j\omega})$

$$\lambda_* \doteq \min_{\omega \in [-\pi, +\pi]} \lambda_{min}(\Phi(e^{j\omega})), \quad \lambda^* \doteq \max_{\omega \in [-\pi, +\pi]} \lambda_{max}(\Phi(e^{j\omega})).$$

then

$$\gamma^* = \|G(z)\|_{\infty} = \sqrt{\lambda^*}$$

Eigenvalues of $\Phi(e^{j\omega})$ and a level line at $\lambda>0$

Eigenvalues of $\Phi(e^{j\omega})$ and a level line at $\lambda > 0$

- $0 < \lambda < \lambda_*$ no intersections
- $\ \, \bullet \ \, \lambda^* < \lambda \ \, {\rm no \ \, intersections}$

Eigenvalues of $\Phi(e^{j\omega})$ and a level line at $\lambda > 0$

- $0 < \lambda < \lambda_*$ no intersections
- $\ \, \bullet \ \, \lambda^* < \lambda \ \, {\rm no} \ \, {\rm intersections}$
- identify interval
- $\ \, { 0 < \lambda < \lambda_* } \ \, { is easily avoided }$
- move toward γ^*

Eigenvalues of $\Phi(e^{j\omega})$ and a level line at $\lambda > 0$

- $0 < \lambda < \lambda_*$ no intersections
- $\lambda^* < \lambda$ no intersections
- $\ \, \bullet \ \, \lambda_* < \lambda < \lambda^* \ \, {\rm intersections}$
- identify interval
- $0 < \lambda < \lambda_*$ is easily avoided
- move toward γ^*
- \checkmark repeat until $\sqrt{\lambda}pprox\gamma^*$
- fast methods need to find all intersections for a given λ

Given $\gamma = \sqrt{\lambda}$ find all ω_i such that

$$det\left(\gamma^2 I_m - \Phi(e^{j\omega_i})\right) = 0$$

Given $\gamma = \sqrt{\lambda}$ find all ω_i such that

$$det\left(\gamma^2 I_m - \Phi(e^{j\omega_i})\right) = 0$$

Intersections are the zeros of $\Phi_{\gamma}(e^{j\omega})$.

Given $\gamma = \sqrt{\lambda}$ find all ω_i such that

$$det\left(\gamma^2 I_m - \Phi(e^{j\omega_i})\right) = 0$$

Intersections are the zeros of $\Phi_{\gamma}(e^{j\omega})$.

 $e^{j\omega_i}$ are also the symplectic generalized eigenvalues on the unit circle of

$$\left(\begin{bmatrix} 0 & A + BM_{\gamma}^{-1}D^{T}C \\ -I_{n} & -C^{T}C - C^{T}DM_{\gamma}^{-1}D^{T}C \end{bmatrix}, \begin{bmatrix} BM_{\gamma}^{-1}B^{T} & -I_{n} \\ A^{T} + C^{T}DM_{\gamma}^{-1}B^{T} & 0 \end{bmatrix} \right),$$

where $M_{\gamma} := \gamma^2 I_m - D^T D$.

Given $\gamma = \sqrt{\lambda}$ find all ω_i such that

$$det\left(\gamma^2 I_m - \Phi(e^{j\omega_i})\right) = 0$$

Intersections are the zeros of $\Phi_{\gamma}(e^{j\omega})$.

 $e^{j\omega_i}$ are also the symplectic generalized eigenvalues on the unit circle of

$$\left(\begin{bmatrix} 0 & A + BM_{\gamma}^{-1}D^{T}C \\ -I_{n} & -C^{T}C - C^{T}DM_{\gamma}^{-1}D^{T}C \end{bmatrix}, \begin{bmatrix} BM_{\gamma}^{-1}B^{T} & -I_{n} \\ A^{T} + C^{T}DM_{\gamma}^{-1}B^{T} & 0 \end{bmatrix} \right),$$

where $M_{\gamma} := \gamma^2 I_m - D^T D$.

 $O(n^3)$ complexity per step to find all ω_i .

Strategies to Update γ

Bisection (Enns and Glover)

$$\gamma_{lb} = \sigma_1 \le ||G(z)||_{\infty} \le 2\sum_i \sigma_i = \gamma_{ub}$$

where σ_i are Hankel singular values.

Strategies to Update γ

Bisection (Enns and Glover)

$$\gamma_{lb} = \sigma_1 \le ||G(z)||_{\infty} \le 2\sum_i \sigma_i = \gamma_{ub}$$

where σ_i are Hankel singular values.

Bisection (Boyd et al.)

$$\gamma_{lb} = \sqrt{\frac{Trace(\mathcal{G}_c \mathcal{G}_o)}{n}}$$
$$\gamma_{ub} = 2\sqrt{n \, Trace(\mathcal{G}_c \mathcal{G}_o)}$$

Strategies to Update γ

Bisection (Enns and Glover)

$$\gamma_{lb} = \sigma_1 \le \|G(z)\|_{\infty} \le 2\sum_i \sigma_i = \gamma_{ub}$$

where σ_i are Hankel singular values.

Bisection (Boyd et al.)

$$\gamma_{lb} = \sqrt{\frac{Trace(\mathcal{G}_c \mathcal{G}_o)}{n}}$$
$$\gamma_{ub} = 2\sqrt{n \, Trace(\mathcal{G}_c \mathcal{G}_o)}$$

Level set methods (J. Sreedhar, P. Van Dooren, and A. L. Tits):

- midpoint rule
- cubic interpolation
- rational interpolation

Level set method

Converges very quickly

Sparse Method

- \checkmark given a γ , identify which of three intervals
- \checkmark move toward γ^*

Sparse Method

- **given** a γ , identify which of three intervals
- move toward γ^*
- Only use efficient large scale primitives
 - sparse matrix times k vectors in \mathcal{R}^n where $k \leq m$
 - dense matrix operations of complexity $O(m\alpha^2)$ where $\alpha=m$ or $\alpha=p$

Sparse Method

- **given** a γ , identify which of three intervals
- move toward γ^*
- Only use efficient large scale primitives
 - sparse matrix times k vectors in \mathcal{R}^n where $k \leq m$
 - dense matrix operations of complexity $O(m\alpha^2)$ where $\alpha = m$ or $\alpha = p$
- need effective techniques to accelerate interval detection
- need effective techniques to update γ from accumulated information

Basis of Method

Basis of Method

Background

Bounded Real Lemma

 $\gamma \geq \gamma^* \Leftrightarrow \exists P \succeq 0$ that solves of the LMI

$$H(P) := \begin{bmatrix} P - A^T P A - C^T C & -A^T P B - C^T D \\ -B^T P A - D^T C & \gamma^2 I_m - B^T P B - D^T D \end{bmatrix} \succeq 0.$$

Background

Bounded Real Lemma

 $\gamma \geq \gamma^* \Leftrightarrow \exists P \succeq 0 \text{ that solves of the LMI}$

$$H(P) := \begin{bmatrix} P - A^T P A - C^T C & -A^T P B - C^T D \\ -B^T P A - D^T C & \gamma^2 I_m - B^T P B - D^T D \end{bmatrix} \succeq 0.$$

Riccati Matrix Inequality (Willems)

$$\exists P \succeq 0 \tilde{R} = \gamma^2 I_m - B^T P B - D^T D \succeq 0 K = B^T P A + D^T C$$

$$P - A^T P A - C^T C + K^T \tilde{R}^{-1} K \succeq 0$$

Chandrasekhar Iterations

Consider the discrete-time algebraic Riccati equation

$$P = A^T P A + C^T C - K^T R^{-1} K.$$

Solved using an iterative scheme Chandrasekhar equations to exploit sparsity

$$P_{i+1} = A^T P_i A + C^T C - K_i^T R_i^{-1} K_i,$$

where $K_i := B^T P_i A + D^T C$, and $R_i = B^T P_i B + D^T D - \gamma^2 I_m$. (Hassibi, Sayed, and Kailath)

The difference matrices $\delta P_i := P_{i+1} - P_i$ satisfy

$$\delta P_{i+1} = A^T \delta P_i A - K_{i+1}^T R_{i+1}^{-1} K_{i+1} + K_i^T R_i^{-1} K_i.$$

Chandrasekhar Iteration

If we consider $\delta P_i = L_i^T \Sigma_2 L_i$, $R_i = S_i^T \Sigma_1 S_i$, and $K_i = S_i^T \Sigma_1 G_i$.

Then there exists a *J*-orthogonal matrix Q, i.e., $Q^T J Q = J$, such that

$$Q\begin{bmatrix} S_i & G_i \\ L_i B & L_i A \end{bmatrix} = \begin{bmatrix} S_{i+1} & G_{i+1} \\ 0 & L_{i+1} \end{bmatrix}, \text{ where } J = \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix}$$

The feedback matrix is $F_i := R_i^{-1}K_i = S_i^{-1}G_i$.

For our conditions we have

$$P_0 = 0$$

- $\Sigma_1 = -I_m$ and $\Sigma_2 = I_p$
- constant signature is necessary and sufficient for convergence (Hassibi, Sayed, and Kailath)

Intervals

 $\gamma > \sqrt{\lambda^*} = \gamma^*$

- $\textbf{ sonvergence with } \rho(A BF_{\gamma}) < 1$
- \checkmark ρ can be estimated
- $\mathbf{\Sigma}_1 = -I_m \text{ and } \Sigma_2 = I_p \text{ constant}$

Intervals

 $\gamma > \sqrt{\lambda^*} = \gamma^*$

- convergence with $\rho(A BF_{\gamma}) < 1$
- $\checkmark \rho$ can be estimated
- $\Sigma_1 = -I_m$ and $\Sigma_2 = I_p$ constant

$\sqrt{\lambda_*} < \gamma < \sqrt{\lambda^*}$

- ▶ non-convergent and $\rho(A BF_i)$ may be erratic
- Σ_1 and Σ_2 not constant nor consistent with $\gamma > \gamma^*$

Intervals

 $\gamma > \sqrt{\lambda^*} = \gamma^*$

- convergence with $\rho(A BF_{\gamma}) < 1$
- $\checkmark \rho$ can be estimated
- $\Sigma_1 = -I_m$ and $\Sigma_2 = I_p$ constant

$\sqrt{\lambda_*} < \gamma < \sqrt{\lambda^*}$

- ▶ non-convergent and $\rho(A BF_i)$ may be erratic
- Σ_1 and Σ_2 not constant nor consistent with $\gamma > \gamma^*$

$\gamma < \sqrt{\lambda_*}$

- convergence with $\rho(A BF_{\gamma}) < 1$
- \checkmark can be avoided with use of γ_{lb}
- easily detected via signature on first step

Dense numerical examples

Random dense stable discrete-systems n = 300, p = m = 2.

$\rho(A)$	0.95	0.9	0.7	0.5
Matlab	14.2180	9.4695	4.6672	5.2757
SB	14.2207 <mark>(561)</mark>	9.4695 <mark>(523)</mark>	4.6672 <mark>(426)</mark>	5.2758 <mark>(411)</mark>
SLM	14.2196 <mark>(134)</mark>	6.7198 <mark>(105)</mark>	4.5590 <mark>(49)</mark>	3.3535 <mark>(124)</mark>
SLC	14.2196 <mark>(120)</mark>	6.7198 <mark>(103)</mark>	4.5590 <mark>(48)</mark>	3.3535 <mark>(76)</mark>
SLR	14.2196 <mark>(93)</mark>	6.7198 <mark>(104)</mark>	4.5590 <mark>(49)</mark>	3.3535 <mark>(122)</mark>
СВ	15.3416 <mark>(41)</mark>	9.3256 <mark>(59)</mark>	4.7523 <mark>(23)</mark>	5.3436 <mark>(33)</mark>
ACB	14.1142 <mark>(12)</mark>	9.5516 <mark>(11)</mark>	4.6509 <mark>(10)</mark>	5.3327 <mark>(11)</mark>

Legend:

 $\hat{\gamma}^{*}$ (cputime s)

SB: symplectic bisection

SLM: set level with midpoint rule

SLC: set level with cubic interpolation

SLR: set level with rational interpolation

CB: Chandrasekhar iterations combined with bisection

ACB: Chandrasekhar iterations combined with bisection with signature check

Sparse numerical example

Random sparse stable discrete-system n = 800, p = m = 2.

	$\hat{\gamma}^*$ (cputime s)	iterations
Matlab	7.7193 <mark>(865)</mark>	_
SB	—	_
SLM	-	-
SLC	—	_
SLR	—	_
СВ	7.6923 <mark>(120)</mark>	40
ACB	7.7166 <mark>(78)</mark>	42

Enhancements

Update of γ

- Currently bisection used
- extrapolation schemes with $\rho(\gamma_i)$ for $\gamma_i > \gamma^*$ estimates are being investigated
- structure of problem and the behavior when $\sqrt{\lambda_*} < \gamma < \sqrt{\lambda^*}$ are also being investigated

Adaptation of γ

Suppose it is detected that $\gamma_i > \gamma^*$ and γ_{i+1} chosen

- Rather than restart the iteration, use a variable coefficient Chandrasekhar iteration to reduce the time required to detect convergence with γ_{i+1}
- If $\gamma_{i+1} < \gamma^*$ iteration data must be reset to data present when γ_i was modified

Variable Coefficient Iteration

Let $\eta^2 := \gamma_i^2 - \gamma_{i+1}^2$ it follows that $(\varsigma = i+1)$

$$\begin{bmatrix} R_{\varsigma} & K_{\varsigma} \\ K_{\varsigma}^T & \delta P_{\varsigma} + K_{\varsigma}^T R_{\varsigma}^{-1} K_{\varsigma} \end{bmatrix} = \begin{bmatrix} B^T \delta P_i B + R_i + \eta^2 I_m & B^T \delta P_i A + K_i \\ A^T \delta P_i B + K_i^T & A^T \delta P_i A + K_i^T R_i^{-1} K_i \end{bmatrix},$$

with the additional correction

$$Q^{T} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & I_{m} \end{bmatrix} Q = \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & I_{m} \end{bmatrix}, \quad Q \begin{bmatrix} \hat{S}_{i} \\ \eta I_{m} \end{bmatrix} = \begin{bmatrix} S_{\zeta} \\ 0 \end{bmatrix}.$$

Conclusion and Future Work

- Initial evidence suggests that the method for estimation of the H_{∞} -norm is efficient for large sparse systems and may be competetive for dense systems
- Evaluation with large scale industrial problems
- Further development of γ update extrapolation methods
- Further investigation of variable coefficient implementation
- Handle the case where m and/or p get large
- Continuous time systems
- Inclusion in hybrids with other MR methods