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Topics

• Brief summary of previous work in computational science and

engineering

• Model reduction of a system represented by:

– a differential equation

– a differential equation and data

– data, a parameterization and an optimization metric
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Research Goal

To understand the interaction and tradeoffs between the

• Algorithms

• Applications

• Architectures (software and hardware, small to large scale)

to create systems that contribute to science and engineering
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Activities

• develop efficient and reliable algorithms

• develop theory that yields algorithmic and implementationinsights

• develop analytical and empirical modeling to

– identify the appropriate architecture to achieve performance goals

– adapt and tune the version of the algorithm for that
architecture/application combination

• create proof-of-concept, research-grade, pre-production software

• assist in the improvement of the architectures (software and
hardware)

• create software systems that facilitate all of the above

• look for similarity between applications for technology transfer
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Example of multidisciplinary activity over time

Algorithm Performance Compiler

Code Evaluation

BLAS3 kernel/cache/

parallel model

Dense linear load/store window

algebra model analysis

Structured Perfect Club FALCON

problems analysis

Current:Cache models and iterative compilation

Chains of Recurrences for performance restructuring
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Technique Code

Parallel Direct Method PY12M

Reordering,Pivoting for multiclusters MCSPARSE, H*

Itetative/Direct hybrid (nonsymmetric) EN-like methods

PARASPAR

Sparse Least Squares CIMGS

LTI model reduction RK Family

Large-scale Riccati-based

stabilization TSQR Family

Parallel MG BoomerAMG

coarsening addition
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Application/Architecture/Algorithm Interaction

Perfect Club– ’hand-tuned’ versions (constructs still relevant in

restructuring)

GFDL-IMGA Ocean Circulation model– Mediterranean basin,

multicluster mapping

Electromagnetics– Frequency selective screen simulation, extended

model reduction algorithms to two-parameters and additional frequency

dependece

Circuit simulation– Hierarchical relaxation (waveform, nonlinear, linear),

extensive implementation analysis of memory system, control system and

runtime library of Cedarstarting point for model reduction

7



'

&

$

%

Current Application/Algorithm Interaction

• Geodesic searches for image recognition (Liu, Srivastava)

• Autofocus for synthetic aperture radar (Munson)

• Efficient high-fidelity evaluation of models with stochastic

parameters (Hussaini)
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Collaborators

• Model Reduction: P. Van Dooren, E. Grimme, A. Van den Dorpe

• Incremental Dominant Spaces: P. Van Dooren, Y. Chahlaoui, C.

Baker

• Grassmann and Projection Search: A. Srivastava, X. Liu
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Goal

Efficiently approximate a large-scale dynamical system with a

reduced-order model that is

• accurate in response and form.

• smaller in dimension and faster to use relative to some task.

• can be produced efficiently relative to the amount preprocessing time

allowed by subsequent use
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continuous-time discrete-time






ẋ(t) = G(x(t), u(t))

y(t) = H(x(t), u(t))







x(k + 1) = G(x(k), u(k))

y(k) = H(x(k), u(k))

⇓ ⇓






ẋ(t) = A(t)x(t)+B(t)u(t)

y(t) = C(t)x(t)+D(t)u(t)







x(k+1) = A(k)x(k)+B(k)u(k)

y(k) = C(k)x(k) + D(k)u(k)

⇓ ⇓






ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)







x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

Last two cases have extensively been studied
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Linear Time Invariant Systems (Implicit)







Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

u(t) ∈ <m, y(t) ∈ <p, x(t) ∈ <N , N >> m, p

Find another system driven with the same input







Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t),

but ŷ(t) ∈ <p, x̂(t) ∈ <n.

Find low order model with small output error‖y(t) − ŷ(t)‖
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Uses

• accelerate simulation of a large system, e.g., exploiting large LTI

interconnect subsystem in nonlinear ODEs for circuit simulation

• accelerate simulation of a large LTI system that representsa

peturbation to a solution of interest for a large nonlinear system

• preprocessing to create a smaller computationally tractably problem

that is solved and whose solution is “lifted” back to the large space,

e.g., stabilizing feedback
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What kind of approximations?

Transfer functions

T (s) = C(sIN − A)−1B + D, T̂ (s) = Ĉ(sIn − Â)−1B̂ + D̂,

Infinity norm

‖T (.) − T̂ (.)‖∞
.
= sup

ω
‖T (jω) − T̂ (jω)‖2,

Hankel norm

‖T (.) − T̂ (.)‖2
H

.
= σ2

i (H)

Balanced truncation

Apply a balancing state space transformation and truncate to leading
n× n block of transformedA (and conformally on other matrices)This is
often used due to bound relative to the‖ . ‖∞ norm.
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Modal Approximation

Suppose for simplicity that all the poles ofT (s) are different.

T (s) = κ
(s − β1) . . . (s − βN−1)

(s − α1) . . . (s − αN )

=
γ1

s − α1
+ . . . +

γN

s − αN

Idea : Keep thek dominant modes of the partial fraction expansion

T̂ (s) =
γ1

s − α1
+ . . . +

γk

s − αk

.

Advantages : Preserves stability, not always easy to determine which

poles are dominant in an efficient manner for large systems
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Rational interpolation / moment matching

Let T (s) = C(sE − A)−1B. Consider the interpolation set

I = {(σ1, k1), . . . , (σr, kr)}.

construct a reduced order transfer function

T̂ (s) = Ĉ(sIk − Â)−1B̂,

that interpolatesR(s) atσi up to theki-th Taylor expansion term

∀ 1 ≤ i ≤ r, ∀ 1 ≤ j ≤ ki :

dj−1

dsj−1
{R(s)}

∣

∣

∣

∣

s=σi

=
dj−1

dsj−1
{R̂(s)}

∣

∣

∣

∣

s=σi

⇐⇒ Ĉ(σiIk − Â)−jB̂ = C(σiIN − A)−jB
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Complexity

For dense systems these approximations requireO(N3) operations due to

• linear system solving

• singular value decomposition

• eigenvalue decomposition

Not acceptable for large sparse systems

We want to use

• Projection

• sparse linear system solvers

• sparse eigenvalue solvers

• sparse matrix equation solvers, e.g., Lyapunov, Sylvester
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Asymptotic Waveform Expansion

• compute the momentsTi

• construct the Pad́e approximation̂T (s) via forming and solving a

system of linear equations for parameters

• numerically unreliable to form moments

• resulting linear system is typically very ill-conditioned.

• standard approach for circuit simulation before mid 90s

• completely replaced by projection-based approaches
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Modal approximation via projection

GivenT (s), T̂ (s) can be constructed by a projection technique : Take

Z, V ∈ CN×k with ZT V = Ik such that

AV = V diag
[

α1 · · · αk

]

ZT A = diag
[

α1 · · · αk

]

ZT

T̂ (s) = CV (sIk − ZT AV )−1ZT B

= Ĉ diag
[

1
s−α1

· · · 1
s−α1

]

B̂

=
γ1

s − α1
+ . . . +

γk

s − αk

.
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Padé, Projections, and Krylov

T̂ (s) = Ĉ(sIk − Â)−1B̂ interpolatesT (s) at I = {(0, 2k)}

⇐⇒ ĈÂ−iB̂ = CA−iB, ∀ 1 ≤ i ≤ 2k
















T̂1 T̂2 · · · T̂k

T̂2 T̂3 ... T̂k+1

... ... ...
...

T̂k T̂k+1 · · · T̂2k−1

















=

















T1 T2 · · · Tk

T2 T3 ... Tk+1

... ... ...
...

Tk Tk+1 · · · T2k−1



























ĈÂ−1

...

ĈÂ−k











Â
[

Â−1B̂ . . .

]

=











CA−1

...

CA−k











A
[

A−1B . . .

]

Â = ZT AV
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Projected input and output matrices

















T̂1

T̂2

...

T̂k

















=











ĈÂ−1

...

ĈÂ−k











B̂ =











CA−1

...

CA−k











B =

















T1

T2

...

Tk

















B̂ = ZT B

Ĉ
[

Â−1B̂ . . . Â−kB̂

]

= C
[

A−1B . . . A−kB

]

Ĉ = CV
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Rational Lanczos and Arnoldi

The projection matrices define Krylov spaces and the projected matrices

can be computed efficiently via several iterative methods, e.g., Lanczos,

Arnoldi etc.

Â = ZT AV

B̂ = ZT B

Ĉ = CV

Ik = ZT V

Im(V ) = Kk(A−1, A−1B)

Im(Z) = Kk(A−T , A−T CT )
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Multipoint is required
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)|

actual system

rational Lanczos, k=15

1−pt Lanczos at w=0, k=15

1−pt Lanczos at w=1e5, k=15
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Brief history

Background:

• Pad́e approximation for model reduction;

Shamash, etc., 1975

• Partial realization and Krylov subspaces;

Gragg and Lindquist, 1983

• Markov and Pad́e approximation and Krylov subspaces; Multipoint

asserted but not developed;

Villemagne and Skelton, 1987

• Asymptotic Waveform Evaluation;

Pillage, Rohrer, etc., 1989
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Later papers use the Lanczos algorithm, a fast iterative wayto form

Krylov subspaces and force momement matching onto it.

Lanczos-based Model Reduction:

• Structural Dynamics: Noor-Omid, Craig, etc., 1984-1992

• Control: Boley, Kasenally, Van Dooren, etc., 1990-1994

• Circuits: Gallivan, Grimme, Van Dooren; Feldman, Freund; etc.,

1994 - 1997
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Unifying theory and algorithms for projection-based:

• Lanczos theory and algorithmic framework: Freund et al., 1997 -

present

• Complete rational Krlov family Grimme, Gallivan, Van den Dorpe,

Van Dooren, 1997-present

Balanced truncation for large scale LTI systems:

• Antoulas and Sorensen, 1999 - current

Generality of projection

• Genin, Van den Dorpe, Van Dooren and Gallivan, current
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Basic Theorem of Projection

Villemagne and Skelton; Grimme, Gallivan, Van den Dorpe, Van
Dooren

K
⋃

k=1

KJbk

(

(A − σ(k)E)−1E, (A − σ(k)E)−1B
)

⊆ ImX

and

K
⋃

k=1

KJck

(

(A − σ(k)E)−T ET , (A − σ(k)E)−T CT
)

⊆ ImY

T
(jk)
i = T̂

(jk)
i , jk = 1, 2, . . . , J(k),

wherek = 1, 2, . . .K, J(k)
.
= Jbk

+ Jck
provided all of the moments

exist, i.e., the matrices are nonsingular.
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Including modal matching

Note only inclusion is required in theorem so other bases canbe added to
gain satisfy constraints

Theorem Let ImXi, ImYi be left and right invariant subspaces of the
regular pencil(λE − A) with given spectrum, then the reduced order
pencil(λÊ − Â)

.
= Y T (λE − A)X has left (right) invariant subspace

with the same spectrum if

ImXi ⊆ ImX ImYi ⊆ ImY.

This extension allows to incorporate matching poles of the original
system into the reduced order system, e.g., to stabilize it.

Approximation of DAE requires often that the reduced order system has
the same algebraic conditions (these corresponds to an invariant subspace
at∞
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Practicality

• Extremely flexible characterization

• Rational Power Method, Dual Rational Arnoldi, Rational Lanczos

are easily defined as members of a general Rational Krylov family.

• Parallelism available at many levels

• Efficiency requires :

– sparse approximations to linear system solutions – lose exact

moment matching but Galerkin conditions hold

– exploit shifted form of systems for preconditioning

29
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Practicality

Point Placement and Selection:

• choose the next point at which a moment is added carefully – causes

synchronization

• postprocessing can be used to get rid of some of the unnecessary

basis vectors added – increases parallelism but adds cleanup

operations

• clustered version of these two is natural
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Practicality

• Use error estimate∆(.)
.
= T̂ (.) − T̃ (.)

• T̂ (.) is our current approximation and

• T̃ (.) is a second approximation ofT (s), based on adding

interpolation points to that of̂T (.) or on interlacing points.

Point selection based on the frequency response∆(ω)

• real points simpler than complex points and yield general trends and

behavior in left half plane

• imaginary points get local information best

• mix is often best

Stopping criterion is based onH∞ norm of∆(.).
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Stability

• Stability/Passivity ofT̂ (s) may require further projection on the

reduced system, e.g., restarted Arnoldi (Grimme, Sorensen, Van

Dooren).

• Stability/Passivity can be guaranteed when imposing onlyk moments

to match and using the other degrees of freedom to yield a passive

reduced order model (Freund,Feldman)

• Recent work by Sorensen shows that constraining the interpolation

points appropriately guarantees passivity is preserved – but it does

not control approximation error – a hybrid using those constraints

and extra Rational Krylov steps may solve the problem.
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Comparison “Optimal” and rational approximations

15th order approximation of 120 th order CD player
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Legend :· · · Optimal Hankel norm approximation
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Approximate Balanced Truncation

• Antoulas and Sorensen

• Motivated by the fact that Hankel singular values drop off rapidly

• Avoids the need to specify interpolation conditions

• Targeted for “black box” software

• Large sparse Sylvester equation solver – ARPACK

• attempts to get at the dominant spaces ofGo andGc

• no convergence proof

• no rigorous error bound

• works very well in practice
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The basic problem

AT Go + GoA + CT C = 0 and AGc + GcA
T + BBT = 0.

whereGc
.
= CCT , Go

.
= OTO,

O =
[

CT AT CT (AT )2CT · · ·
]

C =
[

B AB A2B · · ·
]

Given approximationsVin andZin to bases of the dominant spaces,

Vup ≈ GcVin andZup ≈ GoZin without knowingGc or Go.
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A key kernel (Sorensen and Zhou)

Given approximationsVin andZin to bases of the dominant spaces,

Vup ≈ GcVin andZup ≈ GoZin by solving

AVupF
T
r + EVupQ

T
r + BHT

r = 0

AT ZupFl + ET ZupQl + CT Hl = 0

whereFl, Ql andHl are functions ofZin andFr, Ql andHl are functions

of Vin

A, E ∈ CN×N , B ∈ CN×m, C ∈ Cp×N , Fr,l, Qr,l ∈ Cn×n,

Hr ∈ Cn×m. andHl ∈ Cn×p

A series of such projectors are produced. What are they?
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Key question

We have

• Projections producing rational interpolation

• Projections producing modal approximations

• A series of Sylvester equations producing approximate balanced

truncation based on approximating the Gramians

Are they related or fundamentally different approaches?
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Sylvester and rational interpolation (SISO)

SupposeV andZ solve

AV FT
r + EV QT

r + BHT
r = 0

AT ZFl + ET ZQl + CT Hl = 0

A, E ∈ CN×N , B ∈ CN×1, C ∈ C1×N , Fr,l, Qr,l ∈ Cn×n, Hr ∈ Cn×1.

andHl ∈ Cn×1

Suppose also
[

sFr − Qr Hr

]

and
[

sFT
l − QT

l HT
l

]

are full

rank for alls.

(This and SISO imply all their generalized eigenvalues havesingle Jordan

blocks.)
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Equivalence Theorem

The reduced-order system̂T (s) = Ĉ(sÊ − Â)−1B̂ obtained by using

projectors that have the same imageV andZ is such that

T (s) − T̂ (s) = O(s + σk)bk+ck ∀ 1 ≤ k ≤ K,

whereσk is a generalized eigenvalue of(Fr, Qr) and(Fl, Ql), whose

single Jordan blocks are of sizebk andck respectively providedsE − A

andsÊ − Â are invertible atσk.
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Interpolation and projection (SISO)

For SISO minimalT (s) of McMillan degreeN and minimalT̂ (s) of

McMillan degreen projection and interpolation are equivalent!






T (s) = C(sIN − A)−1B

T̂ (s) = Ĉ(sIn − Â)−1B̂, n < N

=⇒ ∃ Z, V ∈ C
N×n, ZT V = In ZT AV = Â, ZT B = B̂, CV = Ĉ.

Sketch of the proof :

If Mc Millan degreeE(s) ≥ 2n =⇒ Multipoint Pad́e,

Otherwise=⇒ common poles=⇒ Multipoint Pad́e + Modal Truncation.

Consequence :̂T (s) interpolatesT (s) ; T̂ (s) is a good choice!
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There is always a Sylvester equation!

• Part(F1, 0): AV1 + V1F1 = 0 =⇒ Modal Approximation

• Part(Fi, Gi) observable (eachFi is one Jordan block):

AVi + Vi

















λ 1

...
...

... 1

λ

















+ B
[

1 0 . . . 0
]

= 0

⇐⇒ Im(Vi) = Kk

(

(A + λI)−1, (A + λI)−1B
)

V







Observable part of (F, G) ⇐⇒ Interpolation

Non Obs. part of (F, G) ⇐⇒ Modal Approximation
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SISO Consequences

• The series of Sylvester equations in the approximate balanced

truncation produce a series of rational interpolation approximations

• There the interpolation conditions areimplicitly specified by

controlling the choice ofFr, Qr Fl andQl!

• Controlling the choice ofFr, Qr Fl andQl by specifying the spectra

in Jordan formyields a Rational Krylov method directlyfrom the

recursion to solve the Sylvester equation!!

• Sylvester equations and the shift-and-invert based Rational Krylov

algorithms are two algorithmic approaches that produce thesame

reduced order models.
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What about MIMO? – Check Sylvester

Let V
.
=

[

v1 · · · vn

]

andyi ∈ Cm×1 with all Jordan blocks of size

1.

AV + V











λ1

...

λn











+ B
[

y1 · · · yn

]

= 0

ChooseZ soZT V = In and construct̂T (s)

It follows that for any1 ≤ i ≤ n

vi = (λiIn − A)−1Byi

T (λi)yi = T̂ (λi)yi
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• Rational Interpolation : matchT (j)(σ) = T̂ (j)(σ) j = 1, · · · , kσ

• Left Tangential Interpolation :
[

ξ1 ξ2

]

T (σ) =
[

ξ1 ξ2

]

T̂ (σ)

⇐⇒







ξ1t11(σ) + ξ2t21(σ) = ξ1t̂11(σ) + ξ2 t̂21(σ)

ξ1t12(σ) + ξ2t22(σ) = ξ1t̂12(σ) + ξ2 t̂22(σ)

• Right Tangential Interpolation :

T (σ)





µ1

µ2



 = T̂ (σ)





µ1

µ2





• Two-Sided Tangential Interpolation combines both
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Tangential Interpolation

If the range of

[

(λI − A)−1B · · · (λI − A)−kB

]











η0 · · · ηk−1

...
...

η0











is in Im(V ) then the vector polynomialy(s) =
∑k−1

i=0 ηi(s − λ)i satisfies

a right tangential interpolation condition

(T (s) − T̂ (s))y(s) = O(s − λ)k

(essentially this requires a nontrivial Jordan block forλ)

Left tangential interpolation conditions can be derived similarly.
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Tangential interpolation and projection/Sylvester

• Tangential interpolation via projectors produced from a Sylvester
equation is a powerful MIMO model reduction tool.

• It may be the key that allows a rigorous understanding of
approximate balanced truncation and rational Krylov-based
approaches for MIMO and facilitate their unification.

• It is possible to show that it is not always possible to find projectors
that producêT (s) from T (s) in the case of MIMO systems – key
restrictions present for SISO are lost. So tangential interpolation and
projection are not universal for MIMO.

• However, Van den Dorpe and Genin have conjectured that anyT̂ (s)

of degreen can be produced from anyT (s) of degreeN via
tangential interpolation defined projectors for practicalsituations in
large-scale model reduction, i.e., whenN − n is sufficiently large.
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Conclusions for equation-based model reduction

• We have successfully transferred techniques from the linear algebra

and control communities into the circuit simulation community – the

Rational Krylov approaches are now standard.

• projection-based approaches provide a flexible family of model

reduction methods

• We have extended, clarified and unified the theoretical understanding

of the problem in a way thatincludes algorithmic and implementation

insight, i.e., our theory guides our efficient algorithm design.

• We have aided in the dispersal of the updated knowledge and

algorithms to other applications, e.g., electromagneticsapplication by

Michielssen and Weile.
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Conclusions for equation-based model reduction

• The recent advances in understanding the generality and links to

other approaches promise a new round of advances from an

algorithmic and library point of view.

• Progress is needed on the specification of the interpolationconditions

required to satisfyboth error requirements and property preservation

• Combined implicit and explicit specification strategies that use

Sylvester and Rational Krylov methods look very promising.

• We are currently thinking about how to apply this to model reduction

in a closed-loop control setting and a linear time-varying setting
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Incremental tracking of dominant singular spaces

GivenAm×n, approximate by a rankk factorizationBm×k ∗ Ck×n

min‖A − BC‖2, k � m, n

A B

C

≈

Applications in :


























Image compression

Information retrieval

Image recognition

Model reduction (P.O.D)
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Idea: Windowing

Track dominant spaces with a sequence of windows SVD’s of dimension

m × (l + k)

A =

k

k + l

12 = U

R V T

+E

1: expand by appendingl columns (Gram Schmidt)

2: contract by deletingl columns (SV D update)

Total cost: 10mnk (Givens) or8mnk (Householder) instead ofO(mn2)
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Details (forl = 1) of stepi, i = k + 1, . . . , n

Expand: appending columna+ (Gram Schmidt):4mk flopsPSfrag

U û

R r̂

ρ̂

V T

1

= ÛR̂V̂ T

Downdate: removing smallest singular value of̂R: 6mk flops

U+

R+ 0

µi

V T
+

= (ÛGu) ∗ (GT
u R̂Gv) ∗ (GT

v V̂ T )
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P3P2P1















ρ ρ ρ ρ η1

φ1 ρ ρ ρ η2

0 φ2 ρ ρ η3

0 0 φ3 ρ η4















Z1Z2Z3 =















ρ ρ ρ 0 0

0 ρ ρ 0 0

0 0 ρ 0 0

0 0 0 µ4 1















The elimination and fill-in structure for the two-sided algorithm with
k = 3. (Zi eliminatesηi
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• An evolution equation

ẋ = F (x)

is replaced by a reduced order equation

ȧ = UH
k F (Uka) = f(a)

• information can be recovered by integrating the reduced order

equation rather than interpolating between saved states (columns of

A)

• If V T
k is tracked thenUkΣkV T

k ei ≈ xi can be used instead of

integration.

• The form of the differential equation influences the cost of the

production of the reduced order system and whether or not moving

between the reduced state space and the original state spacecan be

avoided
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Perturbation Theorem The recursive algorithm produces “approximate”

matricesV̄(i), Q̄(i) andR̄(i) that satisfyexactlythe perturbed equation

[A(:, 1 : i) + E]V̄(i) = Q̄(i)R̄(i), (V̄(i) + F )T (V̄(i) + F ) = Ik,

with the bounds (up toO(u2) terms) :

‖E‖F ≤ εe‖A‖2, εe ≤ 26k
3/2

nu, ‖F‖F ≤ εf ≤ 9k
3/2

nu.

and in practice

εe ≤ 26k
2
u, εf ≤ 9k

2
u.

Note these bounds donot depend onm, the largest dimension ofA
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Orthogonality Theorem Let (a given matrix)V̄ ∈ Rn×k “select”k columns

of the matrixA ∈ Rm×n, and let

AV̄ = QR, Q
T
Q = Ik,

with R upper triangular, be its exactQR factorization. Let

AV̄ + G = Q̄R̄, ‖G‖F = εg‖A‖2 ≈ u‖A‖2, (1)

be a “computed” version, wherēQ = Q + ∆Q, R̄ = R + ∆R. Then under a mild

assumption, we can bound the loss of orthogonality inQ̄ as follows:

‖Q̄T
Q̄ − Ik‖F ≤

√
2εgκ2(R)κR(AV̄ ) ≤ 2εgκ

2
2(R), εg ≈ u.
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Estimate quality of approximation

Quality of rankk approximationÂ = Û Σ̂V̂ T of A = UΣV T estimated
by :

Canonical angles:

cos θk
.
= ‖UT (:, k)Û‖2 , cosϕk

.
= ‖V T (:, k)V̂ ‖2

tan θk � tan θ̂k
.
=

µ̂2

(σ̂2
k − µ̂2)

, tanϕk � tan ϕ̂k
.
=

µ̂σ̂1

(σ̂2
k − µ̂2)

Singular values:

|σ̂i − σi| ≈
µ̂2

2σ̂i

Approximation error:
‖E‖2

.
= µ ≥ σk+1

µ̂ = max |µi| ≈ µ (true error)
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Gapγ : 0.19458 , σk+1 = 0.67978

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true sv’sσi(A), ∗ approximated sv’ŝσ
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’sµk+1, . . . µn < σk+1

σ1 = 0.99008 σ̂1 = 0.97613

σ2 = 0.97084 σ̂2 = 0.95301

σ3 = 0.96010 σ̂3 = 0.93379

σ4 = 0.93338 σ̂4 = 0.85142

σ5 = 0.87437 σ̂5 = 0.83675

µ = 0.73768 µ̂ = 0.52330

cos θk = 0.93000 cos θ̂k = 0.82233

cos φk = 0.83881 cos φ̂k = 0.71038
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Gapγ : 0.64265 , σk+1 = 0.20121

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true sv’sσi(A), ∗ approximated sv’ŝσ
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’sµk+1, . . . µn < σk+1

σ1 = 0.99430 σ̂1 = 0.99418

σ2 = 0.90840 σ̂2 = 0.90815

σ3 = 0.89284 σ̂3 = 0.89250

σ4 = 0.86560 σ̂4 = 0.86551

σ5 = 0.84387 σ̂5 = 0.84357

µ = 0.20140 µ̂ = 0.13631

cos θk = 0.99998 cos θ̂k = 0.99459

cos φk = 0.99935 cos φ̂k = 0.94334
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How quickly do we track the subspaces?

Gapγ : 0.19458 Gapγ : 0.64265

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

How cos θ
(i)
k evolves with the time step i
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Information retrieval

wordsn = O(103)

pa
ge

sm
=

O
(1

06
)

A L

U

≈

k = O(101)

Low rank approximation useful for:

• Low memory requirement

O(k(m + n))

• Fast queriesAx ≈ L(Ux)

in O(k(m + n)) time

• Approximation obtained in

O(kmn) time using windowing
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Image sequences

Each column ofA is one image

Original : m = 28341, n = 100 Approximation: k = 6
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Image sequences

Each column ofA is one image

Original : m = 28341, n = 100 Approximation: k = 6
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Image sequences

Each column ofA is one image

Original : m = 28341, n = 100 Approximation: k = 6
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Image sequences

Each column ofA is one image

Original : m = 28341, n = 100 Approximation: k = 6
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Related Work

• Efficient Arrowhead- Chandrasekaran, Manjunath, Wang, Winkeler,

and Zhang, Graphical Models and Image Processing1997.

• Sequential Karhunen-Loeve(SKL) - Levy and Lindenbaum,2000,

IEEE Trans. Image Processing .

• Incremental SVD(IncSVD) - Chahlaoui, Gallivan, and Van

Dooren,2000CIRO 2000, to appear SIMAX.
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Complexity

Algorithm One-sided Two-sided

SKL 2mnk2+3kl+2l2

l
2mnk2+3kl+2l2

l
+ n2k2+n2kl

l

IncSVD (G) 10mnk + 4mnl 10mnk + 4mnl + 3n2k

IncSVD (HH) 8mnk + 4mnl 8mnk + 4mnl + n2k2+n2kl
l
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Currrent and Future Work

• Finalizing empirical and analytical investigation of dynamic block

size and loss of orthogonality

• Beginning study of PODs to represent perturbed trajectories when

analyzing trajectories of differential equations with stochastic

parameters.

• Beginning algorithm/architecture interaction study for incremental

tracking on latest graphics attached processors for problems similar

to those address by SKL
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Searching on the Grassmann manifold for projectors

• Collection of imagesD ∈ Rn grouped into classes a priori

• Training data selected by human to represent essential characteristics
of each class

• Seeking a subspace with dimensiond with U ∈ Rd to encode the
imagesUT D = C.

• Standard bases often depend upon statistical assumptions that may
not be accurate enough for given data and that may have nothing to
do with the metric for recognition

• We search the Grassmann manifold via a stochastic gradient method
to optimize the recognition metric on the test data

• We assume that substantial amounts of off-line preprocessing are
allowed in order to improve on-line recognition.
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Motion on the Grassmann manifold

Assume you have a basisS0 for a spaceS′ and you wish to move along

the Grassmann manifold.

The trajectory can be given in terms of bases but only their spaces are of

interest.

S(t) = Qe









0 BT

−B 0









QT S0 QT S0 =





Id

0





B ∈ Rn−d×d are the directional velocities and represent the degrees of

freedom of motion on the manifold from a given point.

This can be evaluated inO(nd2) for each time point.
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Recognition versust
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Iterations

n = 10304, (that is92 × 112), d = 5, ktrain = 5, andktest = 5.

X0 = UPCA
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Recognition versust
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Recognition versust
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Iterations

n = 10304, (that is92 × 112), d = 5, ktrain = 5, andktest = 5.

X0 = UFDA.
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