
A Unified Framework for
Nonlinear Dependence Testing and

Symbolic Analysis
Kyle A. Gallivan

Collaboration with: R. van Engelen, J. Birch, B. Walsh, X. Shou

School of Computational Science and Information Technology

Florida State University

UTSA’04 – p.1/72



Research Interests
• high-performance algorithm technology for

multiple applications
• algorithm/architecture interaction
• software support for

design/implementation/tuning of
high-performance algorithms
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Algorithms
• large-scale numerical linear algebra – sparse

linear systems, eigenproblems
• real-time numerical linear algebra — adaptive

filtering
• model reduction of dynamical systems – novel

algorithms and unification theory
• differential equations – highly oscillatory ODEs,

hierarchical methods for circuits,PDEs
• inverse problems – autofocus for synthetic

aperture radar, blind deconvolution
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Algorithms
• encoding and retrieval – text retrieval, image

retrieval
• large-scale manifold computations – geodesics,

means, optimization
• Current funding

• NSF ITR ACI0324944 with Purdue and Rice
• NSF CCR9912415

• Previous – NSF, DARPA, ARO
• Pending – NSF on SAR autofocus with D.

Munson U. Michigan
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Algorithm/Architecture
• Systolic array design for adaptive filtering
• Cedar – algorithms, applications, performance

analysis
• block-based algorithms – BLAS3
• Load/Store performance prediction
• cache models and iterative compilation with

Knijnenburg and O’Boyle
• timing estimation and voltage scaling with van

Engelen
• Currrent funding

• NSF EIA 0072043 with D. Whalley FSU
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Software support
• Cache and memory restructuring for

uniformly-generated accesses with Gannon and
Jalby

• FALCON – MATLAB restructuring compiler
with Padua and Gallopoulos

• Chains of recurrenes-based restructuring
infrastructure with Van Engelen

• Current funding – NSF CCR0105422 with Van
Engelen

• Pending funding – NSF Unified Compiler
Framework with Van Engelen FSU
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Introduction
• Efficient code→ restructuring compilers
• efficacy of restructuring depends on power of

analysis system
• efficiency of restructuring depends on efficiency

of analysis implementation
• current systems are powerful but

• tend to be collection of independent
subsystems with heuristics

• powerful symbolic processing tends to be
slow

• heuristics are faster but limited
• limitations are still significant
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Limitations
• nonlinear symbolic processing
• pointer arithmetic analysis
• conditional control flow
• efficient parameterization of decisions/questions
• Recent commentary

• Psarris (PC 03, TPDS 04)
• Franke and O’Boyle (ETAPS CC 01)
• Wu, Cohen, Hoeflinger Padua (ICS 01)
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Unified Framework
Goal: Unified and efficient symbolic analysis system
that subsumes most of current technology and extends
restructuring capabilities significantly.

• an efficient technique for the detection and
substitution of generalized induction variables

• improved array recovery methods for both linear
and nonlinear pointer updates

• enhanced value range analysis and array region
analysis for conditionally updated and coupled
induction variables, and pointers
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Unified Framework
• increased accuracy for data dependence analysis

for affine and nonlinear array indices, and index
expressions involving conditionally updated
variables and pointers

• implementation of an efficient nonlinear
dependence test that does not require closed
forms or code adjustments, e.g. induction
variable substitution and array recovery.

• application of technology to compiler support for
related embedded systems problems of timing
estimation and voltage scaling
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Outline
• CR algebra
• Induction variables
• Pointer arithmetic and Array Recovery
• Monotonicity
• Value range analysis
• Array region analysis
• Nonlinear dependence analysis
• Conditional analysis
• Parametric time and power estimation
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CR Algebra
• Chains of Recurrences (CR) algebra developed

by E. Zima and O. Bachmann
• Extended with new algebraic rules by Van

Engelen [ETAPS CC’01]

• Composition of CRs is closed under + and ×
• CRs subsume functions of form

χ(n) = p(n) + αrn, i.e., generalized induction
variables (GIVs)

• Normal form for CR expression comparison Van
Engelen [FSU CS TR ’00]

UTSA’04 – p.12/72



CR Algebra
• Set of complete rewriting rules for CR↔ closed

form
• tools to create CRs and their closed forms for

high level code and RTL available and efficient
Birch [MS’03] and Walsh ’04

• unifies the production of compile-time symbolic
decisions that drive restructuring and run-time
parameterized decisions for multiversion code.
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Basic Function Form
A function f can be rewritten as an system of
recurrence relations in terms of f0, f1, f2, . . . , fk.
Evaluating the function represented by fj for
j = 0, 1, . . . , k − 1 within a loop i ≥ 0,

fj(i) =

{

ιj, if i = 0

fj(i− 1)�j+1 fj+1(i− 1), if i > 0

with �j+1 ∈ {+, ∗}, and ιj representing a loop
invariant expression. fk is either loop invariant or
another CR function.
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Linear Function
Loop counter i ≥ 0 and induction variable j with
addition of constant h

for (i = 0; i < N ; i++) {
j = j + h;

}

Variable CR function
i {0, +, 1}i i

j {j0, +, h}i j0 + i ∗ h
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Geometric Series
Loop counter i ≥ 0 and induction variable j with
multiplication by constant h

for (i = 0; i < N ; i++) {
j = j * h;

}

Variable CR function
i {0, +, 1}i i

j {j0, ∗, h}i j0 ∗ hi
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Multivariate Affine
Loop counters i1 and i2 and induction variable j with
addition of constant h.

for (i1 = 0; i1 <= N ; i1++) {
for (i2 = 0; i2 < M ; i2++) {

j = j + h;
}

}

Variable CR function

i1 {0, +, 1}i1 i1

i2 {0, +, 1}i2 i2

j {{j0, +, M ∗ h}i1 , +, h}i2 j + (M ∗ h ∗ i1) + h ∗ i2
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Multivariate Exponential
Loop counters i1 and i2 and induction variable j with
multiplication of constant h.

for (i1 = 0; i1 <= N ; i1++) {
for (i2 = 0; i2 < M ; i2++) {

j = j * h;
} }

Variable CR function
i1 {0, +, 1}i1 i1
i2 {0, +, 1}i2 i2
j {{j0, ∗, hM}i1, ∗, h}i2 j ∗ hi2 ∗ hi1∗M
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CR Algebra Rules
• Basic CR is a linear function over i ∈ IN:

f(i) = x0 + i h ≡ {x0, +, h}i

• . . . or a geometric series over i ∈ IN:

g(i) = x0 ∗ hi ≡ {x0, ∗, h}i

• Some example algebraic identities:

c + {x0,+, h}i ⇔ {c + x0,+, h}i

c ∗ {x0,+, h}i ⇔ {c x0, ∗, c h}i

{x0,+, h}i + {y0,+, g}i ⇔ {x0 + y0,+, g + h}i

{x0,+, h}i ∗ {y0,+, g}i ⇔ {x0 y0,+, g h + g x + h y,+, 2 g h}i
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Stride/Start Nesting

Φi = {φ0,�1, {φ1,�2, · · · , {φk−1,�k, fk}i · · ·}i}i
Φi = {{· · · {φ0,�1, f1}i,�2, f2}i, · · ·}i,�k, fk}i

Multiply nested loops generate typically one of these
two nested CRs
• recursively specify initial condition of loop by

CR for next outer loop
• recursively specify stride of loop by CR for next

inner loop
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Flattened CR and Loop Forms
All forms can be flattened into a single flattened tuple

Φi = {φ0,�1, φ1,�2, · · · ,�k, fk}i

with k = L(Φi) the length of the CR.

F [0] := φ0; cr1 := φ1; · · · ; crk−1 := φk−1; crk := fk

for i = 1 to n do
F [i] := F [i− 1]�1 cr1

cr1 := cr1 �2 cr2

:

crk−1 := crk−1 �k crk

od
UTSA’04 – p.21/72



Normal Forms

Φi = {φ0,�1, φ1,�2, · · · ,�k, fk}i

• Φi is polynomial or pure-sum CR if �j = +,
j = 1, . . . , k.

• Φi is exponential or pure-product CR if �j = ∗,
for all j = 1, . . . , k.

• Φi = {φ0, ∗, f1}i is geometric if f1 is i-loop
invariant.

• Φi is a GIV if �j = + for j = 1, . . . , k − 1 and
�k = ∗.

• Φi = {φ0, ∗, φ1, +, f2}i is a factorial CR if
φ1 ≥ 1 and f2 = 1, or φ1 ≤ −1 and f2 = −1.
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Example
Expression n ∗ j + i + 2 ∗ k + 1, unit-stride index
variables i ≥ 0 and j ≥ 0 and GIV k(i) = (i2−i)/2
and Φ(k) = {0, +, 0, +, 1}i.

Replace i, j and k then normalize.

CR(CR(CR(n ∗ j+i+2 ∗ k+1)))

= CR(CR(n ∗ j+{0, +, 1}i+2 ∗ k+1))

= CR(n ∗ {0, +, 1}j+{0, +, 1}i+2 ∗ k+1)

= n ∗ {0, +, 1}j+{0, +, 1}i+2 ∗ {0, +, 0, +, 1}i+1

= {{1, +, n}j, +, 1, +, 2}i
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Closed Forms
• Polynomial, factorial, GIV, and exponential CRs

can always be converted to a closed-form.
However, some CRs do not have equivalent
closed-forms.

• Rewriting rules terminate with a closed form of
the CR expression or showing that one does not
exist.

• Polynomial closed form is easily constructed and
evaluated in O(k2) time

χ(i) =
k

∑

j=0

φj

(

i

j

)
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Induction Variable Analysis
• Detect (coupled) GIV recurrences RVE [ETAPS CC’01]:

for i = 1 to n do

j = j+k

k = k+1

⇓ CR

for i = 1 to n do

j ≡ {j0,+, k0,+, 1}i

k ≡ {k0,+, 1}i

⇓ Closed form

for i = 1 to n do

j ≡ j0 + i k0 + i2−i
2

k ≡ k0 + i

UTSA’04 – p.25/72



Induction Variable Substitution
int i, j = 0, k = 0, m = 1;

for (i = a; i <= b; i++) {

. . .

A[f (i,j,k,m)] = A[g(i,j,k,m)];

. . .

j = j + k;

k = k + 1;

m = m << 1;

. . .

}

int i;

for (i = 0; i <= b-a; i++) {

. . .

A[f(i+a, (i2−i)/2, i, 1<<i)]

= A[g(i+a, (i2−i)/2, i, 1<<i)]

. . .

}

(a) Original (b) After IVS

Note nonlinear indices result.
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TRFD Loop
ijkl=0
ij=0
DO i=1,m

DO j=1,i
ij=ij+1
ijkl=ijkl+i-j+1
DO k=i+1,m

DO l=1,k
ijkl=ijkl+1
xijkl[ijkl]=xkl[l]

ENDDO
ENDDO
ijkl=ijkl+ij+left

ENDDO
ENDDO

DO i=0,m-1
DO j=0,i-1

DO k=0,m-i-2
DO l=0,k

xijkl[Φ(ijkl)]=xkl[Φ(l)]
ENDDO

ENDDO

ENDDO
ENDDO

(a) Original (b) GIV Analyzed
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TRFD CRs and Closed Forms
Φ(ijkl) = {{{{2,+, left+m(m+1)/2+2,+, left+m(m+1)/2+1}i

,+, left+m(m+1)/2}j

,+, {2,+, 1}i,+, 1}k

,+, 1}l

and
Φ(l) = {1, +, 1}l

CR−1(Φ(ijkl)) = l + i ∗ (k + (m + m2 + 2 ∗ left + 6)/4)

+ j ∗ (left + (m + m2)/2)

+ ((i ∗m)2 + m ∗ i2)/4

+ (k2 + 3 ∗ k + i2 ∗ (left + 1))/2 + 2
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Pointers and Array Recovery
• CR-GIV for pointers RVE/KAG [IWIA’01]

• Array recovery for dependence analysis or data layout

• Facilitates dependence analysis without array recovery

Access PAD

1 a[i] {a, +, 1}i

2 a[2*i+1] {a+1, +, 2}i

3 a[(i*i-i)/2] {a, +, 0, +, 1}i

4 a[1<<i] {a+1, +, 1, ∗, 2}i

5 p++ {p0, +, 1}i

6 q-=2 {q0, +,−2}i

7 r+=i {r0, +, 0, +, 1}i

8 s+=2*i {s0, +, 0, +, 2}i
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GSM Speech CODEC
int ∗f = ..., ∗lsp = ...;
. . .
f += 2; lsp += 2;
for (i = 2; i <= 5; i++) {
∗f = f[-2];
for (j = 1; j < i; j++, f--)
∗f += f[-2]-2∗(∗lsp)∗f[-1];

∗f -= 2∗(∗lsp);
f += i; lsp += 2;

}

int ∗f = ..., ∗lsp = ...;
. . .
for (i = 0; i <= 3; i++) {
∗({f+2, +, 1}i) = ∗({f, +, 1}i);
for (j = 0; j <= {0, +, 1}i; j++)
∗({{f+2, +, 1}i, +,−1}j ) += ∗({{f, +, 1}i, +,−1}j )

- 2 ∗(∗{lsp+2, +, 2}i)∗(∗{{f, +, 1}i, +,−1}j );
∗(f+1) -= 2∗{lsp+2, +, 2}i;

}

(a) Original (b) Analyzed

ETSI Lsp Az Code Segment
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GSM Speech CODEC

int ∗f = ..., ∗lsp = ...;
. . .
for (i = 0; i <= 3; i++) {

f[i+2] = f[i];
for (j = 0; j <= i; j++)

f[i-j+2] += f[i-j] - 2∗lsp[2∗i+2]∗f[i-j+1];
f[1] -= 2∗lsp[2∗i+2];
}

(c) Transformed
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Step Functions
Definition: The initial value V Φi of a CR form Φi is

V Φi = V {φ0,�1, . . . ,�k, φk}i = φ0

Definition: The step function ∆Φi of a CR form Φi is

∆Φi = ∆{φ0,�1, φ1,�2, . . . ,�k, φk}i = {φ1,�2, . . . ,�k, φk}i

Definition: The direction-wise step function ∆jΦi of a

multi-variate CR form Φi is the step function with respect to an

index variable j

∆jΦi =

{

∆Φi if i = j

∆jV Φi otherwise
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Monotonicity
∆iΦ(ijkl) = {left+m(m+1)/2+2,+, left+m(m+1)/2+1}i

∆jΦ(ijkl) = left+m(m+1)/2

∆kΦ(ijkl) = {{2,+, 1}i,+, 1}k

∆lΦ(ijkl) = 1

• i ≥ 0 and k ≥ 0→ ∆k > 0 and ∆l > 0

• In the k, l direction the addressing of the xijkl[ijkl] is

monotonically increasing

• The inner k, l loop nest can be parallelized.

• ijkl over i, j, k, l index space is monotonically increasing if

left > m(m+1)/2.

• Closed-forms steps give runtime tests for multiversion code
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Value Range Analysis
The accuracy of a range analyzer depends on how the analyzed

expression is formed and if monotonicity can be exploited

Blume/Eigenman [IPPS’95], Haghighat [Kluwer’95]

Example without Monotonicity:
i(i−1) and 2i−i are monotonic and non-negative for 0 ≤ i ≤ n.

Without using monotonic properties, bounds can be very loose,

[0, n]([0, n]−1) = [0, n][−1, n−1]

= [−n, n2−n]

2[0,n] − [0, n] = [1−n, 2n]
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Value Range Analysis
• Techniques such as symbolic forward

differencing can be used to detect monotonicity
but very costly and not always safe.

• CR unified approach generates normal forms and
is straightforward to integrate in a compiler
framework.

• calculate CR normal forms on index space for
GIVs; use the step functions to test monotonicity
of expressions for value range analysis.
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CR Bounds
Lower and upper CR bounds LΦi and UΦi

LΦi =







LV Φi if LMΦi ≥ 0

L CR−1
i (Φi)[i← n] if U MΦi ≤ 0

L CR−1
i (Φi) otherwise

UΦi =







U V Φi if U MΦi ≤ 0

U CR−1
i (Φi)[i← n] if LMΦi ≥ 0

U CR−1
i (Φi) otherwise

MΦi =



















∆Φi if �1 = +

∆Φi − 1 if �1 = ∗ ∧ LV Φ1 ≥ 0 ∧ L∆Φi > 0

1−∆Φi if �1 = ∗ ∧ U V Φ1 < 0 ∧ L∆Φi > 0

undefined otherwise

Handles GIVs, multivariate polynomial expressions, and shifts
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Value Range Analysis Example
Assume 0 ≤ i ≤ n, 0 ≤ j ≤ m, k = (i2−i)/2.

f(i, j, k) = n ∗ j + i + 2 ∗ k + 1

CR(f) = {{1, +, n}j, +, 1, +, 2}i

The bounds can be derived by straightforward
application of the rules:

[ L{{1,+, n}j ,+, 1,+, 2}i , U{{1,+, n}j ,+, 1,+, 2}i ]

= [ L{1,+, n}j , U({1,+, n}j + n2) ]

= [ 1 , 1 + mn + n2 ]
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Array Region Analysis
Bounds of accesses to an array region facilitate many
code optimizations
• eliminating dynamic array bounds checking
• locality optimizations
• prefetching
• blocking

Array region analysis is also used by methods for
dependence testing.
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Array Region for Lsp_Az
L{{f+2,+, 1}i,+,−1}j

= L CR−1
j ({{f+2,+, 1}i,+,−1}j)[j ← {0,+, 1}i]

= L({f+2,+, 1}i − {0,+, 1}i)

= f+2

U{{f + 2,+, 1}i,+,−1}j

= U{f+2,+, 1}i

= U CR−1
i {f+2,+, 1}i[i← 3]

= f+5

• bounds f[2..5]

• iteration space is triangular and the bound on the inner loop

variable j ≤ i is given by the CR form {0,+, 1}i
UTSA’04 – p.39/72



Nonlinear dependence analysis

p = q = A;

for (i = 0; i < 10; i++) {

for (j = 0; j <= i; j++)

∗q += ∗++p;

q++;

}

{0,+, 1}id = {{1,+, 1,+, 1}iu ,+, 1}ju

0 ≤ id ≤ 9

0 ≤ iu ≤ 9

0 ≤ jd ≤ id

0 ≤ ju ≤ iu

(a) Loop Nest (b) Dependence Equations
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CR-based Banerjee Bounds Test
• CR-based extreme value test

• direction vector hierarchy by performing

subscript-by-subscript testing in multidimensional loops

{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju = 0

flow dependence→ i d < iu and jd < ju and

1

{1,+, 1}id







≤ iu ≤ 9 0 ≤ id ≤







8

{−1,+, 1}iu

1

{1,+, 1}jd







≤ ju ≤ {0,+, 1}iu 0 ≤ jd ≤







{−1,+, 1}id

{−1,+, 1}ju
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Lower Bound
L{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju

= L(({{−1,+, 1}id ,+,−1,+,−1}iu − ju)[ju ← {0,+, 1}iu ])

= L({{−1,+, 1}id ,+,−1,+,−1}iu − {0,+, 1}iu (subst.)

= L({{−1,+, 1}id ,+,−2,+,−1}iu (simplify)

= L(({−1,+, 1}id − (3iu − (iu)2)/2)[iu ← 9])

= L{−55,+, 1}id (subst.)

= −55
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Upper Bound
U{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju

= U{{−1,+, 1}id ,+,−1,+,−1}iu

= U{{−1,+,−1,+,−1}iu ,+, 1}id (swap)

= U(({−1,+,−1,+,−1}iu + id)[id ← {−1,+, 1}iu ])

= U({−1,+,−1,+,−1}iu + {−1,+, 1}iu) (subst.)

= U{−2,+, 0,+,−1}iu (simplify)

= −2

no flow dependence (id < iu and jd < ju) since

0 /∈ [−55 · · · − 2]
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Conditional Analysis
• extended algorithms to handle conditionally

updated variables that may or may not have
closed forms

• a set of CR forms or PADs for a variable is
determined (one for each path)

• combine the set of CR forms to bound the
possible range of values of the conditionally
updated variables

• use min and max bounding functions for a set of
CR forms over an index space.
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Min/Max
Definition: Let {Φ1

i , . . . , Φ
n
i } be a set of n

multi-variate polynomial CR forms over i.

The minimum CR form is defined by
min(Φ1

i , . . . ,Φ
n
i ) =

{min(V Φ1
i , . . . , V Φn

i ),+,min(∆Φ1
i , . . . ,∆Φn

i )}i

The maximum CR form is defined by
max(Φ1

i , . . . ,Φ
n
i ) =

{max(V Φ1
i , . . . , V Φn

i ),+,max(∆Φ1
i , . . . ,∆Φn

i )}i
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Conditional Analysis Example

p = A; q = B; k = 0; m = 0;

for (i = 0; i <= n; i++)

if (C[k+2]) { // Path 1

for (j = 0; j < i; j++)

∗p++ = ∗q++;

k += 2;

} else { // Path 2

∗p++ = 0;

q += i;

k += m;

m += 2;

}

Ap1
(Path 1) CRs

p = {A,+, 0,+, 1}i

q = {B,+, 0,+, 1}i

k = {0,+, 2}i

m = 0

Ap2
(Path 2) CRs

p = {A,+, 1}i

q = {B,+, 0,+, 1}i

k = 0

k = {0,+, 0,+, 2}i

m = {0,+, 2}i

Minimum CRs

p ≥ A

q ≥ {B,+, 0,+, 1}i

k ≥ 0

m ≥ 0

Maximum CRs

p ≤ {A,+, 1,+, 1}i

q ≤ {B,+, 0,+, 1}i

k ≤ {0,+, 2,+, 2}i

m ≤ {0,+, 2}i
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Conditional Analysis Example
Ap1

(Path 1) CRs

p = {A,+, 0,+, 1}i

q = {B,+, 0,+, 1}i

k = {0,+, 2}i

m = 0

Ap2
(Path 2) CRs

p = {A,+, 1}i

q = {B,+, 0,+, 1}i

k = 0

k = {0,+, 0,+, 2}i

m = {0,+, 2}i

Minimum CRs

p ≥ A

q ≥ {B,+, 0,+, 1}i

k ≥ 0

m ≥ 0

Maximum CRs

p ≤ {A,+, 1,+, 1}i

q ≤ {B,+, 0,+, 1}i

k ≤ {0,+, 2,+, 2}i

m ≤ {0,+, 2}i

Minimum Closed

p ≥ A

q ≥ &B[(i2−i)/2]

k ≥ 0

m ≥ 0

Maximum Closed

p ≤ &A[(i2+i)/2]

q ≤ &B[(i2−i)/2]

k ≤ i2+i

m ≤ 2i
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Conditional Analysis Example
p = A; q = B; k = 0; m = 0;

for (i = 0; i <= n; i++)

if (C[k+2]) { // Path 1

for (j = 0; j < i; j++)

∗p++ = ∗q++;

k += 2;

} else { // Path 2

∗p++ = 0;

q += i;

k += m;

m += 2;

}

∆iΦi Strides

A[] = 0, {0,+, 1}i

B[] = {0,+, 1}i

C[] = 0, {0,+, 2}i

LΦi..UΦi Bounds

A[0..(n2+n/2)]

B[0..(n2−n/2)]

C[2..n2+n + 2]
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Dynamic Voltage Scaling

Tdead = 1
f ∗RWEC

EN ≈ V 2(N cL + cR)

Eact ≈ V 2(n cL + cR)

ELtype ≈ V 2(n cL + γ2cR)

γ = ( cR

(N−n)cL+cR
)

EPtype ≈ (V n cL+cR

N cL+cR
)2(n cL + cR)

EPtype ≤ ELtype ≤ Eact
L-Type DVS

Shin/Kim [DAC’01]
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P-Type DVS

P-Type DVS

RVE/KAG/BW [COLP’03]

L/P-Type DVS

RVE/KAG/BW[COLP’03]
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B and P-Type DVS

B/P-Type DVS
RVE/KAG/BW [COLP’03]
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B and P-Type DVS

B/P-Type DVS
RVE/KAG/BW[COLP’03]
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Parametric Time Estimation

• Initial work has been done to apply CR-based
weighted summation to timing estimation

• RVE/KAG [IWIA’02] and RVE/KAG/Walsh
[CPC’03]

• Based on Newton-Gregory polynomial form and
CRs

• currently being evaluated for DSP architectures

UTSA’04 – p.53/72



Weighted Summation
NEED ONE OF THESE
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Unified Framework

CR-Library


Compiler

CR-Expression


Return

Values


Transformed

CR-Expression


Output

File


Verbose

Messages


Output


Calling Values


Return Values


Calling

Values


Input

File


Passed


Non-Targeted

CR-Library

Routines


Returned


Compiler-

Targeted CR-


Library

Routines
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Summary
Unified framework for:
• Generalized induction variable analysis
• Pointer arithmetic and array conversion
• Value range and array range analysis
• Conditional GIVs and value range analysis
• Affine and non-linear dependence analysis
• http://www.csit.fsu.edu/˜birch/research/crDemo3.php

• Parametric execution time estimation of loops
• Energy and power analysis of loop nests
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Future Work
• nonlinear GCD for polynomial CRs
• Fourier-Motzkin-like Elimination via CR analysis
• detailed capabaility and efficiency comparison

with extant compilers
• high-level language and RTL infrastructure for

CR-based framework
• improved accuracy for time and power estimation
• locality analysis and transformation – data layout,

blocking
• CR-based scheduling
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Separator
THE END
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GCD
Goal: Determines the existence of an integer solution
to the dependence equation. If the GCD of the left
hand side equations evenly divides the right side,
dependence is possible.

Positives:

• Efficient, simple to implement
• Helps form general solutions

Negatives:

• The GCD is often 1
• Does not handle coupled subscripts
• Does not consider bounding constraints
• Restricted to affine equations UTSA’04 – p.59/72



GCD
Consider the example:

S1 → for (i = 0; i < 10; i = i + 2) {

S2 → A[i] = . . .

S3 → . . . = A[i + 1]

S4 → }

Here the dependence equation for S2 and S3 is 2id− 2iu = 1. The

GCD of the coefficients of id and iu is 2, which does not evenly

divide 1, hence no dependence is possible.
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Generalized GCD
Goal: Looks for simultaneous solution to a system of
dependence equation, to determine if dependence is
possible. The test drives A, in Ax = b, to an echelon
matrix that can be solved. If an integer solutions exist,
dependence is possible.

Positives:

• Finds simultaneous solution to subscripts
• Often produces under-determined parameters

which may be used to consider other constraints

Negatives:

• Does not consider bounding constraints
• Restricted to affine equations
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Generalized GCD
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → for (j = 0; j < 10; j = j + 1) {

S3 → A[i + j + 1][j + 1] = . . .

S4 → . . . = A[i + j][j]

S5 → }

S6 → }

Where the dependence equations:

id − iu + jd − ju = −1

jd − ju = −1

is written in matrix form Ax = b. UTSA’04 – p.62/72



Generalized GCD
Continuing:

Applying only elementary row operations we drive the augmented

matrix

[U|AT] =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0

−1 0

1 1

−1 −1















to upper echelon form:

[U|DT] =















0 0 0 −1

0 1 0 −1

1 1 0 0

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 −1

0 −1

0 0

0 0















.
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Generalized GCD
Continuing:

Now that we have our echelon D
T the algorithm tries to solve for

integer vector t in Dt = b, written out:





−1 0 0 0

−1 −1 0 0



















t1

t2

t3

t4















=





−1

−1



 .

, to produce t1 = 1 and t2 = 0, with t3 and t4 free variables. Since t is

composed of only integers the generalized GCD test demonstrates that

there is a simultaneous integer solution to the system, the test returns

there is dependence possible.
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Banerjee Bounds
Goal: Determines the existence of a real solution to
the dependence equation. If the right side constant of
the equation lies between the upper bound and lower
bound of the left side, dependence is possible.

Positives:

• Efficient, simple to implement
• Determines direction vector hierarchy
• Considers bounding constraints

Negatives:

• Determines real solutions exist, not integer
solutions

• Restricted to affine equations
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Banerjee Bounds
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → A[2i] = B[i + 6]

S3 → D[i] = A[3i− 1]

S4 → }

With dependence equation 2id − 3iu = −1 we compute the upper and

lower bounds

Lower Bound = 2id − 3iu Upper Bound = 2id − 3iu

= 2(0)− 3(10) = 2(10)− 3(0)

= −30 = 20

Since -1 lies in the range of [-30,20], dependence is possible.
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I-Test
Goal: Extends the Banerjee test. Interval equation are
produced, and terms are eliminated, updating the
interval. Each step, a modified GCD test is performed.
If all terms are eliminated or the Banerjee test on
remaining terms does not fail, dependence is possible.

Positives:

• Efficient, simple to implement
• Can provide benefits of both GCD and Banerjee

Negatives:

• Determines real solutions exist, not integer
• Does not handle coupled subscripts
• Restricted to affine equations
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I-Test
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → for (j = 0; j < 10; j = j + 1) {

S3 → A[i] = . . .

S4 → . . . = A[4j + 8]

S5 → }

S6 → }

Dependence equation id − 4ju − 8 = 0 is converted to interval form

id − 4ju − 8 = [0, 0]. At each step of elimination, determine if

dL/de ≤ bU/dc where d is the GCD of the coefficients a1, a2, . . . , an,

and [L, U ] is the interval. Terms are incorporated into the interval if

|an| ≤ U − L + 1.
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I-Test
Continuing:

Interval = id − 4ju − 8 = [0, 0]

= id − 4ju = [8, 8] rid constant

= −4ju = [−1, 8] rid id since |1| ≤ 0− 0 + 1

= 0 = [−1, 44] rid ju since | − 4| ≤ 8− (−1) + 1

Since 0 lies in the range of [-1,44], an integer solution is possible, and

hence, dependence is possible.
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Fourier Motzkin
Goal: A linear programming method applied to
dependence analysis. Test systematically eliminates
variables from a system of inequalites until all but a
single variable has been eliminated. If no
contradictions occur, dependence is possible.

Positives:

• Determines direction vector hierarchy
• Considers bounding constraints

Negatives:

• Determines real solutions exist, not integer
• Can be expensive, not practical.
• Restricted to affine equations UTSA’04 – p.70/72



Omega Test
Goal: An integer programming method based on
Fourier Motzkin. Variables projected produce
shadows based on integer solutions.

Positives:

• Produces fewest inexact returns.
• Determines integer solution.

Negatives:

• Can be expensive, not practical
• Restricted to affine equations
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Fourier Motzkin vs. Omega Test
Step 1: Rewrite constraints

c1 → 3x + 4y ≥ 16 x ≥ 16/3 − 47/3

c2 → 4x + 7y ≤ 56 x ≤ 14 − 7y/4

c3 → 4x + 7y ≤ 20 x ≤ 5 + 7y/4

c4 → 2x = 3y ≥ −9 x ≥ −9/2 + 3y/2

Step 2: Eliminate x

Fourier Motzkin Omega

c1,3 → 5 + 7y/4 ≥ 16/3 − 4y/3 5 + 7y/4 ≥ 16/3 − 4y/3 + 1

c3,4 → 5 + 7y/4 ≥ 16/3 − 9/2 + 3y/2 5 + 7y/4 ≥ −9/2 + 3y/2 + 1

c1,2 → 14 − 7y/4 ≥ 16/3 − 4y/3 14 − 7y/4 ≥ 16/3 − 4y/3 + 1

c2,4 → 14 − 7y/4 ≥ −9/2 + 3y/2 14 − 7y/4 ≥ −9/2 + 3y/2 + 1

Step 3: Test for contradictions

4/37 ≤ y ≤ 74/13 16/37 ≤ y ≤ 66/13

Both test show dependence is possible.
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