A Unified Framework for Nonlinear Dependence Testing and Symbolic Analysis

Kyle A. Gallivan
Collaboration with: R. van Engelen, J. Birch, B. Walsh, X. Shou
School of Computational Science and Information Technology
Florida State University

[^0]

Research Interests

- high-performance algorithm technology for multiple applications
- algorithm/architecture interaction
- software support for design/implementation/tuning of high-performance algorithms

Algorithms

- large-scale numerical linear algebra - sparse linear systems, eigenproblems
- real-time numerical linear algebra - adaptive filtering
- model reduction of dynamical systems - novel algorithms and unification theory
- differential equations - highly oscillatory ODEs, hierarchical methods for circuits,PDEs
- inverse problems - autofocus for synthetic aperture radar, blind deconvolution

Algorithms

- encoding and retrieval - text retrieval, image retrieval
- large-scale manifold computations - geodesics, means, optimization
- Current funding
- NSF ITR ACI0324944 with Purdue and Rice
- NSF CCR9912415
- Previous - NSF, DARPA, ARO
- Pending - NSF on SAR autofocus with D. Munson U. Michigan

Algorithm/Architecture

- Systolic array design for adaptive filtering
- Cedar - algorithms, applications, performance analysis
- block-based algorithms - BLAS3
- Load/Store performance prediction
- cache models and iterative compilation with Knijnenburg and O'Boyle
- timing estimation and voltage scaling with van Engelen
- Currrent funding
- NSF EIA 0072043 with D. Whalley FSU

Software support

- Cache and memory restructuring for uniformly-generated accesses with Gannon and Jalby
- FALCON - MATLAB restructuring compiler with Padua and Gallopoulos
- Chains of recurrenes-based restructuring infrastructure with Van Engelen
- Current funding - NSF CCR0105422 with Van Engelen
- Pending funding - NSF Unified Compiler Framework with Van Engelen FSU

Introduction

- Efficient code \rightarrow restructuring compilers
- efficacy of restructuring depends on power of analysis system
- efficiency of restructuring depends on efficiency of analysis implementation
- current systems are powerful but
- tend to be collection of independent subsystems with heuristics
- powerful symbolic processing tends to be slow
- heuristics are faster but limited
- limitations are still significant

Limitations

- nonlinear symbolic processing
- pointer arithmetic analysis
- conditional control flow
- efficient parameterization of decisions/questions
- Recent commentary
- Psarris (PC 03, TPDS 04)
- Franke and O'Boyle (ETAPS CC 01)
- Wu, Cohen, Hoeflinger Padua (ICS 01)

Unified Framework

Goal: Unified and efficient symbolic analysis system that subsumes most of current technology and extends restructuring capabilities significantly.

- an efficient technique for the detection and substitution of generalized induction variables
- improved array recovery methods for both linear and nonlinear pointer updates
- enhanced value range analysis and array region analysis for conditionally updated and coupled induction variables, and pointers

Unified Framework

- increased accuracy for data dependence analysis for affine and nonlinear array indices, and index expressions involving conditionally updated variables and pointers
- implementation of an efficient nonlinear dependence test that does not require closed forms or code adjustments, e.g. induction variable substitution and array recovery.
- application of technology to compiler support for related embedded systems problems of timing estimation and voltage scaling

Outline

- CR algebra
- Induction variables
- Pointer arithmetic and Array Recovery
- Monotonicity
- Value range analysis
- Array region analysis
- Nonlinear dependence analysis
- Conditional analysis
- Parametric time and power estimation

CR Algebra

- Chains of Recurrences (CR) algebra developed by E. Zima and O. Bachmann
- Extended with new algebraic rules by Van Engelen [ETAPs ccoi]
- Composition of CRs is closed under + and \times
- CRs subsume functions of form
$\chi(n)=p(n)+\alpha r^{n}$, i.e., generalized induction variables (GIVs)
- Normal form for CR expression comparison Van Engelen [fsu cs tr ${ }^{\prime 00]}$

CR Algebra

- Set of complete rewriting rules for CR \leftrightarrow closed form
- tools to create CRs and their closed forms for high level code and RTL available and efficient
Birch [MS'03] and Walsh '04
- unifies the production of compile-time symbolic decisions that drive restructuring and run-time parameterized decisions for multiversion code.

Basic Function Form

A function f can be rewritten as an system of recurrence relations in terms of $f_{0}, f_{1}, f_{2}, \ldots, f_{k}$. Evaluating the function represented by f_{j} for $j=0,1, \ldots, k-1$ within a loop $i \geq 0$,

$$
f_{j}(i)= \begin{cases}\iota_{j}, & \text { if } i=0 \\ f_{j}(i-1) \odot_{j+1} f_{j+1}(i-1), & \text { if } i>0\end{cases}
$$

with $\odot_{j+1} \in\{+, *\}$, and ι_{j} representing a loop invariant expression. f_{k} is either loop invariant or another CR function.

Linear Function

Loop counter $i \geq 0$ and induction variable j with addition of constant h

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad j=j+h ;
\end{aligned}
$$

Geometric Series

Loop counter $i \geq 0$ and induction variable j with multiplication by constant h

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad j=j * h ;
\end{aligned}
$$

Variable	CR	function
i	$\{0,+, 1\}_{i}$	i
j	$\left\{j_{0}, *, h\right\}_{i}$	$j_{0} * h^{i}$

Multivariate Affine

Loop counters i_{1} and i_{2} and induction variable j with addition of constant h.

$$
\begin{aligned}
& \text { for }\left(i_{1}=0 ; i_{1}<=N ; i_{1}++\right)\{ \\
& \quad \text { for }\left(i_{2}=0 ; i_{2}<M ; i_{2}++\right)\{ \\
& \quad\} \quad j=j+h ;
\end{aligned}
$$

Variable
i_{1}
i_{2}
CR
$\{0,+, 1\}_{i_{1}}$
$\{0,+, 1\}_{i_{2}}$
$\left\{\left\{j_{0},+, M * h\right\}_{i_{1}},+, h\right\}_{i_{2}} \quad j+\left(M * h * i_{1}\right)+h * i_{2}$

Multivariate Exponential

Loop counters i_{1} and i_{2} and induction variable j with multiplication of constant h.

$$
\begin{aligned}
& \text { for }\left(i_{1}=0 ; i_{1}<=N ; i_{1}++\right)\{ \\
& \text { for }\left(i_{2}=0 ; i_{2}<M ; i_{2}++\right)\{ \\
& \quad j \quad j=j * h ;
\end{aligned}
$$

Variable
i_{1}
i_{2}
j

$$
\left\{\left\{j_{0}, *, h^{M}\right\}_{i_{1}}, *, h\right\}_{i_{2}} \quad j * h^{i_{2}} * h^{i_{1} * M}
$$

CR Algebra Rules

- Basic CR is a linear function over $i \in \mathbb{N}$:

$$
f(i)=x_{0}+i h \equiv\left\{x_{0},+, h\right\}_{i}
$$

- ... or a geometric series over $i \in \mathbb{N}$:

$$
g(i)=x_{0} * h^{i} \equiv\left\{x_{0}, *, h\right\}_{i}
$$

- Some example algebraic identities:

$$
\begin{aligned}
c+\left\{x_{0},+, h\right\}_{i} & \Leftrightarrow\left\{c+x_{0},+, h\right\}_{i} \\
c *\left\{x_{0},+, h\right\}_{i} & \Leftrightarrow\left\{c x_{0}, *, c h\right\}_{i} \\
\left\{x_{0},+, h\right\}_{i}+\left\{y_{0},+, g\right\}_{i} & \Leftrightarrow\left\{x_{0}+y_{0},+, g+h\right\}_{i} \\
\left\{x_{0},+, h\right\}_{i} *\left\{y_{0},+, g\right\}_{i} & \Leftrightarrow\left\{x_{0} y_{0},+, g h+g x+h y,+, 2 g h\right\}_{i}
\end{aligned}
$$

Stride/Start Nesting

$$
\begin{aligned}
\Phi_{i} & =\left\{\phi_{0}, \odot_{1},\left\{\phi_{1}, \odot_{2}, \cdots,\left\{\phi_{k-1}, \odot_{k}, f_{k}\right\}_{i} \cdots\right\}_{i}\right\}_{i} \\
\Phi_{i} & \left.=\left\{\left\{\cdots\left\{\phi_{0}, \odot_{1}, f_{1}\right\}_{i}, \odot_{2}, f_{2}\right\}_{i}, \cdots\right\}_{i}, \odot_{k}, f_{k}\right\}_{i}
\end{aligned}
$$

Multiply nested loops generate typically one of these two nested CRs

- recursively specify initial condition of loop by CR for next outer loop
- recursively specify stride of loop by CR for next inner loop

Flattened CR and Loop Forms

All forms can be flattened into a single flattened tuple

$$
\Phi_{i}=\left\{\phi_{0}, \odot_{1}, \phi_{1}, \odot_{2}, \cdots, \odot_{k}, f_{k}\right\}_{i}
$$

with $k=L\left(\Phi_{i}\right)$ the length of the CR .

$$
\begin{aligned}
& F[0]:=\phi_{0} ; c r_{1}:=\phi_{1} ; \cdots ; c r_{k-1}:=\phi_{k-1} ; c r_{k}:=f_{k} \\
& \text { for } i=1 \text { to } n \mathbf{d o} \\
& F[i]:=F[i-1] \odot_{1} c r_{1} \\
& c r_{1} \quad:=c r_{1} \odot_{2} c r_{2} \\
&: \\
& c r_{k-1}:=c r_{k-1} \odot_{k} c r_{k}
\end{aligned}
$$

od

Normal Forms

$$
\Phi_{i}=\left\{\phi_{0}, \odot_{1}, \phi_{1}, \odot_{2}, \cdots, \odot_{k}, f_{k}\right\}_{i}
$$

- Φ_{i} is polynomial or pure-sum CR if $\odot_{j}=+$, $j=1, \ldots, k$.
- Φ_{i} is exponential or pure-product CR if $\odot_{j}=*$, for all $j=1, \ldots, k$.
- $\Phi_{i}=\left\{\phi_{0}, *, f_{1}\right\}_{i}$ is geometric if f_{1} is i-loop invariant.
- Φ_{i} is a $G I V$ if $\odot_{j}=+$ for $j=1, \ldots, k-1$ and $\odot_{k}=*$.
- $\Phi_{i}=\left\{\phi_{0}, *, \phi_{1},+, f_{2}\right\}_{i}$ is a factorial CR if $\phi_{1} \geq 1$ and $f_{2}=1$, or $\phi_{1} \leq-1$ and $f_{2}=-1$.

Example

Expression $n * j+i+2 * k+1$, unit-stride index variables $i \geq 0$ and $j \geq 0$ and GIV $k(i)=\left(i^{2}-i\right) / 2$ and $\Phi(k)=\{0,+, 0,+, 1\}_{i}$.

Replace i, j and k then normalize.

$$
\begin{aligned}
& \mathcal{C R}(\mathcal{C R}(\mathcal{C R}(n * j+i+2 * k+1))) \\
&= \mathcal{C R}\left(\mathcal{C R}\left(n * j+\{0,+, 1\}_{i}+2 * k+1\right)\right) \\
&= \mathcal{C R}\left(n *\{0,+, 1\}_{j}+\{0,+, 1\}_{i}+2 * k+1\right) \\
&=n *\{0,+, 1\}_{j}+\{0,+, 1\}_{i}+2 *\{0,+, 0,+, 1\}_{i}+1 \\
&=\left\{\{1,+, n\}_{j},+, 1,+, 2\right\}_{i}
\end{aligned}
$$

Closed Forms

- Polynomial, factorial, GIV, and exponential CRs can always be converted to a closed-form. However, some CRs do not have equivalent closed-forms.
- Rewriting rules terminate with a closed form of the CR expression or showing that one does not exist.
- Polynomial closed form is easily constructed and evaluated in $O\left(k^{2}\right)$ time

$$
\chi(i)=\sum_{j=0}^{k} \phi_{j}\binom{i}{j}
$$

Induction Variable Analysis

- Detect (coupled) GIV recurrences rve [ETAPS cč01]:

Induction Variable Substitution

$$
\begin{aligned}
& \text { int } \mathrm{i}, \mathrm{j}=0, \mathrm{k}=0, \mathrm{~m}=1 ; \\
& \text { for }(\mathrm{i}=\mathrm{a} ; \mathrm{i}<=\mathrm{b} ; \mathrm{i}++)\{ \\
& \quad \ldots \\
& \quad \mathrm{A}[f(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{~m})]=\mathrm{A}[g(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{~m})] \\
& \ldots \\
& \mathrm{j}=\mathrm{j}+\mathrm{k} ; \\
& \mathrm{k}=\mathrm{k}+1 \\
& \mathrm{~m}=\mathrm{m} \ll 1
\end{aligned}
$$

int i;

$$
\text { for }(i=0 ; i<=\mathrm{b}-\mathrm{a} ; i++)\{
$$

$$
\mathrm{A}\left[f\left(i+\mathrm{a},\left(i^{2}-i\right) / 2, i, 1 \ll i\right)\right]
$$

$$
=\mathrm{A}\left[g\left(i+\mathrm{a},\left(i^{2}-i\right) / 2, i, 1 \ll i\right)\right]
$$

(a) Original
(b) After IVS

Note nonlinear indices result.

TRFD Loop

```
ijkl=0
ij=0
DO \(i=1\), m
    DO \(j=1, i\)
        \(i j=i j+1\)
        ijkl=ijkl \(+i-j+1\)
        DO \(k=i+1, m\)
            DO \(l=1, k\)
                ijkl=ijkl+1
                xijkl[ijkl]=xk|[l]
                ENDDO
        ENDDO
        ijkl=ijkl+ij+left
        ENDDO
ENDDO
(a) Original
```

DO i=0,m-1

```
DO i=0,m-1
    DO j=0,i-1
    DO j=0,i-1
        DO k=0,m-i-2
        DO k=0,m-i-2
            DO l=0,k
            DO l=0,k
                xijk|[\Phi(ijkl)]=xkl[\Phi(l)]
                xijk|[\Phi(ijkl)]=xkl[\Phi(l)]
            ENDDO
            ENDDO
        ENDDO
        ENDDO
    ENDDO
    ENDDO
ENDDO
```

```
ENDDO
```

```
(b) GIV Analyzed

\section*{TRFD CRs and Closed Forms}
\[
\begin{aligned}
& \Phi(\mathrm{ijkl})=\{ \left\{\left\{\{2,+, \text { left }+\mathrm{m}(\mathrm{~m}+1) / 2+2,+, \text { left }+\mathrm{m}(\mathrm{~m}+1) / 2+1\}_{i}\right.\right. \\
&,+, \text { left }+\mathrm{m}(\mathrm{~m}+1) / 2\}_{j} \\
&\left.,+,\{2,+, 1\}_{i},+, 1\right\}_{k} \\
&,+, 1\}_{l}
\end{aligned}
\]
and
\[
\begin{gathered}
\Phi(l)=\{1,+, 1\} l \\
\mathcal{C R}^{-1}(\Phi(\mathrm{ijkl}))=\quad \\
\quad+i *\left(k+\left(\mathrm{m}+\mathrm{m}^{2}+2 * \text { left }+6\right) / 4\right) \\
\\
+j *\left(\mathrm{left}+\left(\mathrm{m}+\mathrm{m}^{2}\right) / 2\right) \\
\\
+\left((i * \mathrm{~m})^{2}+\mathrm{m} * i^{2}\right) / 4 \\
\\
+\left(k^{2}+3 * k+i^{2} *(\text { left }+1)\right) / 2+2
\end{gathered}
\]

\section*{Pointers and Array Recovery}
- CR-GIV for pointers RVE/KAG [IWIA01]
- Array recovery for dependence analysis or data layout
- Facilitates dependence analysis without array recovery
\begin{tabular}{l|ll} 
& Access & \(P A D\) \\
\hline 1 & \(\mathrm{a}[\mathrm{i}]\) & \(\{\mathrm{a},+, 1\}_{i}\) \\
2 & \(\mathrm{a}\left[2{ }^{*} \mathrm{i}+1\right]\) & \(\{\mathrm{a}+1,+, 2\}_{i}\) \\
3 & \(\mathrm{a}\left[\left(\mathrm{i} \mathrm{A}_{\mathrm{i}}-\mathrm{i}\right) / 2\right]\) & \(\{\mathrm{a},+, 0,+, 1\}_{i}\) \\
4 & \(\mathrm{a}[1 \ll \mathrm{i}]\) & \(\{\mathrm{a}+1,+, 1, *, 2\}_{i}\) \\
5 & \(\mathrm{p}++\) & \(\left\{p_{0},+, 1\right\}_{i}\) \\
6 & \(\mathrm{q}-=2\) & \(\left\{q_{0},+,-2\right\}_{i}\) \\
7 & \(\mathrm{r}+=\mathrm{i}\) & \(\left\{r_{0},+, 0,+, 1\right\}_{i}\) \\
8 & \(\mathrm{~s}+=2 *_{i}\) & \(\left\{s_{0},+, 0,+, 2\right\}_{i}\)
\end{tabular}

\section*{GSM Speech CODEC}
```

int $* \mathrm{f}=\ldots, * \mathrm{Isp}=\ldots ; \quad$ int $* \mathrm{f}=\ldots, * \mathrm{Isp}=\ldots ;$
...
$\mathrm{f}+=2$; $\mathrm{Isp}+=2$;
for ($i=0 ; i<=3 ; i++$) $\{$
for ($i=2 ; i<=5 ; i++$) $\{$
*f = f[-2];
for ($j=1 ; j<i ; j++$, f--)
*f $+=\mathrm{f}[-2]-2 *(* \mathrm{lsp}) * \mathrm{f}[-1]$;
*f $-=2 *(* l s p)$;
$\mathrm{f}+=i$; $\mathrm{lsp}+=2$;
\}

```
(a) Original
(b) Analyzed
\[
\text { int } * f=\ldots, * \operatorname{lsp}=\ldots ;
\]
...
\[
\text { for }(i=0 ; i<=3 ; i++)\{
\]
\[
*\left(\{\mathrm{f}+2,+, 1\}_{i}\right)=*\left(\{\mathrm{f},+, 1\}_{i}\right) ;
\]
\[
\text { for }\left(j=0 ; j<=\{0,+, 1\}_{i} ; j++\right)
\]
\[
*\left(\left\{\{\mathrm{f}+2,+, 1\}_{i},+,-1\right\}_{j}\right)+=*\left(\left\{\{\mathrm{f},+, 1\}_{i},+,-1\right\}_{j}\right)
\]
\[
-2 *\left(*\{\operatorname{lsp}+2,+, 2\}_{i}\right) *\left(*\left\{\{\mathrm{f},+, 1\}_{i},+,-1\right\}_{j}\right)
\]
\[
*(\mathrm{f}+1)-=2 *\{\mathrm{lsp}+2,+, 2\}_{i}
\]
\[
\}
\]

ETSI Lsp_Az Code Segment

\section*{GSM Speech CODEC}
\[
\begin{aligned}
& \text { int } * \mathrm{f}=\ldots, * \operatorname{lsp}=\ldots ; \\
& \ldots \\
& \text { for }(i=0 ; i<=3 ; i++)\{ \\
& \mathrm{f}[i+2]=\mathrm{f}[i] ; \\
& \text { for }(j=0 ; j<=i ; j++) \\
& \mathrm{f}[i-j+2]+=\mathrm{f}[i-j]-2 * \operatorname{lsp}[2 * i+2] * \mathrm{f}[i-j+1] \text {; } \\
& \mathrm{f}[1]-=2 * \operatorname{lsp}[2 * i+2] ; \\
& \text { \} }
\end{aligned}
\]
(c) Transformed

\section*{Step Functions}

Defi nition: The initial value \(V \Phi_{i}\) of a CR form \(\Phi_{i}\) is
\[
V \Phi_{i}=V\left\{\phi_{0}, \odot_{1}, \ldots, \odot_{k}, \phi_{k}\right\}_{i}=\phi_{0}
\]

Defi nition: The step function \(\Delta \Phi_{i}\) of a CR form \(\Phi_{i}\) is
\[
\Delta \Phi_{i}=\Delta\left\{\phi_{0}, \odot_{1}, \phi_{1}, \odot_{2}, \ldots, \odot_{k}, \phi_{k}\right\}_{i}=\left\{\phi_{1}, \odot_{2}, \ldots, \odot_{k}, \phi_{k}\right\}_{i}
\]

Defi nition: The direction-wise step function \(\Delta_{j} \Phi_{i}\) of a multi-variate CR form \(\Phi_{i}\) is the step function with respect to an index variable \(j\)
\[
\Delta_{j} \Phi_{i}= \begin{cases}\Delta_{i} & \text { if } i=j \\ \Delta_{j} V \Phi_{i} & \text { otherwise }\end{cases}
\]

\section*{Monotonicity}
\[
\begin{aligned}
\Delta_{i} \Phi(\mathrm{ijkl}) & =\{\operatorname{left}+\mathrm{m}(\mathrm{~m}+1) / 2+2,+, \text { left }+\mathrm{m}(\mathrm{~m}+1) / 2+1\}_{i} \\
\Delta_{j} \Phi(\mathrm{ijkl}) & =\text { left }+\mathrm{m}(\mathrm{~m}+1) / 2 \\
\Delta_{k} \Phi(\mathrm{ijkl}) & =\left\{\{2,+, 1\}_{i},+, 1\right\}_{k} \\
\Delta_{l} \Phi(\mathrm{ijkl}) & =1
\end{aligned}
\]
- \(i \geq 0\) and \(k \geq 0 \rightarrow \Delta_{k}>0\) and \(\Delta_{l}>0\)
- In the \(k, l\) direction the addressing of the \(x i j \mathrm{k} \mid[\mathrm{j} \mathrm{k} \mid]\) is monotonically increasing
- The inner \(k, l\) loop nest can be parallelized.
- ijkl over \(i, j, k, l\) index space is monotonically increasing if left \(>\mathrm{m}(\mathrm{m}+1) / 2\).
- Closed-forms steps give runtime tests for multiversion code

\section*{Value Range Analysis}

The accuracy of a range analyzer depends on how the analyzed expression is formed and if monotonicity can be exploited Blume/Eigenman [IPPS'95], Haghighat [Kluwer'95]

\section*{Example without Monotonicity:}
\(i(i-1)\) and \(2^{i}-i\) are monotonic and non-negative for \(0 \leq i \leq n\).
Without using monotonic properties, bounds can be very loose,
\[
\begin{aligned}
{[0, n]([0, n]-1) } & =[0, n][-1, n-1] \\
& =\left[-n, n^{2}-n\right] \\
2^{[0, n]}-[0, n] & =\left[1-n, 2^{n}\right]
\end{aligned}
\]

\section*{Value Range Analysis}
- Techniques such as symbolic forward differencing can be used to detect monotonicity but very costly and not always safe.
- CR unified approach generates normal forms and is straightforward to integrate in a compiler framework.
- calculate CR normal forms on index space for GIVs; use the step functions to test monotonicity of expressions for value range analysis.

\section*{CR Bounds}

Lower and upper CR bounds \(L \Phi_{i}\) and \(U \Phi_{i}\)
\[
\begin{gathered}
L \Phi_{i}= \begin{cases}L V \Phi_{i} & \text { if } L M \Phi_{i} \geq 0 \\
L \mathcal{C} \mathcal{R}_{i}^{-1}\left(\Phi_{i}\right)[i \leftarrow n] & \text { if } U M \Phi_{i} \leq 0 \\
L \mathcal{C} \mathcal{R}_{i}^{-1}\left(\Phi_{i}\right) & \text { otherwise }\end{cases} \\
U \Phi_{i}= \begin{cases}U V \Phi_{i} & \text { if } U M \Phi_{i} \leq 0 \\
U \mathcal{C} \mathcal{R}_{i}^{-1}\left(\Phi_{i}\right)[i \leftarrow n] & \text { if } L M \Phi_{i} \geq 0 \\
U \mathcal{C} \mathcal{R}_{i}^{-1}\left(\Phi_{i}\right) & \text { otherwise }\end{cases} \\
M \Phi_{i}= \begin{cases}\Delta \Phi_{i} & \text { if } \odot_{1}=+ \\
\Delta \Phi_{i}-1 & \text { if } \odot_{1}=* \wedge L V \Phi_{1} \geq 0 \wedge L \Delta \Phi_{i}>0 \\
1-\Delta \Phi_{i} & \text { if } \odot_{1}=* \wedge U V \Phi_{1}<0 \wedge L \Delta \Phi_{i}>0 \\
\text { undefined } & \text { otherwise }\end{cases}
\end{gathered}
\]

Handles GIVs, multivariate polynomial expressions, and shifts

\section*{Value Range Analysis Example}

Assume \(0 \leq i \leq n, 0 \leq j \leq m, k=\left(i^{2}-i\right) / 2\).
\[
\begin{aligned}
f(i, j, k) & =n * j+i+2 * k+1 \\
\mathcal{C R}(f) & =\left\{\{1,+, n\}_{j},+, 1,+, 2\right\}_{i}
\end{aligned}
\]

The bounds can be derived by straightforward application of the rules:
\[
\begin{aligned}
& {\left[L\left\{\{1,+, n\}_{j},+, 1,+, 2\right\}_{i}, U\left\{\{1,+, n\}_{j},+, 1,+, 2\right\}_{i}\right]} \\
& =\left[L\{1,+, n\}_{j}, U\left(\{1,+, n\}_{j}+n^{2}\right)\right] \\
& =\left[1,1+m n+n^{2}\right]
\end{aligned}
\]

\section*{Array Region Analysis}

Bounds of accesses to an array region facilitate many code optimizations
- eliminating dynamic array bounds checking
- locality optimizations
- prefetching
- blocking

Array region analysis is also used by methods for dependence testing.

\section*{Array Region for Lsp_Az}
\[
\begin{aligned}
& L\left\{\{\mathrm{f}+2,+, 1\}_{i},+,-1\right\}_{j} \\
& \quad=L \mathcal{C} \mathcal{R}_{j}^{-1}\left(\left\{\{\mathrm{f}+2,+, 1\}_{i},+,-1\right\}_{j}\right)\left[j \leftarrow\{0,+, 1\}_{i}\right] \\
& \quad=L\left(\{\mathrm{f}+2,+, 1\}_{i}-\{0,+, 1\}_{i}\right) \\
& =\mathrm{f}+2 \\
& U\left\{\{\mathrm{f}+2,+, 1\}_{i},+,-1\right\}_{j} \\
& \quad=U\{\mathrm{f}+2,+, 1\}_{i} \\
& =U \mathcal{C} \mathcal{R}_{i}^{-1}\{\mathrm{f}+2,+, 1\}_{i}[i \leftarrow 3] \\
& =\mathrm{f}+5
\end{aligned}
\]
- bounds \(f[2 . .5]\)
- iteration space is triangular and the bound on the inner loop variable \(j \leq i\) is given by the CR form \(\{0,+, 1\}_{i}\)

\section*{Nonlinear dependence analysis}
\[
\begin{array}{ll}
\mathrm{p}=\mathrm{q}=\mathrm{A} ; & \{0,+, 1\}_{i^{d}}=\left\{\{1,+, 1,+, 1\}_{i^{u}},+, 1\right\}_{j^{u}} \\
\text { for }(\mathrm{i}=0 ; \mathrm{i}<10 ; \mathrm{i}++)\{ & 0 \leq i^{d} \leq 9 \\
\text { for }(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) & 0 \leq i^{u} \leq 9 \\
\quad * \mathrm{q}+=*++\mathrm{p} ; & 0 \leq j^{d} \leq i^{d} \\
\mathrm{q}++; & 0 \leq j^{u} \leq i^{u} \\
\} & \text { (b) Dependence Equations }
\end{array}
\]

\section*{CR-based Banerjee Bounds Test}
- CR-based extreme value test
- direction vector hierarchy by performing subscript-by-subscript testing in multidimensional loops
\[
\left\{\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}},+,-1\right\}_{j^{u}}=0
\]
fbw dependence \(\rightarrow i^{d}<i^{u}\) and \(j^{d}<j^{u}\) and
\[
\left.\begin{array}{r|r}
\left.\begin{array}{r}
1 \\
\{1,+, 1\}_{i^{d}}
\end{array}\right\} \leq i^{u} \leq 9 & 0 \leq i^{d} \leq\left\{\begin{array}{l}
8 \\
\{-1,+, 1\}_{i^{u}}
\end{array}\right. \\
\left.\{1,+, 1\}_{j^{d}}\right\}
\end{array}\right\} \leq j^{u} \leq\{0,+, 1\}_{i^{u}} \quad 0 \leq j^{d} \leq\left\{\begin{array}{l}
\{-1,+, 1\}_{i^{d}} \\
\{-1,+, 1\}_{j^{u}}
\end{array}\right.
\]

\section*{Lower Bound}
\[
\begin{aligned}
& L\left\{\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}},+,-1\right\}_{j^{u}} \\
& =L\left(\left(\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}}-j^{u}\right)\left[j^{u} \leftarrow\{0,+, 1\}_{i^{u}}\right]\right) \\
& =L\left(\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}}-\{0,+, 1\}_{i^{u}} \quad\right. \text { (subst.) } \\
& =L\left(\left\{\{-1,+, 1\}_{i^{d}},+,-2,+,-1\right\}_{i^{u}}\right. \\
& =L\left(\left(\{-1,+, 1\}_{i^{d}}-\left(3 i^{u}-\left(i^{u}\right)^{2}\right) / 2\right)\left[i^{u} \leftarrow 9\right]\right) \\
& =L\{-55,+, 1\}_{i^{d}} \\
& =-55
\end{aligned}
\]

\section*{Upper Bound}
\[
\begin{align*}
& U\left\{\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}},+,-1\right\}_{j^{u}} \\
& =U\left\{\{-1,+, 1\}_{i^{d}},+,-1,+,-1\right\}_{i^{u}} \\
& =U\left\{\{-1,+,-1,+,-1\}_{i^{u}},+, 1\right\}_{i^{d}} \quad \text { (swap) }  \tag{swap}\\
& =U\left(\left(\{-1,+,-1,+,-1\}_{i^{u}}+i^{d}\right)\left[i^{d} \leftarrow\{-1,+, 1\}_{i^{u}}\right]\right) \\
& =U\left(\{-1,+,-1,+,-1\}_{i^{u}}+\{-1,+, 1\}_{i^{u}}\right) \quad \text { (subst.) } \\
& =U\{-2,+, 0,+,-1\}_{i^{u}} \\
& =-2
\end{align*}
\]
no flow dependence \(\left(i^{d}<i^{u}\right.\) and \(\left.j^{d}<j^{u}\right)\) since
\[
0 \notin[-55 \cdots-2]
\]

\section*{Conditional Analysis}
- extended algorithms to handle conditionally updated variables that may or may not have closed forms
- a set of CR forms or PADs for a variable is determined (one for each path)
- combine the set of CR forms to bound the possible range of values of the conditionally updated variables
- use min and max bounding functions for a set of CR forms over an index space.

\section*{Min/Max}

Defi nition: Let \(\left\{\Phi_{i}^{\top}, \ldots, \Phi_{i}^{n}\right\}\) be a set of \(n\) multi-variate polynomial CR forms over \(i\).

The minimum CR form is defined by
\[
\begin{gathered}
\min \left(\Phi_{i}^{1}, \ldots, \Phi_{i}^{n}\right)= \\
\left\{\min \left(V \Phi_{i}^{1}, \ldots, V \Phi_{i}^{n}\right),+, \min \left(\Delta \Phi_{i}^{1}, \ldots, \Delta \Phi_{i}^{n}\right)\right\}_{i}
\end{gathered}
\]

The maximum CR form is defined by
\[
\begin{gathered}
\max \left(\Phi_{i}^{1}, \ldots, \Phi_{i}^{n}\right)= \\
\left\{\max \left(V \Phi_{i}^{1}, \ldots, V \Phi_{i}^{n}\right),+, \max \left(\Delta \Phi_{i}^{1}, \ldots, \Delta \Phi_{i}^{n}\right)\right\}_{i}
\end{gathered}
\]

\section*{Conditional Analysis Example}
\[
\begin{aligned}
& \begin{array}{l}
\mathrm{p}=\mathrm{A} ; \mathrm{q}=\mathrm{B} ; \mathrm{k}=0 ; \mathrm{m}=\mathrm{O} ; \\
\text { for }(i=0 ; \mathrm{i}<=\mathrm{n} ; i++) \\
\text { if }(\mathrm{C}[\mathrm{k}+2])\{\quad / / \text { Path } 1
\end{array} \\
& \text { for ( } j=0 ; j<i ; j++ \text { ) } \\
& \text { * } \mathrm{p}++ \text { = * } \mathrm{q}++ \text {; } \\
& k+=2 \text {; } \\
& \text { \} else }\{\quad / / \text { Path } 2 \\
& \text { *p++ = 0; } \\
& \mathrm{q}+=i \text {; } \\
& \mathrm{k}+\mathrm{m} \text {; } \\
& m+=2 ; \\
& A_{p_{1}} \text { (Path 1) CRs } \\
& \mathrm{p}=\{\mathrm{A},+, 0,+, 1\}_{i} \quad \mathrm{p} \geq \mathrm{A} \\
& \mathrm{q}=\{\mathrm{B},+, 0,+, 1\}_{i} \quad \mathrm{q} \geq\{\mathrm{B},+, 0,+, 1\}_{i} \\
& k=\{0,+, 2\}_{i} \quad k \geq 0 \\
& \mathrm{~m}=0 \\
& A_{p_{2}} \text { (Path 2) CRs Maximum CRs } \\
& \mathrm{p}=\{\mathrm{A},+, 1\}_{i} \\
& \begin{array}{l}
\mathrm{p} \leq\{\mathrm{A},+, 1,+, 1\}_{i} \\
\mathrm{q} \leq\{\mathrm{B},+, 0,+, 1\}_{i}
\end{array} \\
& \mathrm{q}=\{\mathrm{B},+, 0,+, 1\}_{i} \quad \mathrm{q} \leq\{\mathrm{B},+, 0,+, 1\}_{i} \\
& \mathrm{k}=0 \\
& \mathrm{k}=\{0,+, 0,+, 2\}_{i} \quad \mathrm{~m} \leq\{0,+, 2\}_{i} \\
& \mathrm{~m}=\{0,+, 2\}_{i} \\
& \text { Minimum CRs } \\
& m \geq 0 \\
& \mathrm{k} \leq\{0,+, 2,+, 2\}_{i}
\end{aligned}
\]

\section*{Conditional Analysis Example}
\begin{tabular}{|c|c|c|}
\hline \(A_{p_{1}}\) (Path 1) CRs & Minimum CRs & Minimum Closed \\
\hline \(\mathrm{p}=\{\mathrm{A},+, 0,+, 1\}_{i}\) & \(\mathrm{p} \geq \mathrm{A}\) & \(\mathrm{p} \geq \mathrm{A}\) \\
\hline \(\mathrm{q}=\{\mathrm{B},+, 0,+, 1\}_{i}\) & \(\mathrm{q} \geq\{\mathrm{B},+, 0,+, 1\}_{i}\) & \(\mathrm{q} \geq \& \mathrm{~B}\left[\left(i^{2}-i\right) / 2\right]\) \\
\hline \(\mathrm{k}=\{0,+, 2\}_{i}\) & \(k \geq 0\) & \(k \geq 0\) \\
\hline \(\mathrm{m}=0\) & \(\mathrm{m} \geq 0\) & \(\mathrm{m} \geq 0\) \\
\hline \(A_{p_{2}}\) (Path 2) CRs & Maximum CRs & Maximum Closed \\
\hline \(\mathrm{p}=\{\mathrm{A},+, 1\}_{i}\) & \(\mathrm{p} \leq\{\mathrm{A},+, 1,+, 1\}_{i}\) & \(\mathrm{p} \leq \& \mathbf{A}\left[\left(i^{2}+i\right) / 2\right]\) \\
\hline \(\mathrm{q}=\{\mathrm{B},+, 0,+, 1\}_{i}\) & \(\mathrm{q} \leq\{\mathrm{B},+, 0,+, 1\}_{i}\) & \(\mathrm{q} \leq \& \mathrm{~B}\left[\left(i^{2}-i\right) / 2\right]\) \\
\hline \(\mathrm{k}=0\) & \(\mathrm{k} \leq\{0,+, 2,+, 2\}_{i}\) & \(\mathrm{k} \leq i^{2}+i\) \\
\hline \(\mathrm{k}=\{0,+, 0,+, 2\}_{i}\) & \(\mathrm{m} \leq\{0,+, 2\}_{i}\) & \(\mathrm{m} \leq 2 i\) \\
\hline \[
\mathrm{m}=\{0,+, 2\}_{i}
\] & & \\
\hline
\end{tabular}

\section*{Conditional Analysis Example}
\[
\begin{array}{ll}
\mathrm{p}=\mathrm{A} ; \mathrm{q}=\mathrm{B} ; \mathrm{k}=0 ; \mathrm{m}=0 ; & \Delta_{i} \Phi_{i} \text { Strides } \\
\text { for }(i=0 ; \mathrm{i}<=\mathrm{n} ; i++) & \mathrm{A}[]=0,\{0,+ \\
\text { if }(\mathrm{C}[\mathrm{k}+2])\{\quad / / \text { Path } 1 & \mathrm{B}[]=\{0,+, 1 \\
\quad \text { for }(j=0 ; j<i ; j++) & \mathrm{C}[]=0,\{0,+ \\
\quad * \mathrm{p}++=* \mathrm{q}++; & \\
\mathrm{k}+=2 ; \\
\text { \} else }\{ & \\
\quad \text { *p++ =0; } & \\
\quad \mathrm{q}+=i ; & \\
\mathrm{k}+=\mathrm{m} ; & \\
\mathrm{m}+=2 ; & \\
\text { \} Path } 2 &
\end{array}
\]

\section*{Dynamic Voltage Scaling}
\[
\begin{aligned}
& T_{\text {dead }}=\frac{1}{f} * R W E C \\
& E_{\mathrm{N}} \approx V^{2}\left(N c_{L}+c_{R}\right) \\
& E_{\text {act }} \approx V^{2}\left(n c_{L}+c_{R}\right) \\
& E_{\text {Ltype }} \approx V^{2}\left(n c_{L}+\gamma^{2} c_{R}\right) \\
& \gamma=\left(\frac{c_{R}}{(N-n) c_{L}+c_{R}}\right) \\
& E_{\text {Ptype }} \approx\left(V \frac{n c_{L}+c_{R}}{N c_{L}+c_{R}}\right)^{2}\left(n c_{L}+c_{R}\right)
\end{aligned}
\]
\[
E_{\text {Ptype }} \leq E_{\text {Ltype }} \leq E_{\text {act }}
\]


\section*{L-Type DVS} Shin/Kim [DAC'01]

\section*{P-Type DVS}


\section*{L/P-Type DVS}

RVE/KAG/BW[COLP'03]

\section*{B and P-Type DVS}


\section*{B/P-Type DVS RVE/KAG/BW [COLP’03]}

\section*{B and P-Type DVS}


\section*{Parametric Time Estimation}
- Initial work has been done to apply CR-based weighted summation to timing estimation
- RVE/KAG [IWIA'02] and RVE/KAG/Walsh [CPC'03]
- Based on Newton-Gregory polynomial form and CRs
- currently being evaluated for DSP architectures

\title{
Weighted Summation \\ NEED ONE OF THESE
}

\section*{Unified Framework}


\section*{Summary}

Unified framework for:
- Generalized induction variable analysis
- Pointer arithmetic and array conversion
- Value range and array range analysis
- Conditional GIVs and value range analysis
- Affine and non-linear dependence analysis
- http://www.csit.fsu.edu/~birch/research/crDemo3.php
- Parametric execution time estimation of loops
- Energy and power analysis of loop nests

\section*{Future Work}
- nonlinear GCD for polynomial CRs
- Fourier-Motzkin-like Elimination via CR analysis
- detailed capabaility and efficiency comparison with extant compilers
- high-level language and RTL infrastructure for CR-based framework
- improved accuracy for time and power estimation
- locality analysis and transformation - data layout, blocking
- CR-based scheduling

\section*{Separator}

THE END

\section*{GCD}

Goal: Determines the existence of an integer solution to the dependence equation. If the GCD of the left hand side equations evenly divides the right side, dependence is possible.

\section*{Positives:}
- Efficient, simple to implement
- Helps form general solutions

\section*{Negatives:}
- The GCD is often 1
- Does not handle coupled subscripts
- Does not consider bounding constraints
- Restricted to affine equations

\section*{GCD}

Consider the example:
\[
\begin{array}{lc}
\mathrm{S}_{1} \rightarrow & \text { for }(i=0 ; i<10 ; i=i+2)\{ \\
\mathrm{S}_{2} \rightarrow & A[i]=\ldots \\
\mathrm{S}_{3} \rightarrow & \ldots=A[i+1] \\
\mathrm{S}_{4} \rightarrow & \}
\end{array}
\]

Here the dependence equation for \(\mathrm{S}_{2}\) and \(\mathrm{S}_{3}\) is \(2 i^{d}-2 i^{u}=1\). The GCD of the coeffi cients of \(t^{l}\) and \(i^{u}\) is 2 , which does not evenly divide 1 , hence no dependence is possible.

\section*{Generalized GCD}

Goal: Looks for simultaneous solution to a system of dependence equation, to determine if dependence is possible. The test drives \(A\), in \(A x=b\), to an echelon matrix that can be solved. If an integer solutions exist, dependence is possible.

\section*{Positives:}
- Finds simultaneous solution to subscripts
- Often produces under-determined parameters which may be used to consider other constraints

Negatives:
- Does not consider bounding constraints
- Restricted to affine equations

\section*{Generalized GCD}

\section*{Consider the example:}
\[
\left.\begin{array}{lr}
\mathrm{S}_{1} \rightarrow & \text { for }(i=0 ; i<10 ; i=i+1)\{ \\
\mathrm{S}_{2} \rightarrow & \text { for }(j=0 ; j<10 ; j=j+1)\{ \\
\mathrm{S}_{3} \rightarrow & \\
\mathrm{~S}_{4} \rightarrow & \\
\mathrm{~S}_{5} \rightarrow & \ldots+j+1][j+1]=\ldots \\
\mathrm{S}_{6} \rightarrow & \}
\end{array}\right]=A[i+j][j]\left\{\begin{array}{lc} 
\\
&
\end{array}\right.
\]

Where the dependence equations:
\[
\begin{aligned}
i_{d}-i_{u}+j_{d}-j_{u} & =-1 \\
j_{d}-j_{u} & =-1
\end{aligned}
\]
is written in matrix form \(\mathbf{A x}=\mathrm{b}\).

\section*{Generalized GCD}

\section*{Continuing:}

Applying only elementary row operations we drive the augmented matrix
\[
\left[\mathbf{U} \mid \mathbf{A}^{\mathbf{T}}\right]=\left[\begin{array}{llll|rr}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & -1 & -1
\end{array}\right]
\]
to upper echelon form:
\[
\left[\mathbf{U} \mid \mathbf{D}^{\mathbf{T}}\right]=\left[\begin{array}{rrrr|rr}
0 & 0 & 0 & -1 & -1 & -1 \\
0 & 1 & 0 & -1 & 0 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
\]

\section*{Generalized GCD}

\section*{Continuing:}

Now that we have our echelon \(\mathbf{D}^{\mathrm{T}}\) the algorithm tries to solve for integer vector \(\mathbf{t}\) in \(\mathrm{Dt}=\mathrm{b}\), written out:
\[
\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]
\]
, to produce \(t_{1}=1\) and \(t_{2}=0\), with \(t_{3}\) and \(t_{4}\) free variables. Since \(t\) is composed of only integers the generalized GCD test demonstrates that there is a simultaneous integer solution to the system, the test returns there is dependence possible.

\section*{Banerjee Bounds}

Goal: Determines the existence of a real solution to the dependence equation. If the right side constant of the equation lies between the upper bound and lower bound of the left side, dependence is possible.

\section*{Positives:}
- Efficient, simple to implement
- Determines direction vector hierarchy
- Considers bounding constraints

Negatives:
- Determines real solutions exist, not integer solutions
- Restricted to affine equations

\section*{Banerjee Bounds}

\section*{Consider the example:}
\[
\begin{array}{lc}
\mathrm{S}_{1} \rightarrow & \text { for }(i=0 ; i<10 ; i=i+1)\{ \\
\mathrm{S}_{2} \rightarrow & A[2 i]=B[i+6] \\
\mathrm{S}_{3} \rightarrow & D[i]=A[3 i-1] \\
\mathrm{S}_{4} \rightarrow & \}
\end{array}
\]

With dependence equation \(2 i^{d}-3 i^{u}=-1\) we compute the upper and lower bounds
\[
\begin{aligned}
\text { Lower Bound } & =2 i^{d}-3 i^{u} \quad \text { Upper Bound }
\end{aligned}=2 i^{d}-3 i^{u} 0
\]

Since -1 lies in the range of [-30,20], dependence is possible.

\section*{I-Test}

Goal: Extends the Banerjee test. Interval equation are produced, and terms are eliminated, updating the interval. Each step, a modified GCD test is performed. If all terms are eliminated or the Banerjee test on remaining terms does not fail, dependence is possible.

\section*{Positives:}
- Efficient, simple to implement
- Can provide benefits of both GCD and Banerjee

Negatives:
- Determines real solutions exist, not integer
- Does not handle coupled subscripts
- Restricted to affine equations

\section*{I-Test}

\section*{Consider the example:}
\[
\begin{array}{lr}
\mathrm{S}_{1} \rightarrow & \text { for }(i=0 ; i<10 ; i=i+1)\{ \\
\mathrm{S}_{2} \rightarrow & \text { for }(j=0 ; j<10 ; j=j+1)\{ \\
\mathrm{S}_{3} \rightarrow & A[i]=\ldots \\
\mathrm{S}_{4} \rightarrow & \ldots=A[4 j+8] \\
\mathrm{S}_{5} \rightarrow & \} \\
\mathrm{S}_{6} \rightarrow & \}
\end{array}
\]

Dependence equation \(i^{d}-4 j^{u}-8=0\) is converted to interval form \(i^{d}-4 j^{u}-8=[0,0]\). At each step of elimination, determine if
\(\lceil L / d\rceil \leq\lfloor U / d\rfloor\) where \(d\) is the GCD of the coeffi cients \(a_{1}, a_{2}, \ldots, a_{n}\), and \([L, U]\) is the interval. Terms are incorporated into the interval if \(\left|a_{n}\right| \leq U-L+1\).

\section*{I-Test}

\section*{Continuing:}
\[
\begin{array}{rlrl}
\text { Interval } & =i^{d}-4 j^{u}-8=[0,0] & \\
& =i^{d}-4 j^{u}=[8,8] & & \text { rid constant } \\
& =-4 j^{u}=[-1,8] & & \text { rid } i^{d} \text { since }|1| \leq 0-0+1 \\
& =0=[-1,44] & & \text { rid } j^{u} \text { since }|-4| \leq 8-(-1)+1
\end{array}
\]

Since 0 lies in the range of [-1,44], an integer solution is possible, and hence, dependence is possible.

\section*{Fourier Motzkin}

Goal: A linear programming method applied to dependence analysis. Test systematically eliminates variables from a system of inequalites until all but a single variable has been eliminated. If no contradictions occur, dependence is possible.

\section*{Positives:}
- Determines direction vector hierarchy
- Considers bounding constraints

Negatives:
- Determines real solutions exist, not integer
- Can be expensive, not practical.
- Restricted to affine equations

\section*{Omega Test}

Goal: An integer programming method based on Fourier Motzkin. Variables projected produce shadows based on integer solutions.

\section*{Positives:}
- Produces fewest inexact returns.
- Determines integer solution.

\section*{Negatives:}
- Can be expensive, not practical
- Restricted to affine equations

\section*{Fourier Motzkin vs. Omega Test}

Step 1: Rewrite constraints
\[
\begin{array}{lll}
\mathrm{c}_{1} \rightarrow & 3 x+4 y \geq 16 & x \geq 16 / 3-47 / 3 \\
\mathrm{c}_{2} \rightarrow & 4 x+7 y \leq 56 & x \leq 14-7 y / 4 \\
\mathrm{c}_{3} \rightarrow & 4 x+7 y \leq 20 & x \leq 5+7 y / 4 \\
\mathrm{c}_{4} \rightarrow & 2 x=3 y \geq-9 & x \geq-9 / 2+3 y / 2
\end{array}
\]

Step 2: Eliminate \(x\)

Fourier Motzkin
\[
\begin{aligned}
& \mathrm{c}_{1,3} \rightarrow 5+7 y / 4 \geq 16 / 3-4 y / 3 \\
& \mathrm{c}_{3,4} \rightarrow 5+7 y / 4 \geq 16 / 3-9 / 2+3 y / 2 \\
& \mathrm{c}_{1,2} \rightarrow 14-7 y / 4 \geq 16 / 3-4 y / 3 \\
& \mathrm{c}_{2,4} \rightarrow 14-7 y / 4 \geq-9 / 2+3 y / 2
\end{aligned}
\]

Omega
\(5+7 y / 4 \geq 16 / 3-4 y / 3+1\)
\(5+7 y / 4 \geq-9 / 2+3 y / 2+1\)
\(14-7 y / 4 \geq 16 / 3-4 y / 3+1\)
\(14-7 y / 4 \geq-9 / 2+3 y / 2+1\)

Step 3: Test for contradictions
\[
4 / 37 \leq y \leq 74 / 13 \quad 16 / 37 \leq y \leq 66 / 13
\]

Both test show dependence is possible.```


[^0]:    School of Computational Science and Information Technology AT FLORIDA STATE UNIVERSITY

