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‘Topics'

e Brief summary of previous work in computational science and
engineering

e Model reduction of a system represented by:
— a differential equation
— a differential equation and data

— data, a parameterization and an optimization metric
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Research Goa'

To understand the interaction and tradeoffs between the
e Algorithms
e Applications
e Architectures (software and hardware, small to large $cale

to create systems that contribute to science and engimgeerin
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Activities ' \

develop efficient and reliable algorithms
develop theory that yields algorithmic and implementatraights

develop analytical and empirical modeling to
— Identify the appropriate architecture to achieve perforceagoals

— adapt and tune the version of the algorithm for that
architecture/application combination

create proof-of-concept, research-grade, pre-produstoftware

assist in the improvement of the architectures (softwace an
hardware)

create software systems that facilitate all of the above

look for similarity between applications for technologsgrisfer /
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‘ Example of multidisciplinary activity over time I

Algorithm Performance | Compiler
Code Evaluation
BLAS3 kernel/cache/
parallel model
Dense linear| load/store window
algebra model analysis
Structured | Perfect Club | FALCON
problems analysis

Current:Cache models and iterative compilation
Chains of Recurrences for performance restructuring

~




Technique Code

Parallel Direct Method PY12M

Reordering,Pivoting for multiclusters MCSPARSE, H*

Itetative/Direct hybrid (nonsymmetrid) EN-like methods

PARASPAR
Sparse Least Squares CIMGS
LTI model reduction RK Family
Large-scale Riccati-based
stabilization TSQR Family
Parallel MG BoomerAMG

coarsening addition




-~

‘Application/Architecture/AIgorithm Interaction I

Perfect Club-"hand-tuned’ versions (constructs still relevant in
restructuring)

GFDL-IMGA Ocean Circulation modet Mediterranean basin,
multicluster mapping

dependece

runtime library of Cedastarting point for model reduction

N\

Electromagnetics Frequency selective screen simulation, extended
model reduction algorithms to two-parameters and additibequency

Circuit simulation— Hierarchical relaxation (waveform, nonlinear, linear
extensive implementation analysis of memory system, cbaystem and

~

N —g
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‘ Current Application/Algorithm Interaction I

e Geodesic searches for image recognition (Liu, Srivastava)
e Autofocus for synthetic aperture radar (Munson)

e Efficient high-fidelity evaluation of models with stochasti
parameters (Hussaini)
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Collaborators I

e Model Reduction: P. Van Dooren, E. Grimme, A. Van den Dorpe

¢ Incremental Dominant Spaces: P. Van Dooren, Y. Chahlaaui, C
Baker

e Grassmann and Projection Search: A. Srivastava, X. Liu
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Efficiently approximate a large-scale dynamical systenh ait
reduced-order model that is

e accurate in response and form.
e smaller in dimension and faster to use relative to some task.

e can be produced efficiently relative to the amount prepiinggime
allowed by subsequent use

\_ /
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4 N

continuous-time discrete-time

u(t)) z(k+1) = G(z(k), u(k))
y(k) = H(z(k), u(k))

U
#(t) = A()x(t)+ B(t)u(t) 2(k4+1) = A(k)x(k)+B(k)u(k)
y(k) = C(k)z(k) + D(k)u(k)
J J

t(t) = Azx(t) + Bu(t) r(k+1) = Ax(k) + Bu(k)
y(t) = Cz(t) + Du(t) y(k) = Cz(k) + Du(k)

Last two cases have extensively been studied

\_ /
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Ei(t) = Ax(t) + Bu(t)
y(t) = Cz(t) + Du(t).

u(t) € R™, y(t) € NP, 2(t) € RY, N >>m,p

Find another system driven with the same input

buty(t) € kP, z(t) € R™.
\Find low order model with small output err@g(t) — y(t)||

/ Linear Time Invariant Systems (Implicit) I

~
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e accelerate simulation of a large system, e.g., exploitingd LTI
iInterconnect subsystem in nonlinear ODEs for circuit satiah

e accelerate simulation of a large LTI system that represents
peturbation to a solution of interest for a large nonlingateam

e preprocessing to create a smaller computationally tracfaioblem
that is solved and whose solution is “lifted” back to the &agpace,
e.g., stabilizing feedback

\_ /
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/ What kind of approximations? I \

Transfer functions

T(s)=C(sIy — A 'B+D, T(s)=C(sl,— A 'B+D,

Infinity norm

HTO—TWNwi§?WU%O—T@MM,

Hankel norm
IT(.) =T ()3 = 07 (H)

Balanced truncation

Apply a balancing state space transformation and trunodeating
n X n block of transformed (and conformally on other matriceghis is
\often used due to bound relative to the ||, norm. /
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Modal Approximation I

Suppose for simplicity that all the poles’®6fs) are different.

(=) (s = By o)

T —
(5) (s —a1)...(s —an)
_ §i! Lo TN
s—a;  S—apn

|ldea : Keep thé: dominant modes of the partial fraction expansion

T(s)= 1 4 4T
s — Qg s — Qi

Advantages : Preserves stability, not always easy to deterwhich
poles are dominant in an efficient manner for large systems

\_
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/ ‘ Rational interpolation / moment matching'

LetT(s) = C(sE — A)~!B. Consider the interpolation set

I={(o1,k1),..., (., k)}.

construct a reduced order transfer function

A

T(s) = C(sI, — A)™1B,

that interpolated:(s) ato; up to thek;-th Taylor expansion term
V1<i<r, V1<j<k:

&1 F
dsi—1 {R(s)} o — dsi—1 {R(s)} o
<:>CA{(O'¢I]€—A)_jB = C(O'Z'IN—A)_jB

\_

~
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/ ‘ Complexity' \

For dense systems these approximations reqffg>) operations due to
e linear system solving
e singular value decomposition
e eigenvalue decomposition

Not acceptable for large sparse systems

We want to use
e Projection
e sparse linear system solvers

e sparse eigenvalue solvers

\. sparse matrix equation solvers, e.g., Lyapunov, Sylvester /
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‘ Asymptotic Waveform Expansion'

compute the moments;

construct the Paglapproximatiori’(s) via forming and solving a
system of linear equations for parameters

numerically unreliable to form moments
resulting linear system is typically very ill-conditioned
standard approach for circuit simulation before mid 90s

completely replaced by projection-based approaches

18
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‘ Modal approximation via projection I

A

Z,V € CN*F with ZTV = I, such that

AV = Vdia,g[ oy O }
Z'A = diag { ap Qg ] zt
T(s) = CV(sl—ZTAV)"1ZTB
= C diag { — } B
- 811&1+...+Sj’“ak.

GivenT'(s), T'(s) can be constructed by a projection technique : Take

~
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‘ Pade, Projections, and KronvI

T(s) = C(sl, — A)~' B interpolatesl’(s) at I = {(0,2k)}
«— CA"B=CA"'B, V1<i<2k

T, Ty - T, T, Ty - T
T, Ty . T T, Ty . Teis
] T Tk—|—1 Y | I Ty Tkpsiq1 -+ Toip—q
 CAL ] oAl ]
Al A2B | = | 1 |A] 4B
CAF CAF
A = ZTaAv

20




‘ Projected input and output matrices'

a1 _ _ o
p CA-1 CA-L .
2 | _ A B_ 2
) CAF CAF
L Tk — i i i ] - Tk —
B=27TB
ClA'B ... A*B| = ¢|laB .. A7B |
C = CV
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\ Rational Lanczos and Arnoldi.

The projection matrices define Krylov spaces and the pregectatrices
can be computed efficiently via several iterative methodg, kanczos,
Arnoldi etc.

A = ZTAV

B = Z'B

C = CV

I, = Z'v
Im(V) = Kp(A™',A7'B)
Im(Z) = KAt ,a~tch

22



100

50

l9(iw)l

-150

Multipoint is required I

actual system

XK rational Lanczos, k=15
-200 - = - 1-pt Lanczos at w=0, k=15
————— —  1-pt Lanczos at w=1e5, k=15
—250 el = .
10" 10° 10" 10° 10° 10 10

frequency (w)
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Brief history I

Background:

e Pack approximation for model reduction;
Shamash, etc., 1975

e Partial realization and Krylov subspaces;
Gragg and Lindquist, 1983

e Markov and Pad approximation and Krylov subspaces; Multipoint
asserted but not developed,
Villemagne and Skelton, 1987

e Asymptotic Waveform Evaluation;
Pillage, Rohrer, etc., 1989

\_ /
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Later papers use the Lanczos algorithm, a fast iterativetavéyrm
Krylov subspaces and force momement matching onto it.

Lanczos-based Model Reduction:
e Structural Dynamics: Noor-Omid, Craig, etc., 1984-1992
e Control: Boley, Kasenally, Van Dooren, etc., 1990-1994

e Circuits: Gallivan, Grimme, Van Dooren: Feldman, Freund;,e
1994 - 1997

\_
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Unifying theory and algorithms for projection-based:

e Lanczos theory and algorithmic framework: Freund et al9719
present

e Complete rational Krlov family Grimme, Gallivan, Van denipe,
Van Dooren, 1997-present

Balanced truncation for large scale LTI systems:
e Antoulas and Sorensen, 1999 - current
Generality of projection

e Genin, Van den Dorpe, Van Dooren and Gallivan, current

\_
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/ Basic Theorem of Projection'

Villemagne and Skelton; Grimme, Gallivan, Van den Dorpe, Va
Dooren

K
) ki, ((A oM EYIE (A - a(k)E)_lB) CImX
k=1
and

K
) K., ((A —o®E)TET (A - a<’f>E)—TCT) CImy
k=1

Tz(Jk) — TZ(Jk)’ ]k — 1’ 2’ e J(k))

wherek = 1,2,... K, Jy) = Jp, + J., provided all of the moments
\exist, l.e., the matrices are nonsingular.

~

/
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/ ‘ Including modal matching' \

Note only inclusion is required in theorem so other basedeasdded to
gain satisfy constraints

Theorem Let ImX;, ImY; be left and right invariant subspaces of the
regular pencilA\E — A) with given spectrum, then the reduced order
pencil(A\E — A) = YT(\E — A)X has left (right) invariant subspace
with the same spectrum if

ImX, C ImX ImY; C ImY.

This extension allows to incorporate matching poles of tigimal
system into the reduced order system, e.g., to stabilize it.

Approximation of DAE requires often that the reduced orgestesm has
the same algebraic conditions (these corresponds to aranvaubspace

NG y
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‘ Practicality I

Extremely flexible characterization

Rational Power Method, Dual Rational Arnoldi, Rational taos

are easily defined as members of a general Rational Krylowyfam

Parallelism available at many levels

Efficiency requires :

— sparse approximations to linear system solutions — loset exa

moment matching but Galerkin conditions hold

— exploit shifted form of systems for preconditioning

/
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‘ Practicality I

Point Placement and Selection:

e choose the next point at which a moment is added carefullysesa
synchronization

e postprocessing can be used to get rid of some of the unnegessa
basis vectors added — increases parallelism but adds gleanu
operations

e clustered version of these two is natural

\_ /

30




/ ‘ Practicality I

A ~

e Use error estimata(.) =7(.) — T(.)
e T'(.) is our current approximation and

e T(.)is a second approximation @f(s), based on adding
interpolation points to that ¢f (.) or on interlacing points.

Point selection based on the frequency respaxige)

e real points simpler than complex points and yield geneeaids and
behavior in left half plane

e imaginary points get local information best

e MIX IS often best

\Stopping criterion is based dr., norm of A(.). /
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Stability I

e Stability/Passivity of'(s) may require further projection on the
reduced system, e.g., restarted Arnoldi (Grimme, Sorengan
Dooren).

e Stability/Passivity can be guaranteed when imposing énfyoments
to match and using the other degrees of freedom to yield ayeass
reduced order model (Freund,Feldman)

e Recent work by Sorensen shows that constraining the iriegrpo
points appropriately guarantees passivity is preservad # does
not control approximation error — a hybrid using those camsts
and extra Rational Krylov steps may solve the problem.

/
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/Comparison “Optimal” and rational approximatigns \

15th order approximation of 120 th order CD player

100

50

-50

-100

|Frequency responses| in dB

-150

-200

-250

10 o ‘H10 o ‘Hiol o ‘HiOZ o ‘HiOB o ‘HiOA o ‘HiOS
15th order Hankel norm approximation
K Legend :- - - Optimal Hankel norm approximation /
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100 T LR | T R | T LR | T LR | T R |

50

-50

-100

|Frequency responses| in dB

-150

-200

_250 L Lol L MR | L Lol L Lol L MR | L L
107 10° 10" 10° 10 10 10
15th order balanced truncation

Legend : - Balanced truncation approximation

/
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TOOF

50

-50

-100

|Frequency responses| in dB

-150

-200

_250 L Lol L MR | L Lol L Lol L MR | L L
10" 10° 10" 10° 10° 10 10°

15th order RK with points 1,2,2,2,2,2,2,2,2,3,4,4,5,5,Inf

Legend : - - - Rational Krylov approximation

/
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Approximate Balanced Truncation'

Antoulas and Sorensen

Motivated by the fact that Hankel singular values drop offidéy
Avoids the need to specify interpolation conditions

Targeted for “black box” software

Large sparse Sylvester equation solver — ARPACK
attempts to get at the dominant spaceé&/gfandG.

no convergence proof

no rigorous error bound

works very well in practice

36




‘The basic problem'

ATG, +G,A+CTC =0 and AG.+G.AT + BBT =0.
whereG,. = CCT, G, = 01O,

O = _CT ATCT (AT)20T }

¢c = |B AB 4B .|

Given approximation¥;,, andZ;,, to bases of the dominant spaces,
Vup = G Vi, andZ,,,, =~ G, Z;,, without knowingG'. or G,,.

\_
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‘A key kernel (Sorensen and Zhou'

Given approximation¥’;,, andZ;,, to bases of the dominant spaces,
Vup ~ Gc‘/zn andZup ~ GoZin by SOIVing

AV FF + EV,,QF + BHY = 0
AYZ, B+ EY 2,0 +CTH, = 0
whereF}, ; and H; are functions ot/;,, and F;., Q; and H; are functions
of Vi,

A E e CNXN BeCN*m CeCP*N F.,,Q,, € C"*",
H,. e Cr*™ andH; ¢ C"*p

A series of such projectors are produced. What are they?

\_ /
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Key question'

We have
e Projections producing rational interpolation
e Projections producing modal approximations

e A series of Sylvester equations producing approximatenoaic
truncation based on approximating the Gramians

Are they related or fundamentally different approaches?

\_
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Sylvester and rational interpolation (SISO)I

Supposé’ andZ solve
AVF' +EVQL + BH! = 0
AT ZFE +ETZQ, +CTH, = 0

A EeCVN BeCN* CceCYN, F.,,Q,, € C"" H, e C"¥1,
andH; € Cnx1

Suppose als% sF. —Q,
rank for alls.

H, } and[ sFi' — Qff ‘ HF } are full

(This and SISO imply all their generalized eigenvalues Isngle Jordan
blocks.)

\_ /
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4 N
‘ Equivalence Theoreﬂ

The reduced-order systefi(s) = C(sE — A)~' B obtained by using
projectors that have the same imdgendZ is such that

T(s) —T(s) =O(s+op)*t* V1<k<K,

whereoy, is a generalized eigenvalue @, Q,-) and(F;, Q;), whose
single Jordan blocks are of sizg andc, respectively providedE — A
andsE — A are invertible atr.

\_ /
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Interpolation and projection (SISO) I

For SISO minimall'(s) of McMillan degreeN and minimall’(s) of
McMillan degreen projection and interpolation are equivalent!

T(s)=C(sl, —A)"'B, n<N

{ T(s)=C(sIy —A)"'B

A

— 3z veCV ZzTv =1, ZTAV=A, ZTB=B, CV = C.

Sketch of the proof :
If Mc Millan degreeE(s) > 2n = Multipoint Pace,

Otherwise—- common poles—- Multipoint Pace + Modal Truncation.

Consequence? (s) interpolatesI'(s) = T'(s) is a good choice!

\_ /
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/ There is always a Sylvester equatiod

o Part(F1,0): AVy + V1 F1 = 0 = Modal Approximation

e Part(F;, G;) observable (each; is one Jordan block):

A1

AV, +V, - T +B[10 “.o]zo
1

A
— Im(V;) =Ky (A+ )" (A+ )" B)

N Observable part of (F,G) <= Interpolation
Non Obs. part of (F,G) <= Modal Approximation

\_ /
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‘SISO Consequence'

The series of Sylvester equations in the approximate bathnc
truncation produce a series of rational interpolation agpimnations

There the interpolation conditions areplicitly specified by
controlling the choice of’,., O, F; and@);!

Controlling the choice of., Q.- F; and(@); by specifying the spectra
In Jordan fornmyields a Rational Krylov method directfyom the
recursion to solve the Sylvester equation!!

Sylvester equations and the shift-and-invert based Ratkorylov
algorithms are two algorithmic approaches that producsdnee
reduced order models.

/

44



‘What about MIMO? — Check Sylvester'

LetV = [ vy e Uy, ] andy; € C™*! with all Jordan blocks of size
1.

A1
AV +V +B| oy .- yn}zo
An

ChooseZ soZTV = I,, and construct’(s)

It follows that foranyl <: <n

v; = (NI, —A)"'By;

TNy = T(Ai)ys

\_ /
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Rational Interpolation : match) (o) = TW (o) j =1, -+ , ks

Left Tangential Interpolation :
{ &1 & }T(U): { &1 & }T(U)

— E1t11(0) + Eatar (o) = E1t11(0) + Eatar (0)
E1t12(0) + Eataa(0) = E1t12(0) + Eatan(0)

Right Tangential Interpolation :

T(o) M1 _ T(U) M1

2 2

Two-Sided Tangential Interpolation combines both
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If the range of

(A — A)"'B (AL~ A)~*B |

a right tangential interpolation condition

A

N

‘Tangential Interpolation I

o

(T(s) = T(s))y(s) = O(s = A)*

(essentially this requires a nontrivial Jordan block Xpr

Nk—1

Tlo

Left tangential interpolation conditions can be derivadiirly.

is in Im (V) then the vector polynomial(s) = S n;(s — \)’ satisfies

/
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/ ‘Tangential interpolation and projection/SyIvesterI \

Tangential interpolation via projectors produced from &/&ster
equation is a powerful MIMO model reduction tool.

It may be the key that allows a rigorous understanding of
approximate balanced truncation and rational Krylov-dase
approaches for MIMO and facilitate their unification.

It is possible to show that it is not always possible to findgetors
that producél'(s) from T'(s) in the case of MIMO systems — key
restrictions present for SISO are lost. So tangential jpatkation and
projection are not universal for MIMO.

However, Van den Dorpe and Genin have conjectured thaf @sy

of degreen can be produced from ark(s) of degreeN via

tangential interpolation defined projectors for practgiilations in
large-scale model reduction, i.e., wh&n— n is sufficiently Iarge./
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‘ Conclusions for equation-based model reductio'

We have successfully transferred techniques from therialgabra
and control communities into the circuit simulation comntyr the

Rational Krylov approaches are now standard.

projection-based approaches provide a flexible family ofleho
reduction methods

We have extended, clarified and unified the theoretical wtaeding
of the problem in a way thahcludes algorithmic and implementatiorn

Insight, I.e., our theory guides our efficient algorithm design.

We have aided in the dispersal of the updated knowledge and
algorithms to other applications, e.g., electromagnetjgdication
Michielssen and Weile.

~

by

/
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‘ Conclusions for equation-based model reductio'

e The recent advances in understanding the generality aksltiin
other approaches promise a new round of advances from an
algorithmic and library point of view.

e Progress is needed on the specification of the interpolaboditions
required to satisfypoth error requirements and property preservation

e Combined implicit and explicit specification strategiestthse
Sylvester and Rational Krylov methods look very promising.

e \We are currently thinking about how to apply this to modeluttbn
In a closed-loop control setting and a linear time-varyiatiisg

\_ /
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min||A — BC||»,

C

/ Incremental tracking of dominant singular spacea \

GivenA,, «,, approximate by a rank factorizationB,,, «x * Ckxn

kE<<m,n

Applications in :

( Image compression

Information retrieval

Image recognition

Model reduction (P.O.D) /

\
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ldea: Windowinﬂ

Track dominant spaces with a sequence of windows SVD’s oédsion
m X (I + k)

k41

1: expand by appendingcolumns (Gram Schmidt)
2. contract by deletingcolumns SV D update)
Total cost 10mnk (Givens) or8mnk (Householder) instead @?(mn?)

"

/
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Details (forl = 1) of steps, i =k +1,...,n

R@

VT

R, 0

¢

v

Expand appending columa_ (Gram Schmidt)4mk flops

— DRVT

Downdate removing smallest singular value & 6mk flops

= (UG,) * (GTRG,) « (GTVT)
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(p p ppm\ (pppOO\
PP, ¢prop PP M 21 707 — O p p 0 0
0 o2 p p 103 0 0 p 0 O
\00%/}774) \000u41)

The elimination and fill-in structure for the two-sided algorithm with
k = 3. (Z; eliminatesn;

\_ /
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An evolution equation \
T = F(x)

IS replaced by a reduced order equation
@ = Uy F(Uga) = f(a)

Information can be recovered by integrating the reducedrord
equation rather than interpolating between saved stabisnios of
A)

| VkT IS tracked therii]kEkaTei ~ 1; can be used instead of
Integration.

The form of the differential equation influences the coshef t
production of the reduced order system and whether or notngov
between the reduced state space and the original state cgabe

avoided
%
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Perturbation Theorem The recursive algorithm produces “approximate”
matricesV{,), Q) and R; that satisfyexactlythe perturbed equation

[AG, 1 2 i)+ BV = QuyRuy, (Vi + F) (Viy + F) = I,
with the bounds (up t®(u?) terms) :
IE|F < eel|All2, € < 265> nu, ||F|r < er < 95> nu.

and in practice
€ < 26k°u, € < 9k7w.

Note these bounds dwtdepend onn, the largest dimension ot

\_ /
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Orthogonality Theorem Let (a given matrix)’ € R™** “select” k columns
of the matrixA € R™*", and let

AV =QR, Q'Q= I,
with R upper triangular, be its exa€tR factorization. Let
AV +G =QR, [|GllF = ¢llAll2 = ullAl2, (1)

be a “computed” version, wheg = Q + Ag, R = R+ Ag. Then under a mild
assumption, we can bound the loss of orthogonalit ias follows:

1Q"Q — Inllr < V2egr2(R)kr(AV) < 2¢gr3(R),  €g = u.

\_ /
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/ Estimate quality of approximation I \

Quality of rankk approximationd = UXVT of A = USVT estimated
by :
Canonical angles

cos O = |UT(:, k)U || ; cos o, = VT (5, )V

f161

(67 — %)

tan@k = tanék = ) : tan @ < tangék —
o)

Singular values

N2
|5_z — O-i| ~ s
20;

Approximation error.

|Ell2 = p > org1

A

\ = max |u;| ~ p  (true error) /
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Gap~y :0.19458 |,  ogy1 = 0.67978 \

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

true sv'so; (A), * approximated sv’ﬁgn), Ce &I(cn)’ o dismissed sv’suk_|_1, coobn < Opyq
o1 = 0.99008 61 = 0.97613
oo = 0.97084 &9 = 0.95301
o3 = 0.96010 &3 = 0.93379
o4 = 0.93338 G4 = 0.85142
o5 = 0.87437 65 = 0.83675
w = 0.73768 4 = 0.52330
cos 0, = 0.93000 cos ék = 0.82233

cos ¢j, = 0.83881 cos ¢j, = 0.71038 /
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Gapy: 0.64265 ,  oppq = 0.20121 \

1

09 B

0.8 4

0.7 i

0.6 B

051 B

0.4r B

0.3 B

0.2 B

01l OOOOOOOOOOOOOO Q o OOOOOOOOOOOoOoOoOOoOO(}
OO ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 45 50
. - (1) () gemi ,
true sv'so; (A), * approximated Vg, 51, , 0 dismissed Vg1, Hn < Ok
o1 = 0.99430 61 = 0.99418
oo = 0.90840 &9 = 0.90815
o3 = 0.89284 &3 = 0.89250
o4 = 0.86560 &4 = 0.86551
o5 = 0.84387 65 = 0.84357
pw = 0.20140 4 = 0.13631
cos 0}, = 0.99998 cos 6}, = 0.99459

cos ¢, = 0.99935 | cos¢) = 0.94334 /
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0.8

0.6

0.2

How quickly do we track the subspaces]

Gap~ : 0.19458

Gapy : 0.64265

~

1+

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

I
10

I I I I I I 01 I I I I I
15 20 25 30 35 40 45 0 5 10 15 20 25

How cos 0,(;) evolves with the time step |

I
30

I
35

I
40

45

/
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\ Information retrieva.

wordsn = O(103)

U
Low rank approximation useful for:
%’j e Low memory requirement
> A4 =L O(k(m +n))
i k=0(10) e Fastqueriesiz ~ L(Ux)
g In O(k(m + n)) time

e Approximation obtained in
O(kmn) time using windowing
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‘ Image sequence'

Each column of4 is one image
Original : m = 28341, n = 100 Approximation: k = 6
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‘ Image sequence'

Each column of4 is one image
Original : m = 28341, n = 100 Approximation: k = 6
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\ Related Work'

e Efficient Arrowhead Chandrasekaran, Manjunath, Wang, Winkelern,
and Zhang, Graphical Models and Image Process84y.

e Sequential Karhunen-LoeY8KL) - Levy and Lindenbaun00Q
IEEE Trans. Image Processing .

¢ Incremental SVRINncSVD - Chahlaoui, Gallivan, and Van
Dooren2000CIRO 2000, to appear SIMAX.

\_ /
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‘ Complexity'

Algorithm One-sided Two-sided

2 2 2 2 2,2 2
SKL zmnk —|—31;l—|—2l 2mnk —|—31;l—|—2l 4 n k —ll—n kl

IncSVD (G) | 10mnk + 4mnl 10mnk + 4mnl + 3n’k

INcSVD (HH) | 8mnk +4mnl | 8mnk + 4mnl + n2k2_l|_n2kl
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Currrent and Future Work I

Finalizing empirical and analytical investigation of dymia block
size and loss of orthogonality

Beginning study of PODs to represent perturbed trajecavigen
analyzing trajectories of differential equations withctastic
parameters.

Beginning algorithm/architecture interaction study focnemental
tracking on latest graphics attached processors for prsemilar
to those address by SKL

/
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/‘ Searching on the Grassmann manifold for projectori\

e Collection of imaged) € R™ grouped into classes a priori

e Training data selected by human to represent essentiaaieastics
of each class

e Seeking a subspace with dimensidwith U € R to encode the
imagesU”’'D = C.

e Standard bases often depend upon statistical assumpt@nmay
not be accurate enough for given data and that may have gdthin
do with the metric for recognition

e We search the Grassmann manifold via a stochastic gradietioah
to optimize the recognition metric on the test data

e \We assume that substantial amounts of off-line preprocgsse
\ allowed in order to improve on-line recognition. /
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/ Motion on the Grassmann manifold' \

Assume you have a bastg for a spaceS, and you wish to move along
the Grassmann manifold.

The trajectory can be given in terms of bases but only theicep are of
Interest.

0 BT
—B 0 Iq

0

5(t) = Qe Q"Sy Q'S =

B € R*"~4%4 gre the directional velocities and represent the degrees of
freedom of motion on the manifold from a given point.

\This can be evaluated i0(nd?) for each time point. /

71



\Xo = Upca

Recognition rate (%)

Recognition versust I

100 |

O
o

80

500
lterations

1000

n = 10304, (that is92 x 112), d = 5, kyrain = 5, andkses: = 5.

/

72



\Xo =Urca

100 |

Recognition versust I

Recognition rate (%)
a1
o

500
lterations

1000

n = 10304, (that is92 x 112), d = 5, kyrain = 5, andkses: = 5.

/

73



Recognition versust I
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