A RIEMANNIAN OPTIMIZATION TECHNIQUE FOR RANK INEQUALITY CONSTRAINTS

Wen Huang ${ }^{1}$, Guifang Zhou ${ }^{2}$, Kyle A. Gallivan ${ }^{2}$, Paul Van Dooren ${ }^{1}$, Pierre-Antoine Absil ${ }^{1}$

${ }^{1}$ Université Catholique de Louvain, ${ }^{2}$ Florida State University
This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office and by US

Problem and Applications

This study considers combining rank inequality constraints with a matrix manifold constraint in a problem of the form

$$
\begin{equation*}
\min _{x \in \mathcal{M} \leq k} f(x), \tag{1}
\end{equation*}
$$

where $\mathcal{M}_{\leq k}=\{x \in \mathcal{M} \mid \operatorname{rank}(x) \leq k\}$ and \mathcal{M} is a submanifold of $\mathbb{R}^{m \times n}$. Numerous applications exist, e.g., [ZW03, FHB04, MLP ${ }^{+} 06$, JHSX11].

BACKGROUND

Riemannian optimization methods play important roles:

- $\mathcal{M}=\mathbb{R}^{m \times n}$ in most of applications;
- $\mathbb{R}_{r}^{m \times n}:=\left\{x \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(x)=r\right\}$ is a Riemannian manifold.

Existing methods choose the k in (1) a priori. However, it is not easy to choose a suitable k.

- The solution with too small k may be unacceptable;
- The computational time may be unacceptable with too large k.

CONTRIBUTION

- Generalize the admissible set from $\mathbb{R}_{<k}^{m \times n}$ to $\mathcal{M}_{\leq k}$;
- Define an algorithm solving a rank inequality constrained problem while finding a suitable rank for approximation;
- Prove theoretical convergence results;
- Implementations based on Riemannian optimization methods.

BASIC IDEA

Apply Riemannian optimization methods on a fixed rank manifold \mathcal{M}_{r} while efficiently and effectively updating the rank r.

UpDate Rank

Increase rank if next two conditions hold.

- Condition I (angle threshold θ_{0}):

$$
\angle\left(\operatorname{grad} f_{\mathrm{F}}\left(x_{r}\right), \operatorname{grad} f_{r}\left(x_{r}\right)\right)=\theta>\theta_{0},
$$

- Condition II (difference threshold, ϵ_{2}):

$$
\left\|\operatorname{grad} f_{\mathrm{F}}\left(x_{r}\right)-\operatorname{grad} f_{r}\left(x_{r}\right)\right\| \geq \epsilon_{2}
$$

where $x_{r} \in \mathcal{M}_{r}, \operatorname{grad} f_{\mathrm{F}}(x)$ and $\operatorname{grad} f_{r}(x)$ are the Riemannian gradients with respect to \mathcal{M} and \mathcal{M}_{r} respectively.

Figure 1. Strategy of increasing the rank.

Rank-Related Objects

The new concepts of rank-related vector and rank-related retraction play an important role in updating the rank and avoiding increasing it excessively.

Figure 2. $x \in \mathcal{M}_{r} ; r<\tilde{r} ; \eta_{x, \tilde{r}}$ is a rank- \tilde{r}-related vector, i.e., there exists a curve $\gamma(t)$ such that $\gamma(0)=x$, $\dot{\gamma}(0)=\eta_{x, \tilde{r}}$ and $\operatorname{rank}(\gamma(t))=\tilde{r} ; R$ is a rank-related retraction, i.e., $\operatorname{rank}\left(R_{x}\left(t \eta_{x, \tilde{r}}\right)\right)=\tilde{r}$ for $t \in(0, \delta), \delta>0$.

ALGORITHM

Algorithm 1

1: for $\mathrm{n}=0,1,2, \ldots$ do
Approximately optimize f over \mathcal{M}_{r} with initial point x_{n} and obtain \tilde{x}_{n};
if \tilde{x}_{n} is not close to a set of lower rank matrices then
if Both Conditions I and II are satisfied then

Find a $\tilde{r} \in[r, k]$ and obtain a rank- \tilde{r} related vector.
6: \quad Obtain x_{n+1} by applying a line search algorithm along the rank-related vector using a rank-related retraction; else
If x_{n+1} is accurate enough, stop end if
else
Reduce the rank of \tilde{x}_{n} if the function value at a lower rank point is nonincreasing; Update r; Obtain next iterate x_{n+1}; end if
13: end for

Main Theoretical Results

Suppose some reasonable assumptions hold:

- (Global Result) The sequence $\left\{x_{n}\right\}$ generated by Algorithm 1 satisfies $\liminf f_{n \rightarrow \infty}\left\|P_{T_{x_{n}} \mathcal{M}_{\leq k}}\left(\operatorname{grad} f_{\mathrm{F}}\left(x_{n}\right)\right)\right\|$ $\left(\sqrt{1+\frac{1}{\epsilon_{1}^{2}}}\right) \epsilon_{2}$, where $\epsilon_{1}=\tan \left(\theta_{0}\right)$.
- (Local Result) The sequence $\left\{x_{n}\right\}$ enters a neighborhood \mathcal{U}_{*} of a minimizer x_{*} and remains in \mathcal{U}_{*}. The distance $\operatorname{dist}\left(x_{n}, x_{*}\right)$ is bounded based on $\epsilon_{1}, \epsilon_{2}$ and Hess $f_{\mathrm{F}}\left(x_{*}\right)$. The ranks of $\left\{x_{n}\right\}$ are fixed eventually.

Weighted Low Rank Problem
Weighted low rank problem concerns solving

$$
\min _{X \in \mathcal{M} \leq k}\|A-X\|_{W}^{2}
$$

where $\mathcal{M}=\mathbb{R}^{m \times n}, A$ is given, $W \in \mathbb{R}^{m n \times m n}$ is symmetric positive definite and $\|A-X\|_{W}^{2}=$ $\operatorname{vec}(A-X)^{T} W \operatorname{vec}(A-X)$.

EXPERIMENTS

Algorithm 1 is compared with the state-of-theart methods for weighted low rank approximation problems.

The matrix A is generated by $A_{1} A_{2}^{T} \in \mathbb{R}^{10 \times 80}$, where $A_{1} \in \mathbb{R}^{10 \times 4}, A_{2} \in \mathbb{R}^{80 \times 4}$. W is a block diagonal matrix and each block of W is $W_{i}=$ $U_{i} \Sigma_{i} U_{i}^{T} \in \mathbb{R}^{10 \times 10}$, where U_{i} is given by matlab's ORTH and RAND and Σ_{i} is given by randomly scaling elements from matlab's LOGSPACE

	k	f	R_err	err	time(s)
(1)	3	2.93_{-01}	8.54_{-02}	2.53_{+00}	1.26_{-1}
	4	3.56_{-29}	9.42_{-16}	2.02_{-14}	1.05_{-2}
	5	7.02_{-29}	1.32_{-15}	2.55_{-14}	9.77_{-3}
(2)	3	2.93_{-01}	8.54_{-02}	2.53_{+00}	8.57_{-1}
	4	3.56_{-29}	9.42_{-16}	2.02_{-14}	2.52_{-2}
	5	4.27_{-29}	1.03_{-15}	2.84_{-14}	2.47_{-2}
(3)	3	2.93_{-01}	8.54_{-02}	2.53_{+00}	8.39_{-1}
	4	3.74_{-26}	3.05_{-14}	1.32_{-12}	3.19_{-2}
	5	1.36_{-22}	1.84_{-12}	1.04_{-10}	3.17_{-2}
(4)	3	2.93_{-01}	8.54_{-02}	2.53_{+00}	6.61_{-1}
	4	4.35_{-29}	1.04_{-15}	2.29_{-14}	5.58_{-2}
	5	6.27_{-29}	1.25_{-15}	2.68_{-14}	7.52_{-2}

Table 1. (1), (2), (3) and (4) denote Algorithm 1, SULS [SU14], EW-TLS [MLP ${ }^{+}$06] and APM [LPW97] respectively. R_err denotes $\|A-X\|_{W} /\|A\|_{W}$ and err denotes $\|A-X\|_{F}$. The subscript $\pm k$ indicates a scale of $10^{ \pm k}$.

REFERENCES

[FHBO4] M. Fazel. H. Hindi, and S S Boyd. Rank minimization and applications in system theory. Proceedings of American Control Conference, 2004.

