
A Unified Framework for
Nonlinear Dependence Testing and

Symbolic Analysis
Kyle A. Gallivan

Collaboration with: R. van Engelen, J. Birch, B. Walsh, X. Shou

School of Computational Science and Information Technology

Florida State University

UTSA’04 – p.1/72

Research Interests
• high-performance algorithm technology for

multiple applications
• algorithm/architecture interaction
• software support for

design/implementation/tuning of
high-performance algorithms

UTSA’04 – p.2/72

Algorithms
• large-scale numerical linear algebra – sparse

linear systems, eigenproblems
• real-time numerical linear algebra — adaptive

filtering
• model reduction of dynamical systems – novel

algorithms and unification theory
• differential equations – highly oscillatory ODEs,

hierarchical methods for circuits,PDEs
• inverse problems – autofocus for synthetic

aperture radar, blind deconvolution

UTSA’04 – p.3/72

Algorithms
• encoding and retrieval – text retrieval, image

retrieval
• large-scale manifold computations – geodesics,

means, optimization
• Current funding

• NSF ITR ACI0324944 with Purdue and Rice
• NSF CCR9912415

• Previous – NSF, DARPA, ARO
• Pending – NSF on SAR autofocus with D.

Munson U. Michigan

UTSA’04 – p.4/72

Algorithm/Architecture
• Systolic array design for adaptive filtering
• Cedar – algorithms, applications, performance

analysis
• block-based algorithms – BLAS3
• Load/Store performance prediction
• cache models and iterative compilation with

Knijnenburg and O’Boyle
• timing estimation and voltage scaling with van

Engelen
• Currrent funding

• NSF EIA 0072043 with D. Whalley FSU

UTSA’04 – p.5/72

Software support
• Cache and memory restructuring for

uniformly-generated accesses with Gannon and
Jalby

• FALCON – MATLAB restructuring compiler
with Padua and Gallopoulos

• Chains of recurrenes-based restructuring
infrastructure with Van Engelen

• Current funding – NSF CCR0105422 with Van
Engelen

• Pending funding – NSF Unified Compiler
Framework with Van Engelen FSU

UTSA’04 – p.6/72

Introduction
• Efficient code→ restructuring compilers
• efficacy of restructuring depends on power of

analysis system
• efficiency of restructuring depends on efficiency

of analysis implementation
• current systems are powerful but

• tend to be collection of independent
subsystems with heuristics

• powerful symbolic processing tends to be
slow

• heuristics are faster but limited
• limitations are still significant

UTSA’04 – p.7/72

Limitations
• nonlinear symbolic processing
• pointer arithmetic analysis
• conditional control flow
• efficient parameterization of decisions/questions
• Recent commentary

• Psarris (PC 03, TPDS 04)
• Franke and O’Boyle (ETAPS CC 01)
• Wu, Cohen, Hoeflinger Padua (ICS 01)

UTSA’04 – p.8/72

Unified Framework
Goal: Unified and efficient symbolic analysis system
that subsumes most of current technology and extends
restructuring capabilities significantly.

• an efficient technique for the detection and
substitution of generalized induction variables

• improved array recovery methods for both linear
and nonlinear pointer updates

• enhanced value range analysis and array region
analysis for conditionally updated and coupled
induction variables, and pointers

UTSA’04 – p.9/72

Unified Framework
• increased accuracy for data dependence analysis

for affine and nonlinear array indices, and index
expressions involving conditionally updated
variables and pointers

• implementation of an efficient nonlinear
dependence test that does not require closed
forms or code adjustments, e.g. induction
variable substitution and array recovery.

• application of technology to compiler support for
related embedded systems problems of timing
estimation and voltage scaling

UTSA’04 – p.10/72

Outline
• CR algebra
• Induction variables
• Pointer arithmetic and Array Recovery
• Monotonicity
• Value range analysis
• Array region analysis
• Nonlinear dependence analysis
• Conditional analysis
• Parametric time and power estimation

UTSA’04 – p.11/72

CR Algebra
• Chains of Recurrences (CR) algebra developed

by E. Zima and O. Bachmann
• Extended with new algebraic rules by Van

Engelen [ETAPS CC’01]

• Composition of CRs is closed under + and ×
• CRs subsume functions of form

χ(n) = p(n) + αrn, i.e., generalized induction
variables (GIVs)

• Normal form for CR expression comparison Van
Engelen [FSU CS TR ’00]

UTSA’04 – p.12/72

CR Algebra
• Set of complete rewriting rules for CR↔ closed

form
• tools to create CRs and their closed forms for

high level code and RTL available and efficient
Birch [MS’03] and Walsh ’04

• unifies the production of compile-time symbolic
decisions that drive restructuring and run-time
parameterized decisions for multiversion code.

UTSA’04 – p.13/72

Basic Function Form
A function f can be rewritten as an system of
recurrence relations in terms of f0, f1, f2, . . . , fk.
Evaluating the function represented by fj for
j = 0, 1, . . . , k − 1 within a loop i ≥ 0,

fj(i) =

{

ιj, if i = 0

fj(i− 1)�j+1 fj+1(i− 1), if i > 0

with �j+1 ∈ {+, ∗}, and ιj representing a loop
invariant expression. fk is either loop invariant or
another CR function.

UTSA’04 – p.14/72

Linear Function
Loop counter i ≥ 0 and induction variable j with
addition of constant h

for (i = 0; i < N ; i++) {
j = j + h;

}

Variable CR function
i {0, +, 1}i i

j {j0, +, h}i j0 + i ∗ h

UTSA’04 – p.15/72

Geometric Series
Loop counter i ≥ 0 and induction variable j with
multiplication by constant h

for (i = 0; i < N ; i++) {
j = j * h;

}

Variable CR function
i {0, +, 1}i i

j {j0, ∗, h}i j0 ∗ hi

UTSA’04 – p.16/72

Multivariate Affine
Loop counters i1 and i2 and induction variable j with
addition of constant h.

for (i1 = 0; i1 <= N ; i1++) {
for (i2 = 0; i2 < M ; i2++) {

j = j + h;
}

}

Variable CR function

i1 {0, +, 1}i1 i1

i2 {0, +, 1}i2 i2

j {{j0, +, M ∗ h}i1 , +, h}i2 j + (M ∗ h ∗ i1) + h ∗ i2
UTSA’04 – p.17/72

Multivariate Exponential
Loop counters i1 and i2 and induction variable j with
multiplication of constant h.

for (i1 = 0; i1 <= N ; i1++) {
for (i2 = 0; i2 < M ; i2++) {

j = j * h;
} }

Variable CR function
i1 {0, +, 1}i1 i1
i2 {0, +, 1}i2 i2
j {{j0, ∗, hM}i1, ∗, h}i2 j ∗ hi2 ∗ hi1∗M

UTSA’04 – p.18/72

CR Algebra Rules
• Basic CR is a linear function over i ∈ IN:

f(i) = x0 + i h ≡ {x0, +, h}i

• . . . or a geometric series over i ∈ IN:

g(i) = x0 ∗ hi ≡ {x0, ∗, h}i

• Some example algebraic identities:

c + {x0,+, h}i ⇔ {c + x0,+, h}i

c ∗ {x0,+, h}i ⇔ {c x0, ∗, c h}i

{x0,+, h}i + {y0,+, g}i ⇔ {x0 + y0,+, g + h}i

{x0,+, h}i ∗ {y0,+, g}i ⇔ {x0 y0,+, g h + g x + h y,+, 2 g h}i

UTSA’04 – p.19/72

Stride/Start Nesting

Φi = {φ0,�1, {φ1,�2, · · · , {φk−1,�k, fk}i · · ·}i}i
Φi = {{· · · {φ0,�1, f1}i,�2, f2}i, · · ·}i,�k, fk}i

Multiply nested loops generate typically one of these
two nested CRs
• recursively specify initial condition of loop by

CR for next outer loop
• recursively specify stride of loop by CR for next

inner loop

UTSA’04 – p.20/72

Flattened CR and Loop Forms
All forms can be flattened into a single flattened tuple

Φi = {φ0,�1, φ1,�2, · · · ,�k, fk}i

with k = L(Φi) the length of the CR.

F [0] := φ0; cr1 := φ1; · · · ; crk−1 := φk−1; crk := fk

for i = 1 to n do
F [i] := F [i− 1]�1 cr1

cr1 := cr1 �2 cr2

:

crk−1 := crk−1 �k crk

od
UTSA’04 – p.21/72

Normal Forms

Φi = {φ0,�1, φ1,�2, · · · ,�k, fk}i

• Φi is polynomial or pure-sum CR if �j = +,
j = 1, . . . , k.

• Φi is exponential or pure-product CR if �j = ∗,
for all j = 1, . . . , k.

• Φi = {φ0, ∗, f1}i is geometric if f1 is i-loop
invariant.

• Φi is a GIV if �j = + for j = 1, . . . , k − 1 and
�k = ∗.

• Φi = {φ0, ∗, φ1, +, f2}i is a factorial CR if
φ1 ≥ 1 and f2 = 1, or φ1 ≤ −1 and f2 = −1.

UTSA’04 – p.22/72

Example
Expression n ∗ j + i + 2 ∗ k + 1, unit-stride index
variables i ≥ 0 and j ≥ 0 and GIV k(i) = (i2−i)/2
and Φ(k) = {0, +, 0, +, 1}i.

Replace i, j and k then normalize.

CR(CR(CR(n ∗ j+i+2 ∗ k+1)))

= CR(CR(n ∗ j+{0, +, 1}i+2 ∗ k+1))

= CR(n ∗ {0, +, 1}j+{0, +, 1}i+2 ∗ k+1)

= n ∗ {0, +, 1}j+{0, +, 1}i+2 ∗ {0, +, 0, +, 1}i+1

= {{1, +, n}j, +, 1, +, 2}i

UTSA’04 – p.23/72

Closed Forms
• Polynomial, factorial, GIV, and exponential CRs

can always be converted to a closed-form.
However, some CRs do not have equivalent
closed-forms.

• Rewriting rules terminate with a closed form of
the CR expression or showing that one does not
exist.

• Polynomial closed form is easily constructed and
evaluated in O(k2) time

χ(i) =
k

∑

j=0

φj

(

i

j

)

UTSA’04 – p.24/72

Induction Variable Analysis
• Detect (coupled) GIV recurrences RVE [ETAPS CC’01]:

for i = 1 to n do

j = j+k

k = k+1

⇓ CR

for i = 1 to n do

j ≡ {j0,+, k0,+, 1}i

k ≡ {k0,+, 1}i

⇓ Closed form

for i = 1 to n do

j ≡ j0 + i k0 + i2−i
2

k ≡ k0 + i

UTSA’04 – p.25/72

Induction Variable Substitution
int i, j = 0, k = 0, m = 1;

for (i = a; i <= b; i++) {

. . .

A[f (i,j,k,m)] = A[g(i,j,k,m)];

. . .

j = j + k;

k = k + 1;

m = m << 1;

. . .

}

int i;

for (i = 0; i <= b-a; i++) {

. . .

A[f(i+a, (i2−i)/2, i, 1<<i)]

= A[g(i+a, (i2−i)/2, i, 1<<i)]

. . .

}

(a) Original (b) After IVS

Note nonlinear indices result.

UTSA’04 – p.26/72

TRFD Loop
ijkl=0
ij=0
DO i=1,m

DO j=1,i
ij=ij+1
ijkl=ijkl+i-j+1
DO k=i+1,m

DO l=1,k
ijkl=ijkl+1
xijkl[ijkl]=xkl[l]

ENDDO
ENDDO
ijkl=ijkl+ij+left

ENDDO
ENDDO

DO i=0,m-1
DO j=0,i-1

DO k=0,m-i-2
DO l=0,k

xijkl[Φ(ijkl)]=xkl[Φ(l)]
ENDDO

ENDDO

ENDDO
ENDDO

(a) Original (b) GIV Analyzed

UTSA’04 – p.27/72

TRFD CRs and Closed Forms
Φ(ijkl) = {{{{2,+, left+m(m+1)/2+2,+, left+m(m+1)/2+1}i

,+, left+m(m+1)/2}j

,+, {2,+, 1}i,+, 1}k

,+, 1}l

and
Φ(l) = {1, +, 1}l

CR−1(Φ(ijkl)) = l + i ∗ (k + (m + m2 + 2 ∗ left + 6)/4)

+ j ∗ (left + (m + m2)/2)

+ ((i ∗m)2 + m ∗ i2)/4

+ (k2 + 3 ∗ k + i2 ∗ (left + 1))/2 + 2

UTSA’04 – p.28/72

Pointers and Array Recovery
• CR-GIV for pointers RVE/KAG [IWIA’01]

• Array recovery for dependence analysis or data layout

• Facilitates dependence analysis without array recovery

Access PAD

1 a[i] {a, +, 1}i

2 a[2*i+1] {a+1, +, 2}i

3 a[(i*i-i)/2] {a, +, 0, +, 1}i

4 a[1<<i] {a+1, +, 1, ∗, 2}i

5 p++ {p0, +, 1}i

6 q-=2 {q0, +,−2}i

7 r+=i {r0, +, 0, +, 1}i

8 s+=2*i {s0, +, 0, +, 2}i

UTSA’04 – p.29/72

GSM Speech CODEC
int ∗f = ..., ∗lsp = ...;
. . .
f += 2; lsp += 2;
for (i = 2; i <= 5; i++) {
∗f = f[-2];
for (j = 1; j < i; j++, f--)
∗f += f[-2]-2∗(∗lsp)∗f[-1];

∗f -= 2∗(∗lsp);
f += i; lsp += 2;

}

int ∗f = ..., ∗lsp = ...;
. . .
for (i = 0; i <= 3; i++) {
∗({f+2, +, 1}i) = ∗({f, +, 1}i);
for (j = 0; j <= {0, +, 1}i; j++)
∗({{f+2, +, 1}i, +,−1}j) += ∗({{f, +, 1}i, +,−1}j)

- 2 ∗(∗{lsp+2, +, 2}i)∗(∗{{f, +, 1}i, +,−1}j);
∗(f+1) -= 2∗{lsp+2, +, 2}i;

}

(a) Original (b) Analyzed

ETSI Lsp Az Code Segment

UTSA’04 – p.30/72

GSM Speech CODEC

int ∗f = ..., ∗lsp = ...;
. . .
for (i = 0; i <= 3; i++) {

f[i+2] = f[i];
for (j = 0; j <= i; j++)

f[i-j+2] += f[i-j] - 2∗lsp[2∗i+2]∗f[i-j+1];
f[1] -= 2∗lsp[2∗i+2];
}

(c) Transformed

UTSA’04 – p.31/72

Step Functions
Definition: The initial value V Φi of a CR form Φi is

V Φi = V {φ0,�1, . . . ,�k, φk}i = φ0

Definition: The step function ∆Φi of a CR form Φi is

∆Φi = ∆{φ0,�1, φ1,�2, . . . ,�k, φk}i = {φ1,�2, . . . ,�k, φk}i

Definition: The direction-wise step function ∆jΦi of a

multi-variate CR form Φi is the step function with respect to an

index variable j

∆jΦi =

{

∆Φi if i = j

∆jV Φi otherwise

UTSA’04 – p.32/72

Monotonicity
∆iΦ(ijkl) = {left+m(m+1)/2+2,+, left+m(m+1)/2+1}i

∆jΦ(ijkl) = left+m(m+1)/2

∆kΦ(ijkl) = {{2,+, 1}i,+, 1}k

∆lΦ(ijkl) = 1

• i ≥ 0 and k ≥ 0→ ∆k > 0 and ∆l > 0

• In the k, l direction the addressing of the xijkl[ijkl] is

monotonically increasing

• The inner k, l loop nest can be parallelized.

• ijkl over i, j, k, l index space is monotonically increasing if

left > m(m+1)/2.

• Closed-forms steps give runtime tests for multiversion code

UTSA’04 – p.33/72

Value Range Analysis
The accuracy of a range analyzer depends on how the analyzed

expression is formed and if monotonicity can be exploited

Blume/Eigenman [IPPS’95], Haghighat [Kluwer’95]

Example without Monotonicity:
i(i−1) and 2i−i are monotonic and non-negative for 0 ≤ i ≤ n.

Without using monotonic properties, bounds can be very loose,

[0, n]([0, n]−1) = [0, n][−1, n−1]

= [−n, n2−n]

2[0,n] − [0, n] = [1−n, 2n]

UTSA’04 – p.34/72

Value Range Analysis
• Techniques such as symbolic forward

differencing can be used to detect monotonicity
but very costly and not always safe.

• CR unified approach generates normal forms and
is straightforward to integrate in a compiler
framework.

• calculate CR normal forms on index space for
GIVs; use the step functions to test monotonicity
of expressions for value range analysis.

UTSA’04 – p.35/72

CR Bounds
Lower and upper CR bounds LΦi and UΦi

LΦi =







LV Φi if LMΦi ≥ 0

L CR−1
i (Φi)[i← n] if U MΦi ≤ 0

L CR−1
i (Φi) otherwise

UΦi =







U V Φi if U MΦi ≤ 0

U CR−1
i (Φi)[i← n] if LMΦi ≥ 0

U CR−1
i (Φi) otherwise

MΦi =



















∆Φi if �1 = +

∆Φi − 1 if �1 = ∗ ∧ LV Φ1 ≥ 0 ∧ L∆Φi > 0

1−∆Φi if �1 = ∗ ∧ U V Φ1 < 0 ∧ L∆Φi > 0

undefined otherwise

Handles GIVs, multivariate polynomial expressions, and shifts

UTSA’04 – p.36/72

Value Range Analysis Example
Assume 0 ≤ i ≤ n, 0 ≤ j ≤ m, k = (i2−i)/2.

f(i, j, k) = n ∗ j + i + 2 ∗ k + 1

CR(f) = {{1, +, n}j, +, 1, +, 2}i

The bounds can be derived by straightforward
application of the rules:

[L{{1,+, n}j ,+, 1,+, 2}i , U{{1,+, n}j ,+, 1,+, 2}i]

= [L{1,+, n}j , U({1,+, n}j + n2)]

= [1 , 1 + mn + n2]

UTSA’04 – p.37/72

Array Region Analysis
Bounds of accesses to an array region facilitate many
code optimizations
• eliminating dynamic array bounds checking
• locality optimizations
• prefetching
• blocking

Array region analysis is also used by methods for
dependence testing.

UTSA’04 – p.38/72

Array Region for Lsp_Az
L{{f+2,+, 1}i,+,−1}j

= L CR−1
j ({{f+2,+, 1}i,+,−1}j)[j ← {0,+, 1}i]

= L({f+2,+, 1}i − {0,+, 1}i)

= f+2

U{{f + 2,+, 1}i,+,−1}j

= U{f+2,+, 1}i

= U CR−1
i {f+2,+, 1}i[i← 3]

= f+5

• bounds f[2..5]

• iteration space is triangular and the bound on the inner loop

variable j ≤ i is given by the CR form {0,+, 1}i
UTSA’04 – p.39/72

Nonlinear dependence analysis

p = q = A;

for (i = 0; i < 10; i++) {

for (j = 0; j <= i; j++)

∗q += ∗++p;

q++;

}

{0,+, 1}id = {{1,+, 1,+, 1}iu ,+, 1}ju

0 ≤ id ≤ 9

0 ≤ iu ≤ 9

0 ≤ jd ≤ id

0 ≤ ju ≤ iu

(a) Loop Nest (b) Dependence Equations

UTSA’04 – p.40/72

CR-based Banerjee Bounds Test
• CR-based extreme value test

• direction vector hierarchy by performing

subscript-by-subscript testing in multidimensional loops

{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju = 0

flow dependence→ i d < iu and jd < ju and

1

{1,+, 1}id







≤ iu ≤ 9 0 ≤ id ≤







8

{−1,+, 1}iu

1

{1,+, 1}jd







≤ ju ≤ {0,+, 1}iu 0 ≤ jd ≤







{−1,+, 1}id

{−1,+, 1}ju

UTSA’04 – p.41/72

Lower Bound
L{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju

= L(({{−1,+, 1}id ,+,−1,+,−1}iu − ju)[ju ← {0,+, 1}iu])

= L({{−1,+, 1}id ,+,−1,+,−1}iu − {0,+, 1}iu (subst.)

= L({{−1,+, 1}id ,+,−2,+,−1}iu (simplify)

= L(({−1,+, 1}id − (3iu − (iu)2)/2)[iu ← 9])

= L{−55,+, 1}id (subst.)

= −55

UTSA’04 – p.42/72

Upper Bound
U{{{−1,+, 1}id ,+,−1,+,−1}iu ,+,−1}ju

= U{{−1,+, 1}id ,+,−1,+,−1}iu

= U{{−1,+,−1,+,−1}iu ,+, 1}id (swap)

= U(({−1,+,−1,+,−1}iu + id)[id ← {−1,+, 1}iu])

= U({−1,+,−1,+,−1}iu + {−1,+, 1}iu) (subst.)

= U{−2,+, 0,+,−1}iu (simplify)

= −2

no flow dependence (id < iu and jd < ju) since

0 /∈ [−55 · · · − 2]

UTSA’04 – p.43/72

Conditional Analysis
• extended algorithms to handle conditionally

updated variables that may or may not have
closed forms

• a set of CR forms or PADs for a variable is
determined (one for each path)

• combine the set of CR forms to bound the
possible range of values of the conditionally
updated variables

• use min and max bounding functions for a set of
CR forms over an index space.

UTSA’04 – p.44/72

Min/Max
Definition: Let {Φ1

i , . . . , Φ
n
i } be a set of n

multi-variate polynomial CR forms over i.

The minimum CR form is defined by
min(Φ1

i , . . . ,Φ
n
i) =

{min(V Φ1
i , . . . , V Φn

i),+,min(∆Φ1
i , . . . ,∆Φn

i)}i

The maximum CR form is defined by
max(Φ1

i , . . . ,Φ
n
i) =

{max(V Φ1
i , . . . , V Φn

i),+,max(∆Φ1
i , . . . ,∆Φn

i)}i

UTSA’04 – p.45/72

Conditional Analysis Example

p = A; q = B; k = 0; m = 0;

for (i = 0; i <= n; i++)

if (C[k+2]) { // Path 1

for (j = 0; j < i; j++)

∗p++ = ∗q++;

k += 2;

} else { // Path 2

∗p++ = 0;

q += i;

k += m;

m += 2;

}

Ap1
(Path 1) CRs

p = {A,+, 0,+, 1}i

q = {B,+, 0,+, 1}i

k = {0,+, 2}i

m = 0

Ap2
(Path 2) CRs

p = {A,+, 1}i

q = {B,+, 0,+, 1}i

k = 0

k = {0,+, 0,+, 2}i

m = {0,+, 2}i

Minimum CRs

p ≥ A

q ≥ {B,+, 0,+, 1}i

k ≥ 0

m ≥ 0

Maximum CRs

p ≤ {A,+, 1,+, 1}i

q ≤ {B,+, 0,+, 1}i

k ≤ {0,+, 2,+, 2}i

m ≤ {0,+, 2}i

UTSA’04 – p.46/72

Conditional Analysis Example
Ap1

(Path 1) CRs

p = {A,+, 0,+, 1}i

q = {B,+, 0,+, 1}i

k = {0,+, 2}i

m = 0

Ap2
(Path 2) CRs

p = {A,+, 1}i

q = {B,+, 0,+, 1}i

k = 0

k = {0,+, 0,+, 2}i

m = {0,+, 2}i

Minimum CRs

p ≥ A

q ≥ {B,+, 0,+, 1}i

k ≥ 0

m ≥ 0

Maximum CRs

p ≤ {A,+, 1,+, 1}i

q ≤ {B,+, 0,+, 1}i

k ≤ {0,+, 2,+, 2}i

m ≤ {0,+, 2}i

Minimum Closed

p ≥ A

q ≥ &B[(i2−i)/2]

k ≥ 0

m ≥ 0

Maximum Closed

p ≤ &A[(i2+i)/2]

q ≤ &B[(i2−i)/2]

k ≤ i2+i

m ≤ 2i

UTSA’04 – p.47/72

Conditional Analysis Example
p = A; q = B; k = 0; m = 0;

for (i = 0; i <= n; i++)

if (C[k+2]) { // Path 1

for (j = 0; j < i; j++)

∗p++ = ∗q++;

k += 2;

} else { // Path 2

∗p++ = 0;

q += i;

k += m;

m += 2;

}

∆iΦi Strides

A[] = 0, {0,+, 1}i

B[] = {0,+, 1}i

C[] = 0, {0,+, 2}i

LΦi..UΦi Bounds

A[0..(n2+n/2)]

B[0..(n2−n/2)]

C[2..n2+n + 2]

UTSA’04 – p.48/72

Dynamic Voltage Scaling

Tdead = 1
f ∗RWEC

EN ≈ V 2(N cL + cR)

Eact ≈ V 2(n cL + cR)

ELtype ≈ V 2(n cL + γ2cR)

γ = (cR

(N−n)cL+cR
)

EPtype ≈ (V n cL+cR

N cL+cR
)2(n cL + cR)

EPtype ≤ ELtype ≤ Eact
L-Type DVS

Shin/Kim [DAC’01]

UTSA’04 – p.49/72

P-Type DVS

P-Type DVS

RVE/KAG/BW [COLP’03]

L/P-Type DVS

RVE/KAG/BW[COLP’03]

UTSA’04 – p.50/72

B and P-Type DVS

B/P-Type DVS
RVE/KAG/BW [COLP’03]

UTSA’04 – p.51/72

B and P-Type DVS

B/P-Type DVS
RVE/KAG/BW[COLP’03]

UTSA’04 – p.52/72

Parametric Time Estimation

• Initial work has been done to apply CR-based
weighted summation to timing estimation

• RVE/KAG [IWIA’02] and RVE/KAG/Walsh
[CPC’03]

• Based on Newton-Gregory polynomial form and
CRs

• currently being evaluated for DSP architectures

UTSA’04 – p.53/72

Weighted Summation
NEED ONE OF THESE

UTSA’04 – p.54/72

Unified Framework

CR-Library

Compiler

CR-Expression

Return

Values

Transformed

CR-Expression

Output

File

Verbose

Messages

Output

Calling Values

Return Values

Calling

Values

Input

File

Passed

Non-Targeted

CR-Library

Routines

Returned

Compiler-

Targeted CR-

Library

Routines

UTSA’04 – p.55/72

Summary
Unified framework for:
• Generalized induction variable analysis
• Pointer arithmetic and array conversion
• Value range and array range analysis
• Conditional GIVs and value range analysis
• Affine and non-linear dependence analysis
• http://www.csit.fsu.edu/˜birch/research/crDemo3.php

• Parametric execution time estimation of loops
• Energy and power analysis of loop nests

UTSA’04 – p.56/72

Future Work
• nonlinear GCD for polynomial CRs
• Fourier-Motzkin-like Elimination via CR analysis
• detailed capabaility and efficiency comparison

with extant compilers
• high-level language and RTL infrastructure for

CR-based framework
• improved accuracy for time and power estimation
• locality analysis and transformation – data layout,

blocking
• CR-based scheduling

UTSA’04 – p.57/72

Separator
THE END

UTSA’04 – p.58/72

GCD
Goal: Determines the existence of an integer solution
to the dependence equation. If the GCD of the left
hand side equations evenly divides the right side,
dependence is possible.

Positives:

• Efficient, simple to implement
• Helps form general solutions

Negatives:

• The GCD is often 1
• Does not handle coupled subscripts
• Does not consider bounding constraints
• Restricted to affine equations UTSA’04 – p.59/72

GCD
Consider the example:

S1 → for (i = 0; i < 10; i = i + 2) {

S2 → A[i] = . . .

S3 → . . . = A[i + 1]

S4 → }

Here the dependence equation for S2 and S3 is 2id− 2iu = 1. The

GCD of the coefficients of id and iu is 2, which does not evenly

divide 1, hence no dependence is possible.

UTSA’04 – p.60/72

Generalized GCD
Goal: Looks for simultaneous solution to a system of
dependence equation, to determine if dependence is
possible. The test drives A, in Ax = b, to an echelon
matrix that can be solved. If an integer solutions exist,
dependence is possible.

Positives:

• Finds simultaneous solution to subscripts
• Often produces under-determined parameters

which may be used to consider other constraints

Negatives:

• Does not consider bounding constraints
• Restricted to affine equations

UTSA’04 – p.61/72

Generalized GCD
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → for (j = 0; j < 10; j = j + 1) {

S3 → A[i + j + 1][j + 1] = . . .

S4 → . . . = A[i + j][j]

S5 → }

S6 → }

Where the dependence equations:

id − iu + jd − ju = −1

jd − ju = −1

is written in matrix form Ax = b. UTSA’04 – p.62/72

Generalized GCD
Continuing:

Applying only elementary row operations we drive the augmented

matrix

[U|AT] =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0

−1 0

1 1

−1 −1















to upper echelon form:

[U|DT] =















0 0 0 −1

0 1 0 −1

1 1 0 0

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 −1

0 −1

0 0

0 0















.

UTSA’04 – p.63/72

Generalized GCD
Continuing:

Now that we have our echelon D
T the algorithm tries to solve for

integer vector t in Dt = b, written out:





−1 0 0 0

−1 −1 0 0



















t1

t2

t3

t4















=





−1

−1



 .

, to produce t1 = 1 and t2 = 0, with t3 and t4 free variables. Since t is

composed of only integers the generalized GCD test demonstrates that

there is a simultaneous integer solution to the system, the test returns

there is dependence possible.
UTSA’04 – p.64/72

Banerjee Bounds
Goal: Determines the existence of a real solution to
the dependence equation. If the right side constant of
the equation lies between the upper bound and lower
bound of the left side, dependence is possible.

Positives:

• Efficient, simple to implement
• Determines direction vector hierarchy
• Considers bounding constraints

Negatives:

• Determines real solutions exist, not integer
solutions

• Restricted to affine equations
UTSA’04 – p.65/72

Banerjee Bounds
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → A[2i] = B[i + 6]

S3 → D[i] = A[3i− 1]

S4 → }

With dependence equation 2id − 3iu = −1 we compute the upper and

lower bounds

Lower Bound = 2id − 3iu Upper Bound = 2id − 3iu

= 2(0)− 3(10) = 2(10)− 3(0)

= −30 = 20

Since -1 lies in the range of [-30,20], dependence is possible.
UTSA’04 – p.66/72

I-Test
Goal: Extends the Banerjee test. Interval equation are
produced, and terms are eliminated, updating the
interval. Each step, a modified GCD test is performed.
If all terms are eliminated or the Banerjee test on
remaining terms does not fail, dependence is possible.

Positives:

• Efficient, simple to implement
• Can provide benefits of both GCD and Banerjee

Negatives:

• Determines real solutions exist, not integer
• Does not handle coupled subscripts
• Restricted to affine equations

UTSA’04 – p.67/72

I-Test
Consider the example:

S1 → for (i = 0; i < 10; i = i + 1) {

S2 → for (j = 0; j < 10; j = j + 1) {

S3 → A[i] = . . .

S4 → . . . = A[4j + 8]

S5 → }

S6 → }

Dependence equation id − 4ju − 8 = 0 is converted to interval form

id − 4ju − 8 = [0, 0]. At each step of elimination, determine if

dL/de ≤ bU/dc where d is the GCD of the coefficients a1, a2, . . . , an,

and [L, U] is the interval. Terms are incorporated into the interval if

|an| ≤ U − L + 1.
UTSA’04 – p.68/72

I-Test
Continuing:

Interval = id − 4ju − 8 = [0, 0]

= id − 4ju = [8, 8] rid constant

= −4ju = [−1, 8] rid id since |1| ≤ 0− 0 + 1

= 0 = [−1, 44] rid ju since | − 4| ≤ 8− (−1) + 1

Since 0 lies in the range of [-1,44], an integer solution is possible, and

hence, dependence is possible.

UTSA’04 – p.69/72

Fourier Motzkin
Goal: A linear programming method applied to
dependence analysis. Test systematically eliminates
variables from a system of inequalites until all but a
single variable has been eliminated. If no
contradictions occur, dependence is possible.

Positives:

• Determines direction vector hierarchy
• Considers bounding constraints

Negatives:

• Determines real solutions exist, not integer
• Can be expensive, not practical.
• Restricted to affine equations UTSA’04 – p.70/72

Omega Test
Goal: An integer programming method based on
Fourier Motzkin. Variables projected produce
shadows based on integer solutions.

Positives:

• Produces fewest inexact returns.
• Determines integer solution.

Negatives:

• Can be expensive, not practical
• Restricted to affine equations

UTSA’04 – p.71/72

Fourier Motzkin vs. Omega Test
Step 1: Rewrite constraints

c1 → 3x + 4y ≥ 16 x ≥ 16/3 − 47/3

c2 → 4x + 7y ≤ 56 x ≤ 14 − 7y/4

c3 → 4x + 7y ≤ 20 x ≤ 5 + 7y/4

c4 → 2x = 3y ≥ −9 x ≥ −9/2 + 3y/2

Step 2: Eliminate x

Fourier Motzkin Omega

c1,3 → 5 + 7y/4 ≥ 16/3 − 4y/3 5 + 7y/4 ≥ 16/3 − 4y/3 + 1

c3,4 → 5 + 7y/4 ≥ 16/3 − 9/2 + 3y/2 5 + 7y/4 ≥ −9/2 + 3y/2 + 1

c1,2 → 14 − 7y/4 ≥ 16/3 − 4y/3 14 − 7y/4 ≥ 16/3 − 4y/3 + 1

c2,4 → 14 − 7y/4 ≥ −9/2 + 3y/2 14 − 7y/4 ≥ −9/2 + 3y/2 + 1

Step 3: Test for contradictions

4/37 ≤ y ≤ 74/13 16/37 ≤ y ≤ 66/13

Both test show dependence is possible.

UTSA’04 – p.72/72

	Research Interests
	Algorithms
	Algorithms
	Algorithm/Architecture
	Software support
	Introduction
	Limitations
	Unified Framework
	Unified Framework
	Outline
	CR Algebra
	CR Algebra
	Basic Function Form
	Linear Function
	Geometric Series
	Multivariate Affine
	Multivariate Exponential
	CR Algebra Rules
	Stride/Start Nesting
	Flattened CR and Loop Forms
	Normal Forms
	Example
	Closed Forms
	Induction Variable Analysis
	Induction Variable Substitution
	TRFD Loop
	TRFD CRs and Closed Forms
	Pointers and Array Recovery
	GSM Speech CODEC
	GSM Speech CODEC
	Step Functions
	Monotonicity
	Value Range Analysis
	Value Range Analysis
	CR Bounds
	Value Range Analysis Example
	Array Region Analysis
	Array Region for Lsp_Az
	Nonlinear dependence analysis
	CR-based Banerjee Bounds Test
	Lower Bound
	Upper Bound
	Conditional Analysis
	Min/Max
	Conditional Analysis Example
	Conditional Analysis Example
	Conditional Analysis Example
	Dynamic Voltage Scaling
	P-Type DVS
	B and P-Type DVS
	B and P-Type DVS
	Parametric Time Estimation
	Weighted Summation
	Unified Framework
	Summary
	Future Work
	Separator
	GCD
	GCD
	Generalized GCD
	Generalized GCD
	Generalized GCD
	Generalized GCD
	Banerjee Bounds
	Banerjee Bounds
	I-Test
	I-Test
	I-Test
	Fourier Motzkin
	Omega Test
	Fourier Motzkin vs. Omega Test

