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ABSTRACT

This dissertation considers the optimization problems that are in the form of minX∈Fv f(x)+λ‖X‖1,

where f is smooth, Fv = {X ∈ Rn×q : XTX = Iq, v ∈ span(X)}, and v is a given positive vector.

Clustering analysis is a fundamental machine learning problem with broad-ranging applications. Its

aim is to group unlabelled data objects into clusters according to a certain similarity measure such

that objects within each cluster are more similar to each other than to objects of another cluster.

Several clustering problems can be formulated as such optimization problems, such as community

detection, k-means clustering, discriminative k-means clustering, and normalized cuts. In this

dissertation, three Riemannian optimization approaches for the clustering problems in terms of

assignment matrix are proposed, which are ARPPG, AManPG, and Inexact_AManPG. It is proven

that the domain Fv forms a compact embedded submanifold of Rn×q and optimization-related tools

are derived. Global convergence analysis for Inexact_AManPG is then established. Numerical

experiments on clustering problems including community detection, k-means, discriminative k-

means, and normalized cut for image segmentation are used to demonstrate the performance of

the proposed optimization approaches. ARPPG, AManPG, and Inexact_AManPG algorithms as

with many other projection and dimension reduction methods, can have difficulties with time and

space complexity when the number of clusters is not reliably known or too large. To address this

limitation, we also propose a recursive version of Inexact_AManPG algorithm.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem

Clustering analysis is a fundamental machine learning problem with broad-ranging applications.

Its aim is to group unlabelled data objects into clusters according to a certain similarity measure

such that objects within each cluster are more similar to each other than otherwise. The clustering

algorithms vary based on the structure of the objects and the measurement of the similarity. For

example, if the objects are located in a metric space and the similarity is measured by distance, then

it is the standard clustering problem and many algorithms have been proposed to solve this problem,

e.g., k-means clustering. k-means [70, 39, 47] is one of the most popular clustering methods. The

basic idea of k-means algorithm is: given an initial but not optimal clustering, relocate each point

to its new nearest center, update the clustering centers by calculating the mean of the member

points, and repeat the relocating-and-updating process until convergence convergence criteria are

satisfied. Recent research has improved the algorithm in many ways. One drawback to the k-means

algorithm is that it is sensitive to the initialization of the centroids. To overcome this drawback,

the k-means++ algorithm [112] is the standard initialization algorithm for the k-means algorithm.

Another drawback to k-means is that it cannot separate clusters that are non-linearly separable

in the input space. Two approaches have emerged to overcome this problem. One is applying

kernel methods to k-means [101, 31, 37], which first embed the data into a higher dimensional

feature space using a nonlinear function and then partitioning the points by linear separators in

the new space. The other approach is spectral clustering algorithms [103, 86, 59], which use the

eigenvectors of an affinity matrix to obtain a clustering of the data. A popular objective function

used in spectral clustering is to minimize the normalized cut [103].

Boutsidis et.al. in [15] formally defined the k-means clustering problem using the cluster indi-

cator matrix and then presented the first provably accurate feature selection algorithm for k-means

clustering. The k-means algorithm can be rewritten as an alternating minimization algorithm [15]

1



for solving the optimization problem

min
X∈An,q

||A−XXTA||2F , (1.1)

where A is a data matrix where each data point in Rd corresponds to a row of A, and An,q = {X ∈

Rn×q : XTX = Iq, X ≥ 0,1n ∈ span(X)}, X ≥ 0 denotes that all entries of X are nonnegative, 1n
denotes a vector with length n and all entries being 1, and span(X) denotes the space spanned by

column vectors of X.

When the data sets are in a very high dimensional space, a dimensionality reduction technique,

Linear Discriminant Analysis (LDA) can be combined with the k-means clustering, e.g., Linear

Discriminant Analysis plus k-means is presented in [33]. It is shown in [121] to be equivalent to a

kernel k-means. The resulting optimization problem is then given by

min
X∈An,q ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA), (1.2)

where λregu > 0 is the regularization parameter. This problem is solved by alternating between the

computation of X for a given λregu and the computation of λregu for a given X.

If the objects are nodes in a graph and the similarity is defined by the way neighbors interact,

the clustering becomes the community detection [44, 84, 94] or the role extraction problem [93, 75].

A variety of community detection algorithms have been developed in recent years, such as the GN

algorithm [80], the spectral modularity maximization algorithm [82], the Louvain method [12, 110],

the Infomap algorithm [98], statistical inference [85], deep learning [120].

Graph-based clustering algorithms use the concepts and properties of graph theory, such that

the clustering problem can be described as a graph partition problem. It is shown in [31] that, the

graph partitioning problems including general weighted graph cuts, such as ratio association, ratio

cut, normalized cut, and Kernighan-Lin objective function, can be formulated as an optimization

problem

min
Y TDY=Iq ,Y TY isdiagonal,Y≥0,1n∈span(Y )

−trace(Y TDKDY ), (1.3)

where K ∈ Rn×n is a symmetric kernel matrix and D ∈ Rn×n is a diagonal matrix with all entries

being positive. Letting X denote D1/2Y , problem (1.3) can be reformulated into

min
X∈An,qv

−trace(XTD1/2KD1/2X), (1.4)
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where v is a vector formed by the square roots of the diagonal entries in D, i.e., v = diag(D1/2),

and An,qv = {X ∈ Rn×q : XTX = Iq, X ≥ 0, v ∈ span(X)}, and X ≥ 0 denotes that all entries of X

are nonnegative.

1.2 Our Contribution
1.2.1 An Alternative Formulation of the Clustering Problem

By comparing the objective functions of problem (1.1), (1.2), and (1.4), it is easily seen that

they have same pattern which is

min
X∈An,qv

f(X), (1.5)

where An,qv = {X ∈ Rn×q : XTX = Iq, X ≥ 0, v ∈ span(X)}, and X ≥ 0 denotes that all entries

of X are nonnegative, v ∈ Rn is a vector with all entries being positive, and f is an application-

dependent objective function. Note that, An,qv is a general form of the set An,q, and specifically,

An,q = An,q1n .

We formulate the community detection problem as a constrained nonsmooth optimization prob-

lem on the compact Stiefel manifold. It is proven that in an ideal graph, the global minimizer of

f : An,q → R : X 7→ −trace(XTMX) is an assignment matrix that represents the ground truth,

where

M = A−A1n1TnA/(1TnA1n), (1.6)

which is called the modularity matrix [82], and where A is the adjacency matrix of the graph. In

the presence of noise, the community detection is still formulated as the optimization problem

min
X∈An,q

−trace(XTMX), (1.7)

under the assumption that the noise is not significant enough to change its minimizer.

We can see that (1.7) also has the same pattern as in (1.5). This formulation is one important

contribution of this dissertation, and for more details see Chapter 3 and [116]. More contributions

are generated based on this formulation.

Problem (1.5) can be reformulated by replacing the non-negative constraint X ≥ 0 with a

sparsity constraint ||X||0 = n under condition that f(X) = f(XDi) for all i = 1, .., q, which yields

min
X∈Bv

f(X), (1.8)
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where

Bv = {X ∈ Rn×q : XTX = Iq, ||X||0 = n, v ∈ span(X)}, (1.9)

Di = diag(1, ..., 1,−1, 1, ..., 1) whose i-th diagonal entry is −1, and ||X||0 denotes the total number

of nonzero elements in X.

Problem (1.5) and Problem (1.8) are essentially equivalent in the sense that their solutions are

connected, as is shown in the following lemma.

Lemma 1.2.1. Consider Problem (1.5) and Problem (1.8) with the objective function f satisfying

f(X) = f(XDi) for any i = 1, .., q, where Di = diag(1, ..., 1,−1, 1, ..., 1) whose i-th diagonal entry

is −1. The following two statements hold:

• Let X be any matrix in Bv. Then for any column of X, denoted by xi, the signs of all nonzero
entries in xi are the same.

• Define a mapping ψ : Rn×q 7→ Rn×q : X 7→ X̂ = XDj1Dj2 ...Djs, where j1, j2, ..., js are the
indices of the columns of X whose nonzero entries are all negative. Then X∗ is a global
minimizer of Problem (1.8) in the sense that f(X∗) ≤ f(Y ),∀Y ∈ Bv if and only if ψ(X∗) is
a global minimizer of Problem (1.5) in the sense that f(ψ(X∗)) ≤ f(Z), ∀Z ∈ An,qv .

Proof. The first statement holds by the definition of Bv. The second statement holds by the

assumption of the function f .

Due to the constraints of Bv, the sparsest matrix in Bv has n nonzero entries. We reformulate

Problem (1.8) and use one norm penalization to promote the sparsity ofX, which yields a continuous

optimization in (1.10). Problem (1.10) is exactly the form that we use for the proposed algorithms

in this dissertation.Using one norm to promote sparsity on manifold has been widely used for the

Stiefel manifold, see [57, 117]. If the minimizer of (1.10), denoted by X∗, is sufficiently close to Bv,

then one can find the closest matrix in Bv by a mapping PBv(X∗), see details in Lemma 1.2.2. If

the i-th row j-th column of PBv(X∗) is not zero, then this implies that the i-th object is in the j-th

cluster.

min
X∈Fv

f(X) + λ||X||1, (1.10)

where λ > 0 is a tuning parameter, Fv = {X ∈ Rn×q : XTX = Iq, v ∈ span(X)} is the domain,

v ∈ Rn is a vector with all entries being positive, span(X) denotes the column space of X and the

gradient of f is Lipschitz continuous.
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Lemma 1.2.2. Let v ∈ Rn be a positive vector, W denote diag(v), Y denote a matrix in Bv, di
denote the number of nonzero entries in i-th column of Y , ui ∈ Rdi denote the vector forming by

the nonzero entries of the i-th column of Y , and u ∈ Rn denote (uT1 uT2 ... uTq )T . If X∗ ∈ Fv is

sufficiently close to Y , then it holds that

Y = PBv(X∗),

where PBv(X∗) = WPB1n (W−1X∗), PB1n (X∗) = ( b1
||b1�v||

b2
||b2�v|| ...

bq
||bq�v||), � denotes the Hadamard

product, bj ∈ Rn for j = 1, 2, ..., q and

(bj)i =
{
sign((X∗)ij) if (X∗)ij has the largest magnitude,
0 otherwise.

Proof. Without loss of generality, assume that Y has the form

Y = diag(u1, u2, ..., uq) :=


u1 0 · · · 0
0 u2 · · · 0
...

... . . . ...
0 0 · · · uq


Partition the vector v by v = (vT1 vT2 ... vTq )T , where vi ∈ Rdi . It follows that ui = sivi/||vi||, i =

1, 2, ...q, where si is either 1 or −1. Therefore, W−1Y = diag( s1
||v1||1d1 ,

s2
||v2||1d2 , ...,

sq
||vq ||1dq). If

W−1X∗ is sufficiently close to W−1Y in the sense that the location of the largest magnitude entry

of each row does not change, then it holds that

W−1Y = PB1n (W−1X∗),

which implies Y = PBv(X∗).

1.2.2 Relevant Riemannian Optimization Algorithms

Optimization over Riemannian manifolds has recently drawn much attention because of its

application in many different fields. Almost all of the manifold optimization methods require

computing the derivatives of the objective function and do not apply to the case where the objective

function is nonsmooth. Chen et.al. proposed a Riemannian proximal gradient method called

ManPG for a class of nonsmooth nonconvex optimization problems over a Stiefel manifold in [25],

which is

minF (X) := f(X) + g(X), (1.11)

s.t. X ∈M := St(q, n) = {X : X ∈ Rn×q, XTX = Iq},
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where Iq denotes the q×q identity matrix (q < n), f is smooth, possibly nonconvex, and its gradient

∇f is Lipschitz continuous, g is convex, possibly nonsmooth, and is Lipschitz continuous and the

proximal mapping of g is easy to find.

In [53], Huang and Wei extended the fast iterative shrinkage-thresholding (FISTA) algorithm

to solve (1.11), and the resulting accelerated Riemannian manifold proximal gradient algorithm

(AManPG) performed better than ManPG. The global convergence analysis of AManPG is pre-

sented in [53].

We can see that the cost function of the continuous optimization problem (1.10) has the same

form of cost function (1.11) and the constraint of problem (1.10) is a subset of Stiefel manifold. To

solve the continuous optimization problem (1.10), at first we propose the accelerated Riemannian

manifold projected proximal gradient (ARPPG) method for the optimization problem (1.10). The

idea of ARPPG is to solve a constrained nonsmooth optimization problem over a Stiefel manifold

by deriving a projection from the Stiefel manifold St(q, n) to the feasible set F1n ⊆ St(q, n). The

idea of ARPPG is natural if we do not know the manifold structure of the feasible set F1n . ARPPG

works well for the community detection problem but there is no convergence analysis, see [116].

However, if a manifold structure of the feasible set F1n can be proven, then we can use AManPG

in [53] directly over the feasible set F1n and the corresponding convergence theorem over F1n can

be derived. We show that the more general feasible set Fv is an embedded submanifold of Rn×q

and derive the optimization-related Riemannian geometry. The AManPG algorithm in [53] is used

over the feasible set Fv for the clustering problems.

A key step in both the ARPPG and the AManPG method is to solve the proximal subproblem

by using semi-smooth Newton method [119], [69]. The general idea of semi-smooth Newton method

is to solve a system of nonlinear equations based on the generalized Jacobian. It is necessary to

reduce the optimization problem to a system of nonlinear equations in order to use the semi-

smooth Newton method. This can be obtained by considering the KKT conditions, see Chapter

3 and Chapter 4. The resulting algorithm however can be improved by solving the subproblem

approximately instead of exactly. We propose such an approach in the I-AManPG method. A

global convergence analysis of this novel method is given in Chapter 5.

There are many applications of the clustering problem, such as community detection, role

extraction on networks, k-means model and discriminative k-means model and some graph parti-
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tioning problems. The I-AManPG method is compared to the exact AManPG method and with

existing algorithms on the community detection problem, see Chapter 6. Chapter 6 also includes

empirical evaluation of I-AManPG on the k-means model, the discriminative k-means problem and

the normalized cut problem.

The I-AManPG algorithm in this dissertation is different from the IRPG algorithm in [54] in the

following aspects. The IRPG algorithm is motivated by a mathematical and theoretical question,

which does not consider the performance. The IRPG algorithm assumes that the parameter µ in

the proximal mapping is sufficiently small. It follows the step size one can be used and the global

convergence analysis follows. A local convergence rate can be obtained based on a computationally

expensive formulation of the Riemannian proximal mapping. The I-AManPG algorithm in this

dissertation only requires µ to be positive. It follows that the search direction is descent and a line

search algorithm can be used. The global convergence follows. The I-AManPG algorithm is more

practical than the IRPG algorithm in [54].

While preparing this dissertation we were made aware of a conference paper [20], in which a

manifold relaxation algorithm for k-means clustering was introduced using F1n as the constraint

set. The work in [20] and this dissertation were done independently. Carson et.al claimed that

F1n is a smooth manifold of Rn×q in [20] but provided no proof while suggesting it would appear

in the near future. We have found no such follow-up paper containing a proof. The authors also

derived the tangent space, orthogonal projection onto the tangent space and a retraction. This

dissertation contributes significantly more than this. The proof of the manfold structure of F1n

is not as simple as one might expect from [20] and the theory that is developed in Chapter 4 of

this dissertation is more general. In particular, we rigorously prove that the Stiefel manifold with

an all positive vector in its column space forms a compact embedded submanifold of Rn×q. Not

only are proofs given, but the result is more general in the sense that the vector is not restricted

to be the vector 1n. A more efficient retraction is derived in this dissertation. The retraction in

[20] requires to compute an exponential of a n × n matrix, which requires O(n3) operations and

becomes is computationally unacceptable as n grows large. Our retraction is much more compu-

tationally approachable as it is only in the order of O(nq2). In addition, computationally efficient

approaches to compute the intrinsic and extrinsic representation of tangent vectors are given in our

dissertation. Such structure is not given in [20] as their algorithm is simple and does not need these
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operations. Furthermore, the dissertation applies more sophisticated Riemannian algorithms to

additional problems thus demonstrating and evaluating the applicability of the combination of the

manifold F1n and adaptations of a Riemannian proximal gradient can be efficient and competitive.

A potential limitation of the ARPPG, AManPG, and Inexact_AManPG algorithms is the

requirement of the number of communities as an input. In practice, the number of communities q

maybe unknown. The empirical evaluation considers when the number of communities parameter

is taken smaller and larger than the actual number. To address this limitation, we also propose a

recursive version of Inexact_AManPG algorithm. The algorithm and its empirical evaluation are

presented in Chapter 7.

1.3 Overview and Dissertation Statement

This dissertation proposes the following thesis statement. The systematic exploration of the

use of increasingly structured constraint geometry, the design of cost function alternatives to the

standard problems exploiting the geometry and problem characteristics, algorithmic rigor and ef-

ficient computational design will produce an approach flexible enough to handle graph-based and

Euclidean data-based optimization problems arising in a range of well-known clustering related

problems. The approach will be a prime candidate for a new state-of-the-art and the starting point

for further exploration of the efficient solution of related application problems.

The dissertation is organized as follows.

• In Chapter 2, we give a detailed description of the applications, namely, community detection,
the k-means model, the discriminative k-means model, and the normalized cut problem. We
show the connection between each application and Riemannian optimization problem and
review existing algorithms for these applications.

• In Chapter 3, a new approach, the accelerated Riemannian projected proximal gradient
method (ARPPG) is proposed to solve optimization problems with the appropriate con-
straints. The idea of ARPPG is to solve a constrained nonsmooth optimization problem over
a Stiefel manifold by deriving a projection from the Stiefel manifold to the feasible set F1n
which is a subset of Stiefel manifold. ARPPG is applied to the community detection prob-
lem, and the numerical results show that ARPPG is comparable with existing algorithms for
community detection.

• We show that the feasible set Fv is a Riemannian submanifold in Chapter 4 , and derive the
optimization-related Riemannian geometry. An accelerated Riemannian manifold proximal
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gradient algorithm (AManPG algorithm) [53] is adapted using the geometry of Fv’s objects
for the clustering problems.

• The I-AManPG method is proposed in order to improve the efficiency of AManPG and its
global convergence analysis is presented in Chapter 5.

• The I-AManPG algorithm is empirically evaluated in Chapter 6. Four applications, commu-
nity detection, the k-means model, the discriminative k-means model, and the normalized
cut problem are considered.

• In Chapter 7, we propose a recursive version for I-AManPG algorithm to address the potential
limitation on the number of communities parameter and to improve the efficiency when the
number of clusters q is large.

• A summary of completed and future work is given in Chapter 8.

• Finally, basic concepts of Riemannian optimization, an overview of projected proximal gradi-
ent method on Euclidean space and basic elements of graph theory are reviewed and tutorial
references given in the appendices A, B, and C.
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CHAPTER 2

THE APPLICATIONS AND THE RIEMANNIAN
FORMULATIONS

In this chapter, we describe the applications, community detection, k-means model, discriminative

k-means model and normalized cut graph partitioning problem. For each application a general

description is given followed by a review of relevant algorithms. Finally, we show the connection

between each application and the clustering problem (1.5).

2.1 Community Detection
2.1.1 Description of Community Detection Problem

Networks are a natural representation of various kinds of complex systems, where networks are

sets of nodes or vertices joined together in pairs by links or edges. There are a number of networks.

One common network is Facebook, which is a large social network, where more than one billion

people are connected via virtual acquaintanceship. Another well-known example is the Internet,

the physical network of computers, routers and modems which are linked via cables or wireless

signals. Many other examples come from biology, physics, engineering, computer science, ecology,

economics, marketing, etc.

A number of recent studies have focused on the statistical properties of networked systems. One

common property of many networks is called the community structure [84], which is the division

of network nodes into groups within which the network connections are dense, but between which

are sparser. These groups are called communities, or modules. An example of a network with such

a community structure is shown in Figure 2.1.
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Figure 2.1: A small network with 3 communities, which have dense internal links but between
which there is only a lower density of external links.

Detecting community structure in a network can provide powerful help in understanding and

exploiting the structure of networks, and it has various practical applications [44]. Communities

in a social network might represent real social groupings, perhaps by acquaintanceship, interest or

background; communities in a citation network might represent related papers on a single topic;

communities in a metabolic network might represent cycles and other functional groupings; com-

munities on the web might represent pages on related topics.

Numerous community detection algorithms have been developed suing a wide variety of tech-

niques, e.g., removal of high-betweenness edges [44], modularity optimization [84] [94], random walk

[125], statistical inference [85].

2.1.2 Some Existing Algorithms for Community Detection

GN Algorithm. The GN algorithm is the one of most popular divisive algorithms and was

proposed by Girvan and Newman [84, 44]. The philosophy of divisive algorithms is to identify

communities in a graph by repeatedly removing edges with lowest similarity metric, thus moving

from all nodes in one community to repeatedly partitioning current communities into multiple

smaller ones until an acceptable community assignment is found.

The GN algorithm is historically important, because it marked the beginning of a new era in the

field of community detection. The GN algorithm assumes the graphs are undirected and unweighted,

but generalizations to more complicated network types are possible [79]. The GN algorithm follows
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roughly the philosophy of divisive algorithms, but it differs slightly from them. The GN algorithm

does not remove the edges with the lowest similarity, but it rather finds the highest "betweenness",

where betweenness is a measure that favors edges that lie between communities and disfavors those

that lie inside communities.

The simplest and most efficient edge betweenness measure is the shortest-path betweenness.

Freeman [43] first proposed the betweenness centrality of a vertex i which is defined as the number of

shortest paths between pairs of other vertices that run through i. The definition of the betweenness

centrality of a vertex assumes that the graphs are undirected. Inspired by this, Girvan and Newman

generalized the vertex betweenness to edge betweenness as the number of shortest paths between

pairs of other vertices that run through the edge. If a network contains communitities that are

only loosely connected by a few intercommunity edges, then all shortest paths between different

communities must go along one of these few edges. Thus, the edges connecting communities will

have high edge betweenness. By removing these edges, communities can be separated from one

another and so reveal the underlying community structure of the graph.

In the following Figure 2.2, the thick edge in the middle has a much higher betweenness than all

other edges [42], because all shortest paths connecting vertices of the two communities run through

it.

Figure 2.2: The thick edge has the highest edge betweenness, see [42].

The steps of the divisive first phase of GN algorithm are:

Step 1: Calculate betweenness scores for all edges in the network.

Step 2: Find and remove the edge with the highest betweenness score.

Step 3: Recalculate betweenness for all remaining edges.

Step 4: Repeat from Step 2 until a network is decomposed into desired number of communities.
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The algorithm runs in worst-case time O(m2n), (or O(n3) on a sparse graph) for a graph withm

edges and n vertices: calculating the betweenness of all edges of the graph can be obtained in a time

that scales as O(mn) [84], (or O(n2) on a sparse graph) using a technique based on breadth-first

search [17].

The set of divisions found in the divisive first phase of GN algorithm is represented by a

dendrogram. How do we know when the communities found by the algorithm are good ones? In

order to get the good divisions of the network, communities, the dendrogram must be cut at some

level. Newman and Girvan [84, 27] define modularity as a measure of the quality of a particular

division of a network, given by

Q = 1
2m

∑
i,j

(Aij −
kikj
2m )δ(σi, σj) (2.1)

where Aij is an element of the adjacency matrix of an undirected unweighted graphs, and Aij is

1 or 0 which depends on if vertices i and j are connected, and ki =
∑
j Aij which is called the

degree of vertex i. The definition of the modularity can be generalized trivially to weighted graphs

in which each edge has a numeric strength associated with it, by making the values of the matrix

Aij equal to those weights, rather that just 1 or 0.

The range of modularity is between −1
2 and 1 [111] [18], but in order to have a modularity

structure for a network the modualrity must be positive. The higher Q, the better the division.

Typically, as an additional refinement to the GN algorithm, one can calculate Q for each division

of a network into communities by moving down the dendrogram, and looking for local peaks in the

value of Q, which indicate particularly satisfactory divisions.

Danon et al.’s Algorithm. The first algorithm derived to maximize modularity was a greedy

method of Newman [80]. It is an agglomerative hierarchical clustering method, where groups of

vertices are successively joined to form larger communities such that modularity increases after

the merging. One starts from n clusters, each containing a single vertex. Edges are not initially

present, they are added one by one during the procedure. However, the modularity of partitions

explored during the procedure is always calculated from the full topology of the graph, as we want

to find the modularity maximum on the space of partitions of the full graph. Adding a first edge

to the set of disconnected vertices reduces the number of groups from n to n − 1, so it delivers a

new partition of the graph. The edge is chosen such that this partition gives the maximum increase
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(minimum decrease) of modularity with respect to the previous configuration. All other edges are

added based on the same principle. The number of partitions found during the procedure is n,

each with a different number of clusters, from n to 1. The largest value of modularity in this

subset of partitions is the approximation of the modularity maximum given by the algorithm. At

each iteration step, one needs to compute the variation ∆Q of modularity given by the merger of

any two communities of the running partition, so that one can choose the best merger. However,

merging communities between which there are no edges can never lead to an increase of Q, so one

has to check only the pairs of communities which are connected by edges, of which there cannot

be more than m. Since the calculation of each ∆Q can be done in constant time, this part of

the calculation requires a time O(m). After deciding which communities are to be merged, one

needs to update the matrix eij expressing the fraction of edges between clusters i and j of the

running partition (necessary to compute Q), which can be done in a worst-case time O(n). Since

the algorithm requires n − 1 iterations (community mergers) to run to completion, its complexity

is O((m+ n)n)(, or O(n2) on a sparse graph).

Newman’s fast greedy algorithm [80] heavily depends on the community size distribution, show-

ing a tendency to find large communities at the expense of smaller ones. In order to treat the

clusters of different sizes equally, Danon et al. [28] suggested normalizing the modularity variation

∆Q produced by the merger of two communities by the fraction of edges incident to one of the

two communities [28]. Compared to Newman’s fast greedy algorithm, this technique leads to bet-

ter modularity optima, especially when communities are very different in size and is comparable

in speed. In this dissertation, Danon’s algorithm is used as the representative greedy algorithm

instead of Newman’s fast greedy algorithm, because Danon’s algorithm often finds a better modu-

larity, while maintaining the same complexity as Newman’s algorithm. Both Newman’s fast greedy

algorithm and Danon’s algorithm are able to be applied to weighted networks.

Infomap. The Infomap method was introduced by Rosvall and Bergstrom [98] and has been

shown to be a quite successful method for community detection [64]. It is based on the information

and optimal coding theory and it can be applied to weighted and directed networks. The infomap

method uses the probability flow of random walks on a network as a proxy for information flows

in the real system and decompose the network into modules by compressing a description of the

probability flow.
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Rosvall and Bergstrom introduced the map equation based on the fact that a random walker

should spend most of its time within communities and rarely use edges across communities [98].

One way to describe the trajectory of a random walker is to assign a specific codeword to each node

of the graph. In this case, one can compute the expected length of a codeword as the entropy of

the stationary frequency distribution to visit each node. The expected codeword length of a single

step of a random walk is bounded by the Shannon entropy [102].

Finding a code that reaches this lower bound is very complicated. To reduce this complexity,

the map equation uses a two-level code [98]. The first level encodes the different communities while

the second level encodes the individual nodes. This allows the reuse of the same codewords for

nodes in different communities. This reduces the expected length of each step of the random walk.

So detecting an accurate community division becomes finding an optimal code to minimize the

expected length of each step of a random walker, which is given by the map equation

L(σ) = (1− ρ)Hq +
∑
c

qcHc, (2.2)

where 1 − ρ :=
∑
c(1 − ρc) =

∑
c(1 −

∑
ij
Aijδ(σi,σj)∑
i
kiδ(σi,c)

) is the probability of switching communities,

qc =
∑
i πiδ(σi, c) is the probability a certain community c is visited, where πi are the stationary

probabilities of the random walker, Hq = −
∑
c qc log qc is the average code length that the random

walker exists from a community, and Hc = −
∑
i

πi
qc+(1−ρc) log πi

qc+(1−ρc) −
1−ρc

qc+(1−ρc) log 1−ρc
qc+(1−ρc) is

the entropy for moving within a community c.

To implement the infomap method [98], one can repeatedly merge pairs of communities which

produce the largest decrease in the map equation, and then use simulated annealing [62] to refine

the partition.

Louvain Algorithm. According to the results of Lancichinetti and Fortunato [64], the Lou-

vain method [12] is known to be one of the most effective and efficient algorithms for the modularity

optimization.

The Louvain algorithm [12] is a heuristic method that is based on the modularity optimization.

It has two phases which are repeated iteratively. Assume that one starts with a weighted network

of N nodes. The specific algorithm is as follows, and Figure 2.3 shows the visualization of the steps.

• Phase 1: Modularity Greedy Optimization
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– Step 1: Initialize partition—we assign a different community to each node of the network,
so there are N communities initially;

– Step 2: For each node i, we consider the neighbours j of i and evaluate the gain of
modularity by removing i from its community and by placing it in the community of j.

– Step 3: We place node i in the community which has a local maxima of the gain of
modularity. If the gain is not positive, i stays in its original community.

This first phase stops when no individual moves can improve the modularity. The complexity
of each local move in Phase 1 is in O(#of neighbors).

• Phase 2: Community Aggregation

– Step 1: We get the new network whose nodes are the communities found during the first
phase.

– Step 2: Get each element of the new aggregated weighted adjacency matrix Ãcd be-
tween the new nodes c and d by adding the number of the links between nodes in the
corresponding two communities c and d in the original graph.

• Reapply the first phase of the algorithm to the resulting weighted network and iterate until no
more changes and a maximum of modularity (or a minimum of cost function H ) is attained.

Figure 2.3: Visualization of the steps of Louvain Method, see [12].

The pseudocode for Louvain method is given in Algorithm 1 [106], where function Greedy(G)

can be implemented in the following Algorithm 2.
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Algorithm 1 Louvain Algorithm
1: function Louvain(Graph G)
2: σ ←Greedy(G)
3: Σ← σ

4: while increase in modularity do
5: G←Aggregate(G, Σ)
6: Σ←Greedy(G)
7: σi ← Σσi for all nodes i
8: end whilereturn σ

9: end function

Algorithm 2 Phase 1—Greedy Algorithm
1: function Greedy(Graph G)
2: Initialize σ ← i for each node i
3: while increase in modularity do
4: for each node i do
5: C ← {σj |(i, j) ∈ E}

⋃
σi

6: for each community d ∈ C do
7: ∆d ← ∆(−H (σi = c 7−→ d))
8: end for
9: σi ← argmaxd∆d

10: end for
11: end whilereturn σ

12: end function
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Traag et al. in [110] show that the Louvain algorithm has major defect that the Louvain algo-

rithm may yield arbitrarily badly connected communities.To address this problem, they introduce

the Leiden algorithm and prove that the Leiden algorithm yields communities that are guaranteed

to be connected.

Newman’s spectral optimization method. Graph partitioning is often done using the

spectral method based on the Laplacian matrix. The Laplacian matrix is defined as the differ-

ence between the degree matrix and the adjacency matrix. The spectral method uses the first k

eigenvectors corresponding to the k smallest eigenvalues of the Laplacian matrix and clusters the

graph nodes by using for example k-means clustering based on the first k eigenvectors. In [82],

Newman proposed the spectral method for community detection by replacing the Laplacian matrix

with the modularity matrix. Modularity can be optimized using the eigenvalues and eigenvectors

of the modularity matrix M as defined in (1.6). The Newman’s spectral method computes the

eigenvector, u1, of the modularity matrix corresponding to the largest positive eigenvalue, λ1, and

groups the vertices according to the signs of the component of u1 to divide the network into two

clusters. This process is repeated for each of the parts using the generalized modularity matrix

M (g), where M (g)
ij = Mij − δij

∑
k∈ group g Bik. For the single split, the complexity is O((m+ n)n),

and the running time depends on the dendrogram produced by the repeated splittings. The aver-

age depth of the dendrogram is logn, giving an average running time for the whole algorithm of

O((m+n)n logn). It is important to note that modularity must be always computed from the full

adjacency matrix of the original graph. The drawback of the method is similar to that for spectral

bisection, i.e., the algorithm gives the best results for bisections, whereas it is less accurate when

the number of communities is larger than two [40].

2.1.3 The Connection Between the Community Detection and Optimization
Problem in Terms of the Assignment Matrix

In [116], it is proven that in an ideal graph, the global minimizer of f : An,q → R : X 7→

−trace(XTMX) is an assignment matrix that represents the ground truth, where M = A −

A1n1TnA/(1TnA1n) is the modularity matrix and A is the adjacency matrix of the graph. In the

presence of noise, the community detection is stilled formulated as the optimization problem

min
X∈An,q

−trace(XTMX), (2.3)
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under the assumption that the noise is not significant enough to change its minimizer.

As discussed in Section 1.2.1, we reformulate Problem (1.8) and use one norm penalization to

promote the sparsity of X, which yields a continuous optimization in (1.10). So when we use the

algorithms, ARPPG, I-AManPG, and the recursive I-AManPG, the cost function for community

detection is

min
X∈F1n

−trace(XTMX) + λ||X||, (2.4)

where λ > 0 is the tuning parameter, F1n = {X ∈ Rn×q : XTX = Iq,1n ∈ span(X)} is the domain.

2.2 k-means Model
2.2.1 Description of k-means Model

k-means clustering [70, 39, 47] is a method of vector quantification, originally from signal

processing, that aims to partition n observations into k(≤ n) clusters in which each observation

belongs to the cluster with the nearest mean serving as a prototype of the cluster. This results in

a partitioning of the data space into Voronoi cells [5].

Formally, the objective of k-means clustering is to partition the n observations into k(≤ n) sets

{S1, S2, ..., Sk} so as to minimize the within-cluster sum of squares:

argmin
S

k∑
i=1

∑
x∈Si
||x− µi||, (2.5)

where µi is the mean of points in Si. This is equivalent to minimizing the pairwise squared deviations

of points in the same cluster

argmin
S

k∑
i=1

1
2|Si|

∑
x,y∈Si

||x− y||2. (2.6)

2.2.2 The Standard Algorithm for the k-means Model

The most common algorithm uses an iterative refinement technique. It is often called "the

k-means algorithm". Given an initial set of k means m(1)
1 , ...,m

(1)
k , the algorithm proceeds by

alternating between two steps [72]:

• Assignment Step at t: Assign each observation to the cluster with the nearest mean: that
with the least squared Euclidean distance

S
(t)
i = {xp : ||xp −m(t)

i ||
2 ≤ ||xp −m(t)

j ||
2, ∀j, 1 ≤ j ≤ k}, (2.7)
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where each xp is assigned to exactly one S(t), even if it could be assigned to two or more of
them. To break ties consistently, e.g., one can assign a observation to the cluster with the
lowest index if there are several equidistant centroids.

• Update Step: Recalculate means for observations assigned to each cluster

m
(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i

xj (2.8)

The algorithm is often presented as assigning objects to the nearest cluster by distance. Using

a different distance function other than (squared) Euclidean distance may prevent the algorithm

from converging. Various modifications of k-means such as spherical k-means [32] and k-medoids

[76] have been proposed to allow using other distance measures.

2.2.3 Initialization Method for k-means Model

The algorithm does not guarantee convergence to the global optimum. The result may depend

on the initial means. Commonly used initialization methods are Forgy and Random Partition

[46]. The Forgy method randomly chooses k observations from the dataset and uses these as the

initial means. The Random Partition method first randomly assigns a cluster to each observation

and then proceeds to the update step, thus computing the initial mean to be the centroid of the

cluster’s randomly assigned points. The Forgy method tends to spread the initial means out, while

Random Partition places all of them close to the center of the data set. According to Hamerly et

al., [46] the Random Partition method is generally preferable for algorithms such as the k-harmonic

means and fuzzy k-means. For expectation maximization and standard k-means algorithms, the

Forgy method of initialization is preferable. A comprehensive study by Celebi et al.,[21] however,

found that popular initialization methods such as Forgy, Random Partition, and Maximin often

perform poorly, whereas Bradley and Fayyad’s approach [16] performs consistently well and k-

means++ [112] performs generally well. For the k-means clustering algorithm in this dissertation,

the k-means++ algorithm [112] is used to generate the initial means.

20



2.2.4 The Connection Between k-means Model and Optimization Problem in
Terms of the Assignment Matrix

The k-means model can be rewritten as an alternating minimization algorithm for solving the

optimization problem [15]

min
X∈An,q

||A−XXTA||2F , (2.9)

where A is a data matrix where each data point in Rd corresponds to a row of A. To see this, we

notice that ||A−XXTA||2F =
∑n
i=1 ||A(i)−X(i)X

TA||22, where A(i) and X(i) denote the i-th rows of

A and X, respectively, and X(i)X
TA denotes the centroid of the cluster the i-th data point belongs

to [15].

If we fix the assignment matrix X, we take the gradient of ||A−XXTA||2F = ||A−XC||2F with

respect to C, which is −2XT (A−XC) = 0. So, we can get XTXC = XTA. C = (XTX)−1XTA

is the centriod of the cluster. This is the update step in the classical k-means clustering. If we fix

the centroid, then we need to solve the optimization problem with respect to X, which corresponds

to the assignment step in the classical k-means clustering. In C, there is a term (XTX)−1, if we

consider the X ∈ St(q, n), then we can get the cost function in (2.9).

Note that, when we use the algorithms, ARPPG, I-AManPG, and the recursive I-AManPG,

the cost function for the k-means model can be reformulated as

min
X∈F1n

||A−XXTA||2F + λ||X||, (2.10)

where λ > 0 is the tuning parameter, F1n = {X ∈ Rn×q : XTX = Iq,1n ∈ span(X)} is the domain.

2.3 Discriminative k-means Model
2.3.1 Description of Discriminative k-means Model

When the data sets live in a very high dimensional space or the number of attributes are

larger than they need to be, the dimension reduction can be used. In [33], the dimensionality

reduction technique, Linear Discriminant Analysis (LDA), is combined with the k-means clustering.

It is further analyzed in [121] and is shown to be equivalent to a kernel k-means. The resulting

optimization problem is given therein by

min
X∈An×q ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA), (2.11)
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where λregu > 0 is the regularization parameter. This problem is solved by alternating between

the computation of X for a given λregu and the computation of λregu for a given X. This first

subproblem of the computation of X for a given λregu is in the form of (1.5).

2.3.2 Existing Algorithms for Discriminative k-means Model

The Discriminative K-menas (DisKmeans) algorithm is discussed by Ye et al. in [121]. They

show that the LDA projection can be factored out from the integrated LDA subspace selection

and clustering formulation. This results in a simple trace maximization problem associated with

a regularized Gram matrix of the data. The solution to this trace maximization problem leads

to the DisKmeans algorithm for simultaneous LDA subspace selection and clustering. DisKmeans

is shown to be equivalent to kernel k-means, where discriminative subspace selection essentially

constructs a kernel Gram matrix for clustering.

The locally linear embedding (LLE) in [99] and the Laplacian eigenmaps (LEI) in [10] are an-

other two representative algorithms for discriminative clustering. The LLE algorithm is based on

geometric intuition. Firstly, it assigns neighbors to each data point (for example by using the k

nearest neighbors). Then it computes the weights that best linearly reconstruct the data point

from its neighbors solving the constrained least-square problem. The constrained weights that

minimize the reconstruction errors obey the property of symmetry. Based on this, LLE constructs

a neighborhood-preserving mapping that maps the high-dimensional coordinates of each neighbor-

hood to global internal coordinates on the manifold of lower dimension. Finally, it computes the

low-dimensional embedding coordinates by solving a sparse eigenvalue problem.

The LEI algorithm is also a dimensionality reduction algorithm. The LEI algorithm uses the

properties of the Laplace Beltrami operator to construct invariant embedding maps. LEI constructs

the adjacency graphs and chooses the weights for the edges by considering the heat kernel. Then,

it computes eigenvalues and eigenvectors of Laplacian matrix and uses the eigenvectors of the d

smallest eigenvalues for embedding in a d-dimensional Euclidean space.
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2.3.3 The Connection Between the Discriminative k-means Model and
Optimization Problem in Terms of Assignment Matrix

When we use the algorithms, ARPPG, I-AManPG, and the recursive I-AManPG, the cost

function for the discriminative k-means model (2.11) can be reformulated as

min
X∈F1n ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA) + λ||X||, (2.12)

where λ > 0 is the tuning parameter, F1n = {X ∈ Rn×q : XTX = Iq,1n ∈ span(X)} is the domain.

2.4 Normalized Cut

Normalized cut has been widely used for image segmentation which can be treated as a graph

partitioning problem. The normalized cut criterion is a global criterion for partitioning a graph.

Normalized cut measures both the total dissimilarity between the different groups as well as the

total similarity within the groups [103]. The normalized cut problem is to optimize the normalized

cut criterion.

It is shown in [31] that some graph partitioning problems including general weighted graph cuts,

such as ratio association, ratio cut, Kernighan-Lin objective, and normalized cut, can be formulated

as an optimization problem as shown in (1.3). These graph partitioning problems have been useful

in many areas, such as circuit layout [22] and image segmentation [103].

Let X denote D1/2Y . It follows that X ∈ An,qv , where v is a vector formed by the square roots

of the diagonal entries in D, i.e., v = diag(D1/2). Therefore, Problem (1.3) can be reformulated

into

min
X∈An,qv

−trace(XTD1/2KD1/2X), (2.13)

where K ∈ Rn×n is a symmetric kernel matrix. Polynomial kernel, Gaussian kernel and Sigmoid

kernel are some popular kernel functions [31]. In this dissertation, we use Gaussian kernel for the

normalized cut problem.Note that Problem (2.13) is in the form of (1.5).

2.4.1 Description of Normalized Cut

TakingW = DKD in Problem (2.13), the optimization formulation for normalized cut problem

is given by

min
X∈An,qv

fNC(X) = −trace(XTD−1/2WD−1/2X), (2.14)
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where An,qv = {X ∈ Rn×q : XTX = Iq, X ≥ 0, v ∈ span(X)}, and X ≥ 0 denotes that all entries of

X are nonnegative.

To read the images, we convert the color images to gray images which are read using the

function “imread" built in Matlab, and stored as a two-dimensional array. In the case of gray image

segmentation, the matrix W ∈ Rmn×mn is an affinity matrix of an m by n image of grey pixels,

D ∈ Rmn×mn is a diagonal matrix with Dii =
∑mn
j=1Wij , and v = diag(D1/2). In this dissertation,

we use the approach in [105] to choose W and D, to further shift the diagonal entries of W and D

by a constant.

Problem (2.14) can be optimized by the weighted kernel k-means algorithm, see e.g., [31, Algo-

rithm 1]. Note that Problem (2.14) has many low-quality local minimizers and descent algorithms

are usually not able to escape from them. Thus, initialization plays an important role in finding

an acceptable solution. Let U be the n × q matrix of the q leading eigenvectors of the matrix

D−1/2WD−1/2. If X is only required to be orthonormal, then U is a global minimizer of (2.14).

Since U is unlikely to be in An,qv , one approach is to find a matrix in An,qv that is close to U .

Different notions of closeness yield different methods.

2.4.2 Initialization Methods for Normalized Cut

Bach and Jordan [6] seek to find a matrix Y ∈ An,qv that minimizes

‖UUT − Y Y T ‖F . (2.15)

In other words, the difference between U and Y is measured by the difference between the two

orthogonal projection matrices. The weighted kernel k-means is suggested to solve (2.15) see [6,

Figure 1].

Shi and Malik [103] propose to find an indicator matrix that is closest to U up to a rotation,

where an indicator matrix Z is defined by Z ≥ 0, ZTZ is diagonal, and each row of Z has an entry

being one. Specifically, let Ũ denote the matrix formed by normalizing all rows of U . The task is

to find an indicator matrix Z and a q-by-q orthonormal matrix Q that minimize

‖Z − ŨQ‖F .

Karypis and Kumar [60] give a fast, multi-level graph partitioning algorithm that produces

equally-sized clusters and is called METIS. It is shown to be an effective method for the kernel

k-means initialization.
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2.4.3 The Connection Between the Normalized Cut and Optimization
Problem in Terms of the Assignment Matrix

We propose to initialize the weighted kernel k-means algorithm by solving a variant of prob-

lem (1.5).

min
X∈An,qv

fNC(X) = −trace(XTD−1/2WD−1/2X), (2.16)

where An,qv = {X ∈ Rn×q : XTX = Iq, X ≥ 0, v ∈ span(X)}, and X ≥ 0 denotes that all entries of

X are nonnegative. Here, An,qv is a general form of the set An,q in (1.5), An,q = An,q1n . Such clusters

are then used as initializations for the weighted kernel k-means algorithm.

Note that, when we use the algorithms, ARPPG, I-AManPG, and the recursive I-AManPG,

the cost function for the normalized cut problem can be reformulated as

min
X∈Fv

−trace(XTD−1/2WD−1/2X) + λ||X||, (2.17)

where λ > 0 is the tuning parameter, Fv = {X ∈ Rn×q : XTX = Iq, v ∈ span(X)} is the domain.
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CHAPTER 3

ACCELERATED RIEMANNIAN PROJECTED
PROXIMAL GRADIENT OPTIMIZATION
METHOD ON COMMUNITY DETECTION

3.1 Accelerated Riemannian Projected Proximal Gradient
Method

In [53], Huang and Wei generalized FISTA [9] from the Euclidean space to the Riemannian

setting and considered the general nonconvex optimization problem

min
X∈M

F (X) = f(X) + g(X), (3.1)

where M ⊂ Rn×q is a Riemannian submanifold, f : Rn×q → R is L-continuously differentiable

(may be nonconvex) and g is continuous and convex but may not be differentiable.

Inspired by [53], we can solve the constrained nonconvex optimization problem by introducing

a projection. The general form can be presented as

min
X∈C⊆M

F (X) = f(X) + g(X), (3.2)

where M ⊂ Rn×q is a Riemannian submanifold, f : Rn×q → R is L-continuously differentiable

(may be nonconvex) and g is continuous and convex but may not be differentiable.

For the clustering problems, if M is the Stiefel manifold St(q, n) adding the constraint 1n ∈

R(X) defines a feasible set F1n = {X ∈ St(q, n), 1n ∈ R(X)} ⊆ St(q, n).

The optimization problem (3.2) can be solved by modifying the AManPG method to the acceler-

ated Riemannian manifold projected proximal gradient method (ARPPG) by adding the projection

(3.4) derived in the next section. ARPPG is in Algorithm 3.

There are several retractions that can be constructed for the Stiefel manifold. Algorithm 3, uses

the efficient retraction in [53] based on the singular value decomposition (SVD):

[Q,R] = qr(X + ηX), [U, S, V ] = svd(R),

RX(ηX) = Q(UV T ),
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Algorithm 3 Accelerated Riemannian Manifold Projected Proximal Gradient Method(ARPPG)
Input: Lipschitz constant L on ∇f , parameter µ ∈ (0, 1/L] in the proximal mapping, line

search parameter σ ∈ (0, 1), shrinking parameter in line search β ∈ (0, 1), positive integer N for

safeguard;

1: t0 = 1, y0 = x0, z0 = x0;λ = λ0

2: for k = 0, ... do
3: if mod(k, N) = 0 then . Invoke safeguard every N iterations
4: Invoke Algorithm 4: [zk+N , xk, yk, tk] = Algo4(zk, xk, yk, tk, F (xk));
5: end if
6: Compute

ηyk = argmin
η∈TykM

〈gradf(yk), η〉+ 1
2µ ||η||

2
F + g(yk + η);

7: xk+1 = Ryk(ηyk);
8: xk+1 = proj(xk+1);
9: tk+1 =

√
4t2
k
+1+1
2 ;

10: Compute
yk+1 = Rxk+1(1− tk

tk+1
R−1
xk+1(xk));

11: Compute yk+1 = proj(yk+1).
12: end for
13: X∗ = xk+1
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Algorithm 4 Safeguard for Algorithm ARPPG
Input: [zk, xk, yk, tk, F (xk)];

Output: [zk+N , xk, yk, tk];

1: Compute
ηzk = argmin

η∈TzkM
〈gradf(zk), η〉+ 1

2µ ||η||
2
F + g(zk + η);

2: Set α = 1;
3: while F (proj(Rzk(αηzk))) > F (zk)− σα||ηzk ||2F do
4: α = βα;
5: end while
6: if F (proj(Rzk(αηzk))) < F (xk) then . Safeguard takes effect
7: xk = Rzk(αηzk), yk = Rzk(αηzk), and tk = 1;
8: xk = proj(xk), yk = proj(yk);
9: else

10: xk, yk and tk keep unchanged;
11: end if
12: zk+N = xk; . Update the compared iterate

where qr and svd mean computing the compact QR decomposition and SVD of a matrix, respec-

tively. R−1
X (Y ) = Y S−X, where S is the solution of the Lyapunov equation (XTY )S+S(Y TX) =

2Iq.

3.1.1 The Projection

Given X ∈ St(q, n), the task is to find a Y ∈ St(q, n) with 1n ∈ R(Y ) that minimizes ‖X−Y ‖2F .

Letting f(Y ; X) = tr(XTY ) denote a cost function parameterized by X, the problem can be

formulated in an equivalent form by noting

min
Y ∈F
‖X − Y ‖2F ↔ max

Y ∈F
f(Y ; X)

where F = {Y ∈ St(q, n), 1n ∈ R(Y )}. The maximum value of f(Y ; X) is q and is achieved

when X ∈ F and the problem is invariant with respect to Q ∈ O(q) where O(q) is the orthogonal

group consisting of q-by-q orthogonal matrices, i.e.,

f(Y ; X) = f(Y Q; XQ).
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Note that the cost function changes for this invariance. In general, f(Y ; X) 6= f(Y Q; X).

For an element of the feasible set F , there must exist Q ∈ O(q) such that Ŷ = Y Q =
[
1̃n Ỹ

]
with 1̃n = 1n/

√
n, Ỹ ∈ St(q − 1, n) and R(Ỹ ) ⊥ 1̃n. There are, of course, many such Ŷ possible.

This can be seen from

Q =
[
q1 Q⊥

]
, Ŷ =

[
1̃n Ỹ

]
=
[
Y q1 Y Q⊥

]
.

Given Y , the vector q1 is uniquely defined but Q⊥ is any orthonormal completion of q1 and Ỹ =

Y Q⊥ varies with the choice of Q⊥. This can be used to parameterize the cost function over F to give

an alternative form of the optimization problem defining the projection and reveal a constructive

form of the solution Y∗.

The two forms of the optimization problem are

Y∗ = argmax
Y ∈F

tr(XTY ),

where F = {Y ∈ St(q, n), 1n ∈ R(Y )};

(
Ŷ∗, Q∗

)
= argmax

Ŷ ∈G, Q∈O(q)
tr(QTXT Ŷ ),

G = {Ŷ =
[
1̃n Ỹ

]
| Ỹ ∈ St(q − 1, n), 1n ⊥ R(Ỹ )}.

The second form can be solved analytically and a solution for the first form recovered easily.

The cost function for the second form can be expanded as

tr(QTXT Ŷ ) = qT1 X
T 1̃n + tr(QT⊥XT Ỹ ).

The first term of the sum in the cost function is independent of the second term while the second

term is essentially determined by the choice of q1. For any q1 and orthonormal completion Q⊥, the

maximum value of q1 for the second term is achieved by Ỹ = XQ⊥.

Given this optimal choice of Ỹ parameterized by Q, the problem then becomes finding the

optimal q∗ for

max
q1∈St(1,n)

qT1 X
T 1̃n

and Q∗ =
[
q∗ Q∗⊥

]
where Q∗⊥ is any orthonormal completion of q∗. This has a maximum value of

1 if and only if 1̃n ∈ R(X). Otherwise it is maximized by

q∗ = XT 1̃n
‖XT 1̃n‖2

.
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There are several maximizers given by

q∗ = XT 1̃n
‖XT 1̃n‖2

Q∗⊥ ∈ St(q − 1, n) is any orthonormal completion of q∗

Ỹ∗ = XQ∗⊥, Ŷ∗ =
[
1̃n Ỹ∗

]
.

Finally, Y∗, the maximizer for the original parameterized form of f(Y ; X) can be determined from

Ŷ∗

Y∗ = Ŷ∗Q
T
∗ =

[
1̃n Ỹ∗

] [
q∗ Q∗⊥

]T
= 1̃nqT∗ +XQ∗⊥(Q∗⊥)T .

This form shows that the choice of Q∗⊥, i.e., the basis for R⊥(q∗), that determines Ŷ∗ does not result

in multiple Y∗ since the projector Q∗⊥(Q∗⊥)T is invariant.

Therefore, a computationally efficient form of the unique solution is given by

Y∗ = argmax
Y ∈F

f(Y ; X) = 1̃nqT∗ +XQ∗⊥(Q∗⊥)T (3.3)

= 1̃nqT∗ +X(I − q∗qT∗ ), (3.4)

where

q∗ = XT 1̃n
‖XT 1̃n‖2

. (3.5)

3.1.2 Semi-smooth Newton Method for the Proximal Subproblem

The remaining main part of Algorithm 3 is to solve the proximal subproblem efficiently. The

proximal subproblem is as shown in (3.6):

Vk = argmin
V ∈TXkF1n

〈gradf(Xk), V 〉+ 1
2µ ||V ||

2
F + g(Xk + V ). (3.6)

Inspired by [25] and [53], we can apply the semi-smooth Newton method [119], [69] to solve (3.6).

The general idea of semi-smooth Newton method is to solve a system of nonlinear equations based

on the generalized Jacobian. So, we need to reduce the optimization problem to a system of

nonlinear equations in order to use the semi-smooth Newton method. This can be obtained by

considering the KKT conditions.
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Define the linear operator Ak := XTV +V TX. Therefore, we can rewrite the subproblem (3.6)

as

Vk = argmin
Ak(V )=0

〈gradf(Xk), V 〉+ 1
2µ ||V ||

2
F + g(Xk + V ). (3.7)

By associating a Lagrange multiplier Λ to the linear equlity constraint, the Lagrangian function

of (3.7) can be written as

L(V ; Λ) = 〈gradf(Xk), V 〉+ 1
2µ ||V ||

2
F + g(Xk + V )− 〈Ak(V ),Λ〉. (3.8)

Then the KKT system of (3.7) is given by

{
0 ∈ ∂V L(V ; Λ),
Ak(V ) = 0. (3.9)

The first condition in (3.9) implies that V can be computed by

V (Λ) = proxµg(B(Λ))−Xk with B(Λ) = Xk − µ(gradf(Xk)−A∗k(Λ)), (3.10)

where

proxµg(Z) = argmin
V ∈Rn×q

1
2 ||V − Z||

2
F + µg(V ) (3.11)

denotes the scaled proximal mapping, A∗ denotes the adjoint of A and A∗(Λ) = X(ΛT + Λ).

By substituting (3.10) into the second condition in (3.9), we can find that Λ satisfies

E(Λ) := Ak(V (Λ)) = Ak(proxµg(Xk − µ(gradf(Xk)−A∗(Λ)))−Xk) = 0, (3.12)

which is a system of nonlinear equations with respect to Λ.

Therefore, to solve the proximal subproblem (3.6), we can find the solution to the nonlinear

system (3.12) and then substitute it back to (3.10) to achieve V ∗.

The nonlinear system (3.12) can be solved efficiently by the semi-smooth Newton method. Let

Λk be the current estimate of the solution to (3.12). As in the Newton method, the key step in

semi-smooth Newton method is to get a search direction by solving the following linear system

JE(Λk)[d] = −E(Λk), (3.13)

where JE(Λk) is the generalized Jacobian of E.
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By the chain rule, we have

JE(Λk)[d] = Ak(∂proxµg(Xk − µ(gradf(Xk)−A∗(Λk)))) ◦ (µA∗(d)), (3.14)

where ∂proxµg(·) denotes the Clarke subdifferential [73] of proxµg(·), and ◦ denotes the entrywise

product of two matrices. Then we follow the framework of algorithm in [25].

3.2 ARPPG on Community Detection

As discussed in Section 2.1.3, there is a connection between Riemanian optimization and com-

munity detection. In this section, we describe more details on this for the ARPPG method.

3.2.1 Derivation of Global Maximum over Assignment Matrices

Firstly, the assignment matrices for community detection are defined.We denote a q dimensional

vector with all entries being 1 by 1q and denote the q × q permutation matrices by Pq.

A matrix in the set of assignment matrices, An,q, is defined as

Definition 3.2.1. The matrix X ∈ {0, 1}n×q, with n ≥ q, is an assignment matrix if it satisfies

(i) X1q = 1n,

(ii) XTX = diag(n1, · · · , nq) where ni = ||Xei||1.

X is said to be in canonical ordering if the rows are permuted so that

X =


1n1

1n2
. . .

1nq

 .

Of course, the column ordering is not unique for the canonical form, i.e., XPq is the same

community assignment but with a different correspondence between the sets and the columns of

the assignment matrix. For essential uniqueness, the additional constraint of n1 ≥ n2 ≥ . . . ≥ nq

can be imposed. The columns are orthogonal, but not orthonormal, and X has exactly n nonzero

elements all of which have the value of 1. As a result, X defines a partitioning of the indices 1, . . . , n

into q disjoint sets.
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Now, let us look at the Modularity cost function. From [81], the scalar cost function f(X)

called modularity (up to a scalar 1
2m) can be written as a quadratic function over n × q matrices

defined by the matrix

M = A− A1n1TnA
2m , f(X) =

∑
i,j

(Aij −
kikj
2m )δ(σi, σj) = tr(XTMX),

where A is the adjacency matrix of the graph, M is the modularity matrix, m is the number of

edges, n is the number of vertices in the graph and the total degree of the graph is 2m = 1TnA1n.

The value of f(X) is invariant under permutations on the columns of the assignment matrix

X, i.e., f(XPq) = tr(P Tq XTMXPq). So there are multiple optimal ways of specifying the same

community assignment.

Next, we look into the maximal of the modularity function on ideal graphs. An ideal graph is

a graph where the communities are cliques and there are no edges between the cliques.

When A is an ideal graph with q communities we know it can be written [75]

A = Z̃∗Z̃
T
∗

where Z̃∗ ∈ An,q is not necessarily in canonical form and there exists a row permutation P so that

PAP T = AP = Z∗Z
T
∗

where AP is block diagonal with diagonal blocks 1ni1Tni = ziz
T
i for 1 ≤ i ≤ q and

Z∗ =


1n1

1n2
. . .

1nq

 =


z1

z2
. . .

zq


is in canonical form.

The corresponding modularity matrices for an ideal A and the corresponding block diagonal

AP are given by

M = MT = A− A1n1TnA
2m

= Z̃∗Z̃
T
∗ −

Z̃∗Z̃
T
∗ 1n1Tn Z̃∗Z̃T∗

2m

= Z̃∗(Iq −
s̃s̃T

2m )Z̃T∗ ,
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and

MP = Z∗(Iq −
ssT

2m )ZT∗ ,

where s = ZT∗ 1n =
(
n1 . . . nq

)T
, and 2m = 1TnAP1n = sT s =

∑q
i=1 n

2
i .

The cost function f(X) is invariant under reorderings of A, so we can analyze any row ordering

of Z∗ denoted generically as Z below. The following result for the value of f(Z), i.e., the cost

function at the assignment matrix that generates the ideal matrix A, follows directly from the

definitions.

Lemma 3.2.2. If A = ZZT for Z ∈ An,q then

f(Z) =
q∑
i=1

n2
i −

∑q
i=1 n

4
i∑q

i=1 n
2
i

.

We show that the value f(X) for any X ∈ An,q is bounded above by f(Z) in Theorem 3.2.5.

The following lemmas are easily proven and are useful in proving the main result.

Lemma 3.2.3. If A = ZZT for Z ∈ An,q then for any X ∈ An,q

f(X) = tr(XTZ(Iq −
ssT

2m )ZTX) ≤
q∑
i=1

γiv
T
i XX

T vi,

where s =
(
n1 . . . nq

)T
, vi = Zei,

2m =
q∑
i=1

n2
i , γi := 1− n2

i

2m,

where 0 ≤ γi < 1.

Lemma 3.2.4. Given Z ∈ An,q, any X ∈ An,q satisfies

vTi XX
T vi ≤ vTi ZZT vi, 1 ≤ i ≤ q

where vi = Zei. Equality holds only when X = ZPq, i.e., a column permutation of Z.

The desired result is stated as Theorem 3.2.5.

Theorem 3.2.5. If A = ZZT for Z ∈ An,q is an ideal adjacency matrix then for any X ∈ An,q

f(X) ≤ f(Z),

where f(X) = tr(XTZ(Iq − ssT

2m )ZTX), s =
(
n1 . . . nq

)T
, 2m =

∑q
i=1 n

2
i .
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Proof. The series of lemmas above yields

f(X) ≤
q∑
i=1

(
1− n2

i

2m

)
vTi ZZ

T vi.

Note that
q∑
i=1

(
1− n2

i

2m

)
vTi ZZ

T vi

=
q∑
i=1

vTi ZZ
T vi −

q∑
i=1

n2
i

2mvTi ZZ
T vi

=
q∑
i=1

n2
i −

∑q
i=1 n

4
i

2m

=
q∑
i=1

n2
i −

∑q
i=1 n

4
i∑q

i=1 n
2
i

= f(Z).

Theorem 3.2.5 shows that the ideal graph assignment is a global maximum of the modularity

function over An,q.

3.2.2 Stiefel Manifold Algorithms for Community Detection

The algorithms discussed here assume the cost function

f(X) = tr(XTMX),

where M = A− A1n1TnA
1TnA1n

.

Now let us investigate the connection between the modularity matrix and the Stiefel manifold

St(q, n).

Lemma 3.2.6. Let Z ∈ An,q and define M = A− A11TA
1TA1 . If A is the adjacency matrix of an ideal

graph, then A = ZZT and

R(A) = R(Z) = (R(M)⊕⊥ R(1n)), (3.15)

N (M) = (N (ZT )⊕⊥ R(1n)) = (N (A)⊕⊥ R(1n)), (3.16)

where R(A) denotes the range of A, N (A) denotes the null space of A, and ⊕⊥ denotes the direct

sum of two perpendicular spaces.
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Proof. Note that the symmetry of A and M implies N (M) = R(M)⊥ and N (A) = R(A)⊥.

Therefore (3.15) and (3.16) are equivalent. It follows from the definition of M that

M = Z(Iq −
ssT

sT s
)ZT = Z(Iq −

ssT

sT s
)2ZT

= [Z(Iq −
ssT

sT s
)][(Iq −

ssT

sT s
)ZT ].

This implies that

R(M) = R(Z(Iq −
ssT

sT s
)), N (M) = N ((Iq −

ssT

sT s
)ZT ),

and we also have

R(A) = R(Z), N (A) = N (ZT ).

Since the projector (Iq− ssT

sT s
) has rank n− 1, it follows that the ranges and null spaces of A and M

have dimensions that can only differ by 1 at most. Now consider the vector 1n. Since s = ZT1n,

we have M1n = 0 and since M is symmetric, 1n is orthogonal to R(M). Since 1n = Z1q, we have

1n ∈ R(Z) = R(A). Together, these two properties prove (3.15), and hence also (3.16).

Since rank(M) = q − 1 and M = MT , we have the eigendecomposition

M = X∗ΓXT
∗ ,

where

X∗ ∈ St(q − 1, n), Γ = diag(γ1, . . . , γq−1), γi 6= 0.

It then follows by Lemma 3.2.6 that
[
X∗

1n√
n

]
∈ St(q, n) since R(X∗) is a subspace of R(M).

For the modularity matrix, the relationship between A and M is one of deflation of range that

allows the characterization of the part of R(A) = R(Z) that is removed when considering R(M)

as shown in (3.15).

Therefore, we can now get the anticipated result of R(Z) = R
([
X∗

1n√
n

])
.

3.2.3 A Constrained Stiefel Optimization Problem

Multiple Extrema: Note that if a space B of dimension q has a basis that is an assignment

matrix then it has q! such bases all of which are of the form ZPq where Z is any assignment matrix
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basis and P ∈ {0, 1}q×q is a permutation matrix. All of these matrices have exactly n nonzero

elements which is the minimum count possible for bases of the space. If the columns of such a

matrix, Z, are normalized in Euclidean 2-norm length then an element of St(q, n) is produced with

ni elements in column i all with the value 1/√ni with
∑q
i=1 ni = n. These are the global minima

of

min
X∈St(q,n),R(X)=B

‖X‖1,

where the l1 norm is defined as ‖X‖1 =
∑
ij‖Xij‖ imposing the sparsity of X.

In practical numerical computation, even on ideal matrices and certainly on problems for which

noise perturbs A and Z from ideal, some projection is needed to take a matrix in St(q, n) to the

“nearest” matrix in An,q.

A Constrained Stiefel Optimization Problem: The constrained Stiefel optimization prob-

lem used to perform community detection is

X∗ = argmax
X∈St(q,n), 1n∈R(X)

tr(XTMX)− λ‖X‖1, (3.17)

where λ > 0 is a tuning parameter controlling the balance between variance and sparsity. The

approach to compute X∗ is given in Algorithm 5.

Step 1 can be computed using any trace maximization algorithm. Our code uses RNewton in

ROPTLIB [52].

Step 2 (ARPPG) is the main part of the algorithm, and it is inspired by [53]. In [53], the

FISTA [9] is generalized from the Euclidean space to the Riemannian setting and the below general

nonconvex optimization problem is considered

min
X∈M

F (X) = f(X) + g(X), (3.18)

where M ⊂ Rn×q is a Riemannian submanifold, f : Rn×q → R is L-continuously differentiable

(may be nonconvex) and g is continuous and convex but may not be differentiable.

The optimization problem (3.17) is a special case of problem (3.18), where f(X) = tr(XTMX)

is L-continuously differentiable and g(X) = −λ‖X‖1 is continuous, convex, but not differentiable

and the feasible set F ⊂ St(q, n) is a Riemannian submanifold. The details of ARPPG are in

Algorithm 3.

In Step 3, we use the idea of continuation to choose the parameter λ that defines the cost

function. We can get the optimal X∗1 after setting the initial λ0 and X0. We then increase λ0
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Algorithm 5 Algorithm for the Constrained Stiefel Optimization Problem
1: Step 1: Compute Y∗ ∈ St(q − 1, n) where

Y∗ = argmax
X∈St(q−1,n)

tr(XTMX).

and set the initial guess for Step 2 as

X0 =
[
Y∗

1n√
n

]
.

2: Step 2 (ARPPG, see Algorithm 3): Compute X∗ ∈ St(q, n),1n ∈ R(X) where

X∗ = argmax
X∈St(q,n), 1n∈R(X)

tr(XTMX)− λ‖X‖1,

with X0 as the initial guess.
3: Step 3: Get the assignment matrix X̂∗ by setting the element with the largest magnitude in

each row of X∗ as 1, and the others as 0 when X∗ is sufficiently sparse. Assess the assignment
matrix X̂∗ and determine whether it is acceptable as a solution to the community detection
problem or if the parameter λ should be updated. If λ is updated then return to Step 2.

and use X∗1 as the initial matrix to get X∗2 . We continue this procedure until the cost function

tr(XTMX)− λ‖X‖1 does not improve anymore.

3.3 Numerical Experiments

In this section, we evaluate the empirical performance of ARPPG on community detection by

comparing with some classical algorithms, the GN algorithm [84, 44], the Infomap method [98],

and the Louvain Algorithm [12].

3.3.1 LFR Benchmark Model

The Lancichinetti–Fortunato–Radicchi benchmark [65] is an algorithm that generates bench-

mark networks (artificial networks that resemble real-world networks). They have a priori known

communities and are used to compare different community detection methods. The advantage of

this benchmark over others is that it accounts for the heterogeneity in the distributions of node

degrees and of community sizes.

The node degrees and the community sizes are distributed according to a power law, with

different exponents. The benchmark assumes that both the degree and the community size have
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power law distributions with different exponents, τ1 and τ2 respectively. N is the number of nodes

and the average degree is < k >. There is a mixing parameter 0 ≤ µLFR ≤ 1, which is the average

fraction of neighboring nodes of a node that do not belong to any community that the benchmark

node belongs to. This parameter controls the fraction of edges that are between communities. Thus,

it reflects the amount of noise in the network. At the extremes, when µLFR = 0 all links are within

community links, if µLFR = 1 all links are between nodes belonging to different communities.

One can generate the benchmark network using the following steps, and a software package

to generate the benchmark graphs can be downloaded from https://www.santofortunato.net/

resources.

Step 1: Generate a network with nodes following a power law distribution with exponent τ1

and choose extremes of the distribution kmin and kmax to get desired average degree is < k >.

Step 2: (1− µLFR) fraction of links of every node is with nodes of the same community, while

fraction µLFR is with the other nodes.

Step 3: Generate community sizes from a power law distribution with exponent τ2 . The sum

of all sizes must be equal to N . The minimal and maximal community sizes smin and smax must

satisfy the definition of community so that every non-isolated node is in at least in one community:

smin > kmin, smax > kmax.

Step 4: Initially, no nodes are assigned to communities. Then, each node is randomly assigned

to a community. As long as the number of neighboring nodes within the community does not exceed

the community size a new node is added to the community, otherwise stays out. In the following

iterations the “homeless” node is randomly assigned to some community. If that community is

complete, i.e. the size is exhausted, a randomly selected node of that community must be unlinked.

Stop the iteration when all the communities are complete and all the nodes belong to at least one

community.

Step 5: Implement rewiring of nodes keeping the same node degrees but only affecting the

fraction of internal and external links such that the number of links outside the community for

each node is approximately equal to the mixing parameter µLFR.

In the construction of the benchmark graphs, each node has a probability pin of being connected

to nodes in its group and a probability pout of being connected to nodes in different groups. If
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pin > pout, the groups are communities, otherwise, the network is essentially a random graph

without community structure. A power law distribution is used.

The condition pin > pout can be translated into a condition on the mixing parameter µLFR,

which expresses the ratio between the external degree of a node with respect to its community and

the total degree of the node [64]:

µLFR = kouti

kini + kouti

<
N − nc
N

,

where kini is the number of neighbors of node i that belong to its community c and kouti the number

of neighbors of i that belong to the other communities, N is the number of nodes, nc is the number

of nodes of the community c.

Setting µLFR = 0, gives a graph defining a ground truth where the communities are strongly

connected components and there are no edges between the communities. This is more challenging

than the ideal ground truth of communities that are cliques used to motivate the optimization

problem. For any value of µLFR > 0, the graph also has an associated ground truth but the

mixing causes the community structure to be less clearly defined. For the LFR benchmarks, the

networks have N = 1000 nodes, the average node degree is 20, the maximum node degree is 50, the

communities have between 20 and 100 nodes, the exponent of the degree power law distribution

is −2, and the exponent of the community size power law distribution is −1. The numbers of

communities for the LFR benchmarks are around 20.

3.3.2 Real-World Networks

Three widely used real-world networks are used to assess the performance of ARPPG. The first

is an American college football network [44], in which the nodes represent football teams, and an

edge exists between the nodes if there is a match between two teams. The ground truth community

assignment is given by the membership in the same athletic conference, i.e., indisputable observa-

tions. The second is Zachary’s karate club network [123], which is an undirected social network

of friendship between 34 members of a karate club at a university. Edges connect individuals who

were observed to interact outside the activities of the karate club. The ground truth is based on

the splitting of the membership into 2 new disjoint karate clubs. However, there is a second ground

truth based of 4 communities of 2 disjoint social groups within each of the 2 new clubs. The 2

community ground truth is defined by indisputable observation, the 4 community ground truth
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is based on less precise social interaction data. The third is the Polbooks network [82] of books

about US politics published around the time of the 2004 presidential election and sold by the online

bookseller Amazon.com. Edges between books represent frequent co-purchasing of books by the

same buyers. The ground truth is determined by the subjective classification of the books by a

non-expert human observer.

3.3.3 Comparing Partitions

Normalized Mutual Information (NMI): A ground truth assignment of nodes to com-

munities is associated with each benchmark graph. Given the ground truth, normalized mutual

information (NMI) [29] was used to compare the quality of the communities. NMI is a similarity

measure between two partitions X and Y that represents their normalized mutual entropy and is

defined

NMI(X,Y ) = 2I(X,Y )
H(X) +H(Y ) ,

where H(X) is the entropy of the partition X and I(X,Y ) is the mutual information of the

partitions X and Y given by

H(X) = −
∑
u

nu
N

log nu
N
,

I(X,Y ) =
∑
u,v

nuv
N

log Nnuv
nunv

,

with nu the number of nodes in community u and nuv the number of common nodes in community

u of partition X and community v of partition Y . The value of NMI is in [0, 1] with larger values

indicating higher similarity.

The synthetic benchmarks have clearly defined ground truth based on intracommunity connec-

tivity graphs that are strongly connected but not necessarily completely connected as in our ideal

case defined above. The members of the family of networks are defined by a parameter that makes

the network have an increasingly ill-defined community structure. As a result, any reasonable algo-

rithm should detect community structure accurately when it is well-defined and the discrimination

ability of the algorithm is tested as the definition degrades. Additionally, we must consider the

robustness of the combinatorial algorithms relative to their runtime choices, e.g., the particular

random walks used in Infomap or the order and manner in which one-node moves are considered

in the Louvain method. Similarly, ARPPG and other algorithms based on optimization over a
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continuous domain are dependent on their initial conditions or other strategies to avoid finding an

unacceptable local maximum.

Adjusted Mutual Information (AMI):

• Mutual Information (MI)

Given a set S of N elements S = {s1, s2, . . . sN}, consider two partitions of S, namely U =
{U1, U2, . . . , UR} with R clusters, and V = {V1, V2, . . . , VC} with C clusters. It is presumed
here that the partitions are so-called hard clusters; the partitions are pairwise disjoint:

Ui ∩ Uj = ∅ = Vi ∩ Vj ,

for all i 6= j, and complete:
∪Ri=1Ui = ∪Cj=1Vj = S.

The mutual information of cluster overlap between U and V can be summarized in the form
of an R× C contingency table M = [nij ]i=1...R

j=1...C , where nij denotes the number of objects that
are common to clusters Ui and Vj . That is, nij = |Ui ∩ Vj | .

Suppose an object is picked at random from S; the probability that the object falls into cluster
Ui is:

PU (i) = |Ui|
N

.

The entropy associated with the partitioning U is:

H(U) = −
R∑
i=1

PU (i) logPU (i).

H(U) is non-negative and takes the value 0 only when there is no uncertainty determining
an object’s cluster membership, i.e., when there is only one cluster. Similarly, the entropy of
the clustering V can be calculated as:

H(V ) = −
C∑
j=1

PV (j) logPV (j),

where PV (j) = |Vj |/N . The mutual information (MI) between two partitions:

MI(U, V ) =
R∑
i=1

C∑
j=1

PUV (i, j) log PUV (i, j)
PU (i)PV (j) ,

where PUV (i, j) denotes the probability that a point belongs to both the cluster Ui in U and
cluster Vj in V:

PUV (i, j) = |Ui ∩ Vj |
N

.
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MI is a non-negative quantity upper bounded by the entropies H(U) and H(V ). It quantifies
the information shared by the two clusterings and thus can be employed as a clustering
similarity measure.

• Adjustment for Chance (E(MI))

Like the Rand index, the baseline value of mutual information between two random clusterings
does not take on a constant value, and tends to be larger when the two partitions have a larger
number of clusters (with a fixed number of set elements N). By adopting a hypergeometric
model of randomness, it can be shown that the expected mutual information between two
random clusterings is:

E{MI(U, V )} =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log
(
N · nij
aibj

)
×

ai!bj !(N − ai)!(N − bj)!
N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

,

where (ai + bj −N)+ denotes max(1, ai + bj −N). The variables ai and bj are partial sums
of the contingency table; that is, ai =

∑C
j=1 nij and bj =

∑R
i=1 nij .

The adjusted measure for the mutual information [113] may then be defined to be:

AMI(U, V ) = MI(U, V )− E{MI(U, V )}
max {H(U), H(V )} − E{MI(U, V )} .

3.3.4 Numerical Results

Results for the LFR networks. For the LFR benchmark with µLFR = 0, as expected and

required, all four algorithms have NMI = 1, AMI = 1, the same modularity value and the same

assignment to qtrue = 24 strongly connected communities. AManPG requires the desired number of

communities as a parameter value and in this case it was taken as q = qtrue = 24. The choice of an

initial q and the development of a dynamic adaptation strategy are key ongoing tasks for AManPG.

There is promising evidence that it is possible. For µLFR = 0 and AManPG run with q = 25 and

q = 26, i.e., near qtrue, the modularity decreases as q increases. The final values of NMI for q = 25

and q = 26 change only slightly 0.99 and 0.98 respectively. Of course this information is not available

for the algorithm to use, but it is due to the fact that the partitioning for q = 25 and q = 26 are

nested in the partitioning for q = qtrue = 24, i.e., the extra communities are refinements of the 24

by splitting without crossing the ideal community boundaries. Any nodes that are not in the same
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community in the ideal partitioning remain in different communities in the refined partitions. This

information can be detected by the algorithm and used to guide adjustment of q while revealing a

hierarchical structure relevant to discussion of resolution limits [41] and alternative cost functions,

e.g., the constant Potts model [109]. The cost function for ARPPG in this dissertation is the

configuration null model (CNM) without considering the resolution limits. A general framework of

cost functions for community detection including the CNM with and without the resolution limits

and constant Potts model is described in Appendix C.3.

The algorithms were also tested with multiple nonzero values of µLFR. The values of NMI, AMI

and modularity are shown in Table 3.1.

Table 3.1: Performance on LFR Bechmark Networks

Methods Measurements The mixing parameter µLFR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GN
NMI 1 1 1 0.9972 0.8694 0.6679 0.4932 0.4886
AMI 1 1 1 0.9962 0.7202 0.2539 0.0142 0.0031

Modularity 0.8254 0.7268 0.6283 0.5280 0.3579 0.1230 0.0393 0.0329

Infomap
NMI 1 1 1 1 1 0 0 0
AMI 1 1 1 1 1 0 0 0

Modularity 0.8254 0.7268 0.6283 0.5288 0.4440 0 0 0

Louvain
NMI 1 1 1 1 1 0.9527 0.2192 0.0677
AMI 1 1 1 1 1 0.9107 0.1748 0.0267

Modularity 0.8254 0.7268 0.6283 0.5288 0.4440 0.3390 0.2093 0.1921

ARPPG
NMI 1 1 1 1 0.9935 0.8811 0.3422 0.0967
AMI 1 1 1 1 0.9927 0.8651 0.3014 0.0473

Modularity 0.8254 0.7268 0.6283 0.5288 0.4427 0.3239 0.1712 0.1355

where ARPPG uses q = qtrue determined by the network for each value of µLFR.

All four methods determine the ground truth community assignments for the networks with

µLFR ≤ 0.3. For µLFR = 0.4 and µLFR = 0.5 three methods determine the associated ground truths

and one comes very close: GN with NMI = 0.99, AMI = 0.99 and ARPPG with NMI = 0.99,

AMI = 0.99 respectively.

ARPPG using q 6= qtrue for µLFR ≤ 0.4 demonstrates trends like those for µLFR = 0 upon

which a q adaptation strategy might be built. As q increases from qtrue, NMI, AMI and modularity

decrease at a rate that increases as µLFR increases. The partitions are nested, then only slightly
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not nested with one or two nodes crossing communities of the ground truth assignment, and finally

with a significant loss of nesting.

For the noisy cases in Table 3.1, GN degrades quickly while ARPPG and the Louvain method

degrade more slowly. Infomap achieves an NMI = 1, AMI = 1 until µLFR = 0.5 then drops to

near 0, because infomap can separate outliers and cut out them from some clusters and form their

own cluster. The performance of Infomap and the Louvain method are sensitive to their runtime

decisions, e.g., the Infomap performance here uses the heuristic available in the publicly distributed

code of running the method multiple times and choosing the “best” result. ARPPG, on the other

hand, with its continuation strategy and initial condition selection using RNewton was seen to be

remarkably robust even in the noisy situations.

Results for Real-World Networks. In this section, we consider three widely used real-

world networks are used for performance evaluation. The first is Zachary’s karate club network

[123], which is an undirected social network of friendship between 34 members of a karate club

at a university. Edges connect individuals who were observed to interact outside the activities of

the karate club. The second is the Polbooks network [82] of books about US politics published

around the time of the 2004 presidential election and sold by the online bookseller Amazon.com.

Edges between books represent frequent co-purchasing of books by the same buyers. The third

is an American college football network [44], in which the nodes represent football teams, and an

edge exists between the nodes if there is match between two teams. More games happen among

teams within the same community than between teams from different communities.

We apply ARPPG algorithm to these three real-world networks and the results are shown in

Table 3.2. From Table 3.2, we can find that ARPPG has better performance than the other algo-

rithms on these three real world datasets, because it produces larger NMI than the others. ARPPG,

therefore, detected more accurate community structures than the other methods. From the view-

point of modularity, ARPPG produces the largest modularity of all the algorithms for Polbooks

network, and produces slightly smaller modularities than Louvain algorithm for Zachary’s karate

club network and the American football network. However, the resulting numbers of communities

by the Louvain algorithm are 4 and 10, respectively, which are inconsistent with ground truth for

the two networks while the number of communities for ARPPG are the ground truth values of

2 and 12 respectively. For example, if we set the number of clusters q as 4 for karate network,
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ARPPG produces the same modularity as the Louvain algorithm. In addition, the Louvain method

is a greedy algorithm and does not allow for back-tracking, while ARPPG looks for any possible

local improvement.

Table 3.2: Performance on Real-World Networks (the best performance is in bold), where n is the
number of nodes, m is the number of edges, qtrue is the number of ground truth communities and
numbers in parentheses are the numbers of communities detected. For ARPPG the numbers in
parentheses are also the values used for ARPPG’s parameter q.

Datasets n m qtrue Measurements GN Infomap Louvain ARPPG

Football 115 613 12
NMI 0.879(10) 0.924(12) 0.890(10) 0.924(12) 0.911(13) 0.912(14) 0.882(10)
AMI 0.802(10) 0.898(12) 0.821(10) 0.898(12) 0.861(13) 0.848(14) 0.813(10)

Modularity 0.600(10) 0.601(12) 0.605(10) 0.601(12) 0.581(13) 0.566(14) 0.596(10)

Karate 34 78 2
NMI 0.580(5) 0.700(3) 0.587(4) 1.000(2) 0.811(3) 0.687(4) 0.542(5)
AMI 0.402(5) 0.579(3) 0.425(4) 1.000(2) 0.672(3) 0.505(4) 0.364(5)

Modularity 0.401(5) 0.402(3) 0.419(4) 0.372(2) 0.373(3) 0.420(4) 0.382(5)

Polbooks 105 441 3
NMI 0.559(5) 0.494(6) 0.537(5) 0.565(3) 0.503(4) 0.465(5) 0.439(6)
AMI 0.488(5) 0.390(6) 0.458(5) 0.535(3) 0.424(4) 0.362(5) 0.323(6)

Modularity 0.517(5) 0.523(6) 0.527(5) 0.508(3) 0.504(4) 0.510(5) 0.505(6)

Note that overall modularity values for the community assignments produced are significantly

lower than those for the synthetic networks and the different assignments produced all have similar

modularity values with significantly different quality as measured by NMI and AMI. This is most

pronounced for the opinion-based ground truth of the Polbooks network as expected. For the foot-

ball network, ARPPG using q = qtrue produces an assignment close to the ground truth. Infomap

produces the same 12 community assignment but requires multiple runs, some of which produce

significantly different assignments. GN and the Louvain method do not get the correct number

of communities despite achieving a value of modularity close to that from the other algorithms.

ARPPG run with q 6= qtrue exhibits the same trends on modularity and nesting discussed for the

synthetic networks as desired.

For the karate club network, only ARPPG with q = qtrue = 2 produces the ground truth with

2 communities. When ARPPG is run with q 6= qtrue it exhibits the desired nesting trends and, in

particular, for q = 4 it produces the second ground truth known for the network. (The NMI and

AMI in the table are not 1 for that case because it is the 4 community ground truth compared to the

2 community ground truth.) The Louvain algorithm produces four different community assignments

depending on the order of traversal of the nodes. The 4 community ground truth is one of them but

the one in the table are not quite the same as is seen from the NMI and AMI differing from that of
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ARPPG. Infomap produces different community assignments with varying numbers of communities

in different runs. The result in the table is the best one. As expected, the Polbooks network is the

most difficult. Modularity does not predict well the quality of the assignment measured by NMI

and AMI. Even ARPPG with q = qtrue does not produce an assignment as close to ground truth as

it does for the other two networks. The fact that modularity does not clearly indicate the ground

truth is also seen in the trends for ARPPG with q 6= qtrue. Nesting is not observed and the best

modularity is observed for q = 5 6= qtrue = 3.

3.4 Conclusion

In this chapter, we propose a new Riemannian projected proximal gradient method applied to

modularity with a convex nonsmooth sparsity penalty term for community detection. Numerical

results show that ARPPG is competetive with state-of-the-art algorithm in terms of quality as-

signment and robustness. The convergence of ARPPG is not guaranteed. If we can prove that the

feasible set is an embedded submanifold of Stiefel manifold, then the AManPG in [53] can be used

and the convergence theorem holds accordingly. The details are shown in Chapter 4. In addition,

observations of ARPPG performance as algorithm parameters vary provide leading evidence that

an efficient implementation are feasible. The recursive algorithm is proposed in Chapter 7.
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CHAPTER 4

ACCELERATED MANIFOLD PROXIMAL
GRADIENT OPTIMIZATION METHOD OVER THE

FEASIBLE SET Fv

From the theoretical and numerical results in Chapter 3, we can see that ARPPG is a reasonable

algorithm for clustering problems, specifically for community detection. However, the convergence

of ARPPG algorithm is not guaranteed. It is necessary to consider the geometry of the problem in

more detail and to confirm that it admits the use of a Riemannian convergent algorithm. In [53],

the accelerated Riemannian manifold proximal gradient algorithm (AManPG) is proposed and the

global convergence for AManPG over the Riemanian manifold is shown. So, if we can prove that the

feasible set F1n is a Riemanian manifold and construct the manifold structure of the feasible set,

then we can use AManPG directly over the feasible set F1n with the confidence the corresponding

convergence theorem implies. In this chapter, we show that the feasible set F1n is an embedded

submanifold of Rn×q and the optimization-related Riemannian geometry is derived.

4.1 Manifold Structure of Feasible Set Fv

In this section, we show that the feasible set F1n = {X ∈ St(q, n) : 1n ∈ R(X)} = {X ∈

Rn×q : X ∈ St(q, n) and XXT1n = 1n} is a submanifold of dimension nq − q(q + 1)/2− n+ q and

derive the tangent space TXF , normal space NXF and a practical retraction from TXF1n to F1n .

Actually, we can show the more general feasible set Fv = {X ∈ Rn×q : XTX = Iq, v ∈ span(X)},

with v > 0 is an embedded submanifold of St(q, n) in Theorem 4.1.1.

Theorem 4.1.1. The set Fv is an embedded submanifold of St(q, n) with dimension dim(St(q, n))−

(n− q) = nq − q(q + 1)/2− n+ q. Furthermore, Fv is an embedded submanifold of Rn×q with the

same dimension and Fv is compact.

Proof. We verify that Fv is an embedded submanifold of St(q, n) by following [13, Definition 8.70]

using the notion of a local defining function. For any X ∈ Fv, let X⊥ be a matrix such that
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(
X X⊥

)T (
X X⊥

)
= In. Therefore, by [35, (2.23)], we have that for any V ∈ TX St(q, n),

ExpX(V ) =
(
X X⊥

)
e

(
Ω −KT

K 0

)(
Ip
0

)
,

defines the exponential mapping with respect to the canonical metric, where Exp denotes the matrix

exponential, V = XΩ +X⊥K, and the canonical metric is 〈ηX , ξX〉X = tr(ηTX(In − 1
2XX

T )ξX) for

ηX , ξX ∈ TX St(q, n). By [34, Theorem 3.7], there exists a positive constant δ > 0 such that ExpX
is a diffeomorphism in B(X, δ). It follows that for any Y ∈ ExpX(B(X, δ)), the mapping Exp−1

X (Y )

is well-defined and Y = ExpX(Exp−1
X (Y )), i.e.,

Y =
(
X X⊥

)
e

XT Exp−1
X (Y ) −

(
XT
⊥ Exp−1

X (Y )
)T

XT
⊥ Exp−1

X (Y ) 0

(
Iq
0

)
. (4.1)

Define a function φ : ExpX(B(x, δ))→ Rn×(n−q) by

φ(Y ) =
(
X X⊥

)
e

XT Exp−1
X (Y ) −

(
XT
⊥ Exp−1

X (Y )
)T

XT
⊥ Exp−1

X (Y ) 0

(
0

In−q

)
,

it follows from (4.1) that

φ(Y )TY = 0(n−q)×q. (4.2)

Since Exp−1
X is smooth in ExpX(B(x, δ)), φ is a smooth function in its domain. Furthermore, it

follows from φ(X)TX⊥ = In−q that there exists a constant δ̃ > 0 such that φ(Z)TX⊥ is full rank,

i.e.,

rank
(
φ(Z)TX⊥

)
= n− q, (4.3)

for any Z ∈ ExpX(B(x, δ̃)). Let δ̂ = min(δ, δ̃) and NX = ExpX(B(x, δ̂)). We now define a function

h by

h : NX → Rn−q : Y 7→ h(Y ) = φ(Y )T v.

Next, we verify that the function h is a local defining function in the sense that h−1(0) = NX ∩Fv
and Dh(Y ) : TY St(q, n)→ Rn−q is surjective for any Y ∈ NX1.

1Note that the local definition function only requires Dh(Y ) to be full rank at Y = X. Here, we prove a stronger
result.
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For any Z ∈ h−1(0), it holds that φ(Z)T v = 0 and Z ∈ St(q, n). Since φ(Z)T v = 0 implies

v ∈ span(X), we have Z ∈ Fv, which means h−1(0) ⊆ NX ∩ Fv. On the other hand, for any

Z ∈ NX ∩ Fv, it is obvious that h(Z) = 0, which means NX ∩ Fv ⊆ h−1(0). Overall, the equation

h−1(0) = NX ∩ Fv holds.

Let V denote Exp−1
X (Y ). For any U ∈ TExpX(−V ) St(q, n), let V̇ = T −1

Exp−V
(−U) and W =

TExpV V̇ , where TExp denotes the vector transport by differentiating the exponential mapping (4.1).

Note that V̇ is well-defined since −V ∈ B(X, δ̂). We have

Dh(Y ) [W ] = (Dφ(Y ) [W ])T v

=


(
X X⊥

)
D e

XT Exp−1
X (Y ) −

(
XT
⊥ Exp−1

X (Y )
)T

XT
⊥ Exp−1

X (Y ) 0


[W ]

(
0

In−q

)

T

v

=
(
0 In−q

)


D

e
−XT Exp−1

X (Y )
(
XT
⊥ Exp−1

X (Y )
)T

−XT
⊥ Exp−1

X (Y ) 0

(
Ip
0

) [W ]


α,

where α = XT v, (eA)T = e−A for any skew symmetric matrix A, and X⊥v = 0.

Define the functions

G(Y ) = e

−XT Exp−1
X (Y )

(
XT
⊥ Exp−1

X (Y )
)T

−XT
⊥ Exp−1

X (Y ) 0

(
Ip
0

)
, and

H

(
Ω
K

)
= ExpX(XΩ +X⊥K).

Since V, V̇ ∈ TX St(q, n), there exist skew symmetric matrices ΩV ,ΩV̇ and matrices KV ,KV̇ such

that V = XΩV + X⊥KV and V̇ = XΩV̇ + X⊥KV̇ . By the chain rule DG ◦H
(

ΩV

KV

)[(
ΩV̇

KV̇

)]
=

50



DG

(
H

(
ΩV

KV

))[
DH

(
ΩV

KV

)[(
ΩV̇

KV̇

)]]
and W = TExpV V̇ , we have that

D e

−XT Exp−1
X (Y )

(
XT
⊥ Exp−1

X (Y )
)T

−XT
⊥ Exp−1

X (Y ) 0

(
Ip
0

)[
TRV V̇

]

= D

e
(
−ΩV KT

V

−KV 0

)(
Ip
0

)
[(

ΩV̇

KV̇

)]
.

It follows that

Dh(Y ) [W ] = −
(
0 In−q

)
D

e
(
−ΩV KT

V

−KV 0

)(
Ip
0

)
[(
−ΩV̇

−KV̇

)]
α

=
(
0 In−q

) (
X X⊥

)T
TExp−V (V̇ ) =

(
0 In−q

) (
X X⊥

)T
TExp−V (T −1

Exp−V
(−U))

=−
(
0 In−q

) (
X X⊥

)T
Uα = −XT

⊥Uα. (4.4)

Since U can be any tangent vector in TExpX(−V ) St(q, n) and XT
⊥φ(ExpX(−V )) is full rank by (4.3),

the vector −XT
⊥Uα can be any one in Rn−q. Therefore, Dh(Y ) is surjective and also full rank.

Therefore, by [13, Definition 8.70], Fv is an embedded submanifold of St(q, n). Furthermore, by [13,

Exercise 3.33], Fv is also an embedded submanifold of Rn×q.

Since Fv is a subset of St(q, n), it is a bounded set. Moreover, it is easy to show that its

complement set in Rn×q is an open set. Therefore, Fv is a closed set. It follows that Fv is

compact.

Theorem 4.1.2 gives the tangent space at any X ∈ Fv and its perpendicular space with respect

to the Euclidean metric.

Theorem 4.1.2. The tangent space of Fv at X is given by

TX Fv = {XΩ +X⊥K : ΩT = −Ω,K ∈ R(n−q)×q,KXT v = 0}

and the perpendicular space of TX Fv, called the normal space at X, is given by

NX Fv = {XS +X⊥uv
TX : S = ST , u ∈ Rn−q}.
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Proof. It follows from [13, Exercise 3.33] that TX Fv = ker Dh(X). By (4.4), we have that for any

U ∈ TX St(q, n), Dh(X)[U ] = −KXT v, where U = XΩ + X⊥K and Ω is any skew symmetric

matrix and K is any n-by-(n − q) matrix. Therefore, it holds that ker Dh(X) = {XΩ + X⊥K :

ΩT = −Ω,K ∈ R(n−q)×q,KXT v = 0}.

For any V ∈ TX Fv and U ∈ NXFv, it is easy to verify that trace(UTV ) = 0. In addition,

dim(TXFv) + dim(NX Fv) = nq − n − q − q(q + 1)/2 + q(q + 1)/2 + n + q = nq = dim(Rn×q).

Therefore, NXFv = (TX Fv)⊥ which implies NX Fv is the normal space of Fv at X.

Theorem 4.1.3. Given any Z ∈ Rn×q, the orthogonal projection to NX Fv is given by

PNX (Z) = X
XTZ + ZTX

2 + (I −XXT )Zα̂α̂T ,

where α̂ = XT v/‖XT v‖. The orthogonal projection to TX Fv is therefore

PTX (Z) = X
XTZ − ZTX

2 + (I −XXT )Z(I − α̂α̂T ).

Proof. By observing the formats of PNX (Z) and PTX (Z), we have PNX (Z) ∈ NX Fv and PTX (Z) ∈

TX FV . Therefore, the result follows from PNX (Z) + PTX (Z) = XXTZ + (I −XXT )Z = Z.

Given X ∈ St(q, n), the orthonormal projection from X to Fv with v = 1n has been derived

in [116]. The orthonormal projection with any v > 0 can be derived similarly. We state the result

without proof in Lemma 4.1.4.

Lemma 4.1.4. For any X ∈ St(q, n) with XT v 6= 0, the global minimizer of the problem

PFv(X) = argmin
Y ∈Fv

‖X − Y ‖2F

is given by Y∗ = vqT∗ /‖v‖2 +X(I − q∗qT∗ ), where q∗ = XT v/‖XT v‖2.

One way to define a retraction on Fv is by the orthogonal projection [2], i.e.,

Rproj
X (V ) = PFv(X + V ), (4.5)

where X ∈ Fv and V ∈ TX Fv. However, we do not have a closed form solution of PFv(X + V ) in

general. A practical family of retractions is given in Theorem 4.1.5.
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Theorem 4.1.5. For any X ∈ Fv, there exists a positive number δX > 0 such that the mapping

RX : B(x, δX)→ Fv : V 7→ RX(V ) = PFv ◦ R̃X (4.6)

satisfies the two conditions of the retraction, i.e.,RX(0X) = X, where 0X is the zero element in

TXF ; and d
dt(RX(tV ))|t=0 = V for any V ∈ B(X, δX), where R̃ is any retraction on St(q, n).

Moreover, if the retraction R̃ satisfies span(R̃X(V )) = span(X+V ), then the domain of R̃ in (4.6)

is the whole tangent bundle. Such retractions R̃ include the retraction by qr decomposition in [1,

(4.8)] and the retraction by polar decomposition in [1, (4.7)].

Proof. Since X satisfies XT v 6= 0, R̃X(0X) = X, and R̃X is smooth, there exists a positive δX > 0

such that PFv(R̃X(V )) is well-defined for any V ∈ B(X, δX). The smoothness of R follows from

the smoothness of R̃ and PFv . We have RX(0X) = PFv(R̃X(0X)) = PFv(X) = X, where the

second equality follows from the property of the retraction R̃ and the last equation follows from

the definition of the projection PFv .

In addition, we have

d

dt
RX(tV )|t=0 = d

dt

(
PFv ◦ R̃X

)
(tV )|t=0 =

(
DPFv(R̃X(tV ))

[
d

dt
R̃X(tV )

])
|t=0

= DPFv(X)[V ] = DRproj
X (0X)[V ] = V,

where the second equality follows from the chain rule, the third equality follows from R̃X(0V ) = X

and d
dtR̃X(tV )|t=0 = V , and the last equality follows from the fact that (4.5) is a retraction.

For the second part of the result, we only need to verify that (X+V )T v 6= 0 for all V ∈ TX Fv.

Let α = XT v 6= 0. By the form of the tangent space TX Fv in Theorem 4.1.2, we have

αT (X + V )T v = αT (X +XΩ +X⊥K)T v = αTα+ αTΩα = ‖α‖22 6= 0,

which implies (X + V )T v 6= 0.

By Theorem 4.1.5, two retractions of Fv based on the qr decomposition and the polar decom-

position are respectively given by

RqfX (V ) = vqT∗ /||v||2 + qf(X + V )(I − q∗qT∗ ), (4.7)
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where q∗ = qf(X + V )T v/||qf(X + V )T v||2 and qf(X + V ) denotes the Q factor of the QR

decomposition of X + V that further satisfies the diagonal entries of the R factor being positive;

and

RpolarX (V ) = vqT∗ /||v||2 + (X + V )(I + V TV )−1/2(I − q∗qT∗ ), (4.8)

where q∗ = (I+V TV )−1/2(X+V )T v/||(I+V TV )−1/2(X+V )T v||2. As the dominant computations

in (4.7) and (4.8) are the qr decomposition and the polar decomposition respectively, their com-

putations both take O(nq2) flops. The retraction proposed in [20, (14)] is more computationally

expensive. Specifically, the retraction in [20] is given by

RX(V ) = exp(B)exp(A′)X, (4.9)

where A = XTV,A′ = XAXT , and B = V XT −XV T − 2A′. The computation of (4.9) requires

an evaluation of an exponential of an n-by-n matrix B and therefore can be computationally

unacceptable (O(n3) flops) when n is large.

4.2 AManPG Algorithm over Fv

In [25], Chen et.al. considered a class of optimization problems over the Stiefel manifold whose

objective function is the sum of a smooth, possibly nonconvex function and a convex, possibly

nonsmooth function. The form of this class of optimization problems is as follows:

min
X∈M

F (X) = f(X) + g(X), (4.10)

whereM = St(q, n) = {X : X ∈ Rn×q, XTX = Iq}, f : Rn×q → R is L-continuously differentiable

(may be nonconvex) and g is Lipschitz continuous and convex but may not be differentiable.

A manifold proximal gradient method named ManPG is proposed for this problem in [25], which

is based on the proximal gradient method with a retraction operation to keep the iterates feasible

with respect to the manifold constraint. ManPG is an analogue of the proximal gradient method in

the Euclidean setting and hence can take advantage of the problem structure. Each step of ManPG

involves solving a well-structured convex optimization problem which can be solved efficiently by

the semi-smooth Newton method.
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The AManPG algorithm proposed in [53] by extending the FISTA algorithm to solve (4.10).

Empirical comparisons clearly show that AManPG has a faster convergence rate than ManPG as

in the Euclidean case [53].

In this dissertation, we apply the AManPG algorithm [53] over the feasible set Fv to solve the

problem (4.10), because we have already showed that the feasible set Fv = {X ∈ Rn×q : XTX =

Iq, v ∈ span(X)} is a Riemannian submanifold in Section 4.1. For simplicity of notation, throughout

this section, we use lowercase x to denote a point in the domain manifoldM := Fv and use g(x)

to denote λ‖x‖1. Therefore, the Riemanian optimization problem becomes

min
x∈M

F (x) := f(x) + g(x). (4.11)

The AManPG algorithm and convergence analysis rely on Assumptions 4.2.1. The convergence

analysis in [53] of Theorem 3.1 can be applied here, because we have derived that Fv is a submanifold

and RX(·) = proj(R̃X(·)) is a retraction from TXFv to Fv. Note that g(x) = λ‖x‖1 is a Lipschitz

continuous function.

Assumption 4.2.1. The gradient of f is Lipschitz continuous onM with a Lipschitz constant Lf
and the function g is Lipschitz continuous with Lipschitz constant Lg, where the Lipschitz continuity

is defined in the sense of the Euclidean setting.

The accelerated manifold proximal gradient method proposed for Problem (4.11) is stated in

[53, Algorithm 1] and [53, Algorithm 2]. They are included here for convenience as Algorithm 6

and Algorithm 7. We invite the reader to first read the more reader-friendly description in Section

3 of [53] and to refer to the pseudocode in Algorithm 6 when needed.

Algorithm 6 is a generalization of the accelerated proximal gradient method (FISTA) [9] to the

embedded submanifold. The FISTA method consists of the following steps:

ηyk = argminη∈Rn×p〈∇f(yk), η〉+ 1
2µ‖η‖

2
F + g(yk + η)

xk+1 = yk + ηyk

tk+1 =
√

4t2
k
+1+1
2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk),

(4.12)

where µ is a positive constant. The subproblem in the first step of (4.12) is generalized to the

Riemannian setting by

argmin
η∈TykM

〈grad f(yk), η〉 + 1
2µ‖η‖

2 + g(yk + η), (4.13)
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Algorithm 6 Accelerated Manifold Proximal Gradient Method (AManPG)
Require: Lipschitz constant Lf on ∇f , parameter µ > 0 in the proximal mapping, line search

parameter σ ∈ (0, 1/(8µ)], shrinking parameter in line search ν ∈ (0, 1), positive integer N for
safeguard, initial iterates Λy and Λz for the semi-smooth Newton algorithm;

1: t0 = 1, y0 = x0, z0 = x0;
2: for k = 0, . . . do
3: if mod (k,N) = 0 then . Invoke safeguard every N iterations
4: Invoke Algorithm 7: [zk+N , xk, yk, tk,Λz] = Alg7(zk, xk, yk, tk, F (xk),Λz);
5: end if
6: Compute ηyk = argminη∈TykM

〈grad f(yk), η〉 + 1
2µ‖η‖

2 + g(yk + η);
7: xk+1 = Ryk(ηyk);

8: tk+1 =
√

4t2
k
+1+1
2 ;

9: Compute
yk+1 = Rxk+1

(1− tk
tk+1

PTxk+1M(xk − xk+1)
)

;

10: end for

where η is required to be in the tangent space. Such generalization has been used in [25]. To solve

the proximal subproblem 4.13, we can apply the semi-smooth Newton method [119], [69]. The

general idea of semi-smooth Newton method is to solve a system of nonlinear equations based on

the generalized Jacobian.

4.3 Basis of Normal Space of the Feasible Set Fv and Its
Intrinsic Representation

As discussed in [53], to solve the proximal subproblem of the AManPG algorithm, we need

to reduce the optimization problem to a system of nonlinear equations by considering the KKT

conditions. One linear constraint Ak := NTV = 0 is introduced, where N is the basis of normal

space (i.e., (TXFv)⊥) of the feasible set Fv. If we can derive one orthonormal basis of the normal

space which can be dealt with efficiently, then we can solve the proximal subproblem efficiently.

The orthonormal basis of the noraml space of Fv is given in Section 4.3.1.

4.3.1 Orthonormal Basis of the Normal Space of the Feasible set Fv

In this section, we construct an orthonormal basis N for the normal space NXFv to compute

the following two tasks efficiently.
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Algorithm 7 Safeguard for Algorithm 1
Require: (zk, xk, yk, tk, F (xk),Λz); The maximum number of iterations for line search Nmax > 0;
Ensure: [zk+N , xk, yk, tk,Λz];
1: Compute ηzk = argminη∈TzkM

〈grad f(zk), η〉 + 1
2µ‖η‖

2
Wzk

+ g(zk + η);
2: Set α = 1, and iiter = 0;
3: while F (Rzk(αηzk)) > F (zk)− σα‖ηzk‖2F and iiter < Nmax do
4: α = να; iiter = iiter + 1;
5: end while
6: if iiter = Nmax then
7: Line search fails;
8: end if
9: if F (Rzk(αηzk)) < F (xk) then . Safeguard takes effect

10: xk = Rzk(αηzk), yk = Rzk(αηzk), and tk = 1;
11: else
12: xk, yk and tk keep unchanged;
13: end if
14: zk+N = xk; . Update the compared iterate;

(i) Given an element in NXFv, get the coordinates under the basis N ;

(ii) Given the coordinates, get the element in NXFv under the basis N .

If N ∈ NXFv, then

N = X


c11 c12 c13 · · · c1q
c12 c22 c23 · · · c2q
c13 c23 c33 · · · c3q
...

...
... . . . · · ·

c1q c2q c3q · · · cqq

+X⊥

 k1
...

kn−q

 vTX.

So, one way to define the basis of NXF is that

{X(eieTj + ejeTi ) : i = 1, · · · , q, j = 1, · · · , q} ∪ {X⊥ẽiṽTX, i = 1, · · · , n− q}, (4.14)

where (e1, · · · , eq) is the canonical basis of Rq, (ẽ1, · · · , ẽn−q) is the canonical basis of Rn−q

and ṽ = v/||v|| is the normalized vector of v. Then the corresponding coordinates of N are

(c11/2, c12, · · · , c1q, c22/2, · · · , c2q, · · · , cqq/2, k1, k2, · · · , kn−q) under this basis.
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Proposition 4.3.1 (Orthonormal Basis I of NXF). The basis defined in (4.14) is an orthonormal

basis with respect to the canonical metric

gc(Z1, Z2) = tr(ZT1 (In −
1
2XX

T )Z2), (4.15)

where Z1, Z2 ∈ NXF .

Proof. Case (i): U = X(eieTj + ejeTi )

gc(U,U) = tr(UTU − 1
2U

TXXTU)

= tr((ejeTi + eieTj )XTX(eieTj + ejeTi )− 1
2(ejeTi + eieTj )XTXXTX(eieTj + ejeTi )

= 1
2 tr((ejeTi + eieTj )(eieTj + ejeTi )

= 1
2 tr(ejeTi eieTj + ejeTi ejeTi + eieTj eieTj + eieTj ejeTi )

= 1
2 tr(eTj ej + eTi ei)

= 1.

Case (ii): U = X(eieTj + ejeTi ), V = X(eieTk + ekeTi ), j 6= k

gc(U, V ) = tr(UTV − 1
2U

TXXTV )

= tr((ejeTi + eieTj )XTX(eieTk + ekeTi )− 1
2(ejeTi + eieTk )XTXXTX(eieTk + ekeTi )

= 1
2 tr((ejeTi + eieTj )(eieTk + ekeTi ))

= 1
2 tr(ejeTi eieTk + ejeTi ekeTi + eieTj eieTk + eieTj ekeTi )

= 0.

Case (iii): U = X(eieTj + ejeTi ), V = X(ekeTj + ejeTk ), i 6= k

gc(U, V ) = 1
2 tr((ejeTi + eieTj )(ekeTj + ejeTk )) = 0

Case (iv): U = X(eieTj + ejeTi ), V = X(ekeTl + eleTk ), i 6= k, j 6= l

gc(U, V ) = 1
2 tr((ejeTi + eieTj )(ekeTl + eleTk )) = 0

Case (v): U = X(eieTj + ejeTi ), V = X⊥ẽiṽTX

gc(U, V ) = tr((ejeTi + eieTj )XTX⊥ẽiṽTX −
1
2(ejeTi + eieTi )XTXXTX⊥ẽiṽTX) = 0
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Case (vi): U = X⊥ẽiṽTX

gc(U,U) = tr(XT ṽẽTi XT
⊥X⊥ẽiṽTX −

1
2X

T ṽẽiXT
⊥XX

TX⊥ẽiṽTX)

= tr(XT ṽẽTi ẽiṽTX) = tr(ṽTXXT ṽ) = tr(ṽT ṽ) = 1.

Case (vii): U = X⊥ẽiṽTX, V = X⊥ẽj ṽTX, i 6= j

gc(U, V ) = tr(XT ṽẽTi XT
⊥X⊥ẽj ṽTX −

1
2X

T ṽẽiXT
⊥XX

TX⊥ẽj ṽTX)

= tr(XT ṽẽTi ẽj ṽTX) = 0.

If we consider the embedding metric ge(Z1, Z2) = tr(ZT1 Z2), then we can just do a simple

modification of (4.14) as follows:

BX = {XeieTi , i = 1, ..., q}∪{ 1√
2
X(eieTj +ejeTi ) : i = 1, · · · , q, j = i+1, · · · , q}∪{X⊥ẽiṽTX, i = 1, · · · , n−q},

(4.16)

where (e1, · · · , eq) is the canonical basis of Rq, (ẽ1, · · · , ẽn−q) is the canonical basis of Rn−q

and ṽ = v/||v|| is the normalized vector ofv. Then the corresponding coordinates of N are

(c11,
√

2c12, · · · ,
√

2c1q, c22, · · · ,
√

2c2q, · · · , cqq, k1, k2, · · · , kn−q) under this basis.

Proposition 4.3.2 (Orthonormal Basis II of NXF). The basis defined in (4.16) is an orthonormal

basis with respect to the canonical metric

ge(Z1, Z2) = tr(ZT1 Z2), (4.17)

where Z1, Z2 ∈ NXF .

Proof. Case (i): U = XeieTi

ge(U,U) = tr(eieTi XTXeieTi ) = tr(eieTi ) = 1.

Case (ii): U = 1√
2X(eieTj + ejeTi ), i 6= j

ge(U,U) = tr( 1√
2

(ejeTi + eieTj )XT 1√
2
X(eieTj + ejeTi ))

= tr(1
2(ejeTi eieTj + ejeTi ejeTi + ieTj eieTj + eieTj ejeTi ))

= 1
2 tr(ejeTj + eieTi ) = 1.
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Case (iii): U = XeieTi , V = XejeTj , i 6= j

ge(U, V ) = tr(eieTi XTXejeTj ) = 0.

Case (iv): U = XeieTi , V = 1√
2X(ejeTk + ekeTj ), j 6= k

ge(U, V ) = tr(eieTi XT 1√
2
X(ejeTk + ekeTj )) = 0

Case (iv): U = 1√
2X(eieTj +ejeTi ), V = 1√

2X(ekeTl +eleTk ), i 6= j, and k 6= l, and “if i = k, then j 6=

l” or “if j = l, i 6= k” It is easy to verify

ge(U, V ) = 0.

Case (v): U = XeieTi , V = X⊥ẽkṽTX

ge(U, V ) = tr(eieTi XTX⊥ẽkṽTX) = 0.

Case (vi): U = 1√
2X(eieTj + ejeTi ), V = X⊥ẽkṽTX

ge(U, V ) = tr( 1√
2

(ejeTi + eieTj )XTX⊥ẽkṽTX) = 0.

Case (vii): U = X⊥ẽiṽTX

ge(U,U) = tr(XT ṽẽTi XT
⊥X⊥ẽiṽTX) = tr(ẽTi ẽiṽTXXT ṽ) = tr(ẽTi ẽi) = 1

Case(viii): U = X⊥ẽiṽTX,V = X⊥ẽj ṽTX, i 6= j

ge(U, V ) = tr(XT ṽẽTi XT
⊥X⊥ẽj ṽTX) = tr(ẽTi ẽj ṽTXXT ṽ) = tr(ẽTi ẽj) = 0.

We use the orthonomal basis II in (4.16) for the AManPG algorithm and the inexact AManPG

algorithm in this dissertation. Let Vi, i = 1, . . . q(q + 1)/2 + n − q denote the entries in the basis

BX . Define a function by

BX : Rq(q+1)/2−n−q → Rn×q : u→ BXu =
q(q+1)/2+n−q∑

i=1
uiVi ∈ NxFv

and another function by

BT
X : Rn×p → Rq(q+1)/2−n−q : V → u,

where ui = trace(V TVi). These two functions are used in the AManPG method given in Section 4.2

and the inexact AManPG method in Section 5.1.
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4.3.2 Intrinsic Representation

Though the matrix X⊥ is used in the orthonomal basis in (4.16), we do not need to construct

such a matrix and only need to use two mappings αX : Rn×q → Rn×q : A 7→ [XX⊥]TA and

β : Rn×q → Rn×q : A 7→ [XX⊥]A by using the intrinsic representation. These two mappings can

be computed efficiently in O(nq2), see details in [51].

The intrinsic representation of N ∈ NXFv, which is given by

E2DFvX (N) = (
√

2c11/2,
√

2c12, · · · ,
√

2c1q,
√

2c22/2, · · · ,
√

2c2q, · · · ,
√

2cqq/2, k1, k2, · · · , kn−q).

(4.18)

By using the intrinsic representation, we can compute the following efficiently.

(i) Given an element in NXFv, N , to compute the coordinates vX under the basis BX , see
Algorithm 8 for the details;

(ii) Given the coordinates, vX , to compute the element N in NXF under the basis BX , see
Algorithm 9 for the details.

Algorithm 8 Computation of E2DFvX (N)
Require: X ∈ Fv, N ∈ NXFv, a positive vector v ∈ Rn, a function αX : Rn×q → Rn×q : A 7→

[XX⊥]TA generated by Algorithm 11;

1:

[
Ω
K

]
= αX(N), where Ω ∈ Rq×q,K ∈ R(n−q)×q;

2: Set Ω = (Ω + ΩT )/2 and k = 1;
3: Ωii = Ωii/2;
4: for j = 1, · · · , q, i = 1, · · · , j do
5: vX(k) =

√
2Ωij , where Ωij is the i-th row and j-th column entry of Ω;

6: k ← k + 1;
7: end for
8: d = KXT v||v||/||vXXT v||;
9: for i = 1, · · · , n− q do

10: vX(k) = di and k ← k + 1;
11: end for
12: return vector vX ∈ R

q(q+1)
2 +(n−q).
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Algorithm 9 Computation of D2EFvX (N)

Require: X ∈ Fv, vX ∈ R
q(q+1)

2 +(n−q), a positive vector v ∈ Rn, a function β : Rn×q → Rn×q :

A 7→ [XX⊥]A generated by Algorithm 12;
1: k=1;
2: for j = 1, · · · , q, i = 1, · · · , j do
3: Ωij = vX(k)/

√
2, and Ωji = vX(k)/

√
2;

4: k ← k + 1;
5: end for
6: Ωii = 2Ωii;
7: for i = 1, · · · , n− q do
8: di = vX(k) and k ← k + 1;
9: end for

10: K = dvTX/||v||;

11: return βX(
[

Ω
K

]
).

Algorithm 10 Computation of unit vectors in Householder matrices (v1, v2, · · · , vp) and sign
scalars (s1, s2, · · · , sp)

Require: Z = [z1z2 · · · zp] ∈ Rn×p;
1: for i = 1, · · · , p do
2: Let a denote −sgn(z̃i1)||z̃i||2 and define vi = (z̃i − ae1)/||z̃i − ae1||2 and si = −sgn(z̃i1),

where z̃i is the vector formed by last n − i + 1 entries of zi, z̃i1 is the first entry of z̃i and e1

denotes the first canonical basis of Rn−i+1;

3: Z = [z1z2 · · · zp]← QiZ, where Qi =
[
Ii−1 0

0 In−i+1 − 2v − ivTi

]
.

4: end for
5: return (v1, v2, · · · , vp) and (s1, s2, · · · , sp) .

Algorithm 11 Computation of αX(A)
Require: A ∈ Rn×p, and VX = (v1, v2, · · · , vp) and SX = (s1, s2, · · · , sp) generated by Algo-

rithm 10 with input X;
1: for i = 1, · · · , p do

2: A← QiA, where Qi =
[
Ii−1 0

0 In−i+1 − 2v − ivTi

]
3: end for
4: return diag(s1, s2, · · · , sp, In−p)A.
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Algorithm 12 Computation of β(A)
Require: A ∈ Rn×p, and VX = (v1, v2, · · · , vp) and SX = (s1, s2, · · · , sp) generated by Algo-

rithm 10 with input X;
1: A← diag(s1, s2, · · · , sp, In−p)A;
2: for i = p, p− 1, · · · , 1 do

3: A← QiA, where Qi =
[
Ii−1 0

0 In−i+1 − 2v − ivTi

]
4: end for
5: return A.
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CHAPTER 5

INEXACT ACCELERATED MANIFOLD
PROXIMAL GRADIENT OPTIMIZATION
METHOD OVER THE FEASIBLE SET Fv

5.1 Inexact Accelerated Manifold Proximal Gradient
Optimization Method

The AManPG method in [53] requires the Subproblem (4.13) to be solved exactly for con-

vergence analysis. To speed up the AManPG algorithm over the feasible set Fv, we can apply

the semi-smooth Newton method [119], [69] to solve the proximal subproblem approximately. We

call the corresponding algorithm as the Inexact AManPG (I-AManPG) algorithm. As analyzed

in Chapter 4, the general idea of semi-smooth Newton method is to solve a system of nonlinear

equations based on the generalized Jacobian. So, we need to reduce the optimization problem to

a system of nonlinear equations in order to use the semi-smooth Newton method. This can be ob-

tained by considering the KKT conditions. Here, we do not require solving the system of nonlinear

equations with respect to Λ exactly but only find a Λ such that ||Ψ(Λ)|| is sufficiently small in the

sense that

||Ψ(Λ)|| ≤

√
4µ2L2

g + ||v̂(Λ)||2/2− 2µLg
κu

, (5.1)

where v̂(Λ) = PTxkM(Proxµg(x − µ(ξx − BxΛ)) − x) is the resulting search direction ηx. The

quantitative accuracy that guarantees global convergence is also given in Section 5.2. The inexact

AManPG algorithm is stated in algorithm 13.

A proximal mapping in the Euclidean setting often admits a computationally cheap closed-

form solution. However, in the Riemannian setting, the proximal mapping does not usually have

a closed form solution due to the existence of an extra linear constraint: η ∈ TykM. The existing

Riemannian proximal mappings in [25, 53, 49, 54] are solved by a semi-smooth Newton algorithm. In

the theoretical analyses of [25, 53, 49] for global convergence, the Riemannian proximal mappings

are assumed to be solved exactly. In [54], an inexact Riemannian proximal gradient (IRPG) is
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Algorithm 13 Inexact Accelerated Manifold Proximal Gradient Method (I-AManPG)
Require: Lipschitz constant Lf on ∇f , parameter µ > 0 in the proximal mapping, line search

parameter σ ∈ (0, 1/(8µ)], shrinking parameter in line search ν ∈ (0, 1), positive integer N for
safeguard, initial iterates Λy and Λz for the semi-smooth Newton algorithm;

1: t0 = 1, y0 = x0, z0 = x0;
2: for k = 0, . . . do
3: if mod (k,N) = 0 then . Invoke safeguard every N iterations
4: Invoke Algorithm 14: [zk+N , xk, yk, tk,Λz] = Alg7(zk, xk, yk, tk, F (xk),Λz);
5: end if
6: Approximately solve ηyk ≈ argminη∈TykM

〈grad f(yk), η〉 + 1
2µ‖η‖

2 + g(yk + η) such
that (5.10) holds;

7: xk+1 = Ryk(ηyk);

8: tk+1 =
√

4t2
k
+1+1
2 ;

9: Compute
yk+1 = Rxk+1

(1− tk
tk+1

PTxk+1M(xk − xk+1)
)

;

10: end for

Algorithm 14 Safeguard for Algorithm I-AManPG
Require: (zk, xk, yk, tk, F (xk),Λz); The maximum number of iterations for line search Nmax > 0;
Ensure: [zk+N , xk, yk, tk,Λz];
1: Approximately solve ηzk ≈ argminη∈TzkM

〈grad f(zk), η〉+ 1
2µ‖η‖

2
Wzk

+g(zk+η) such that (5.10)
holds;

2: Set α = 1, and iiter = 0;
3: while F (Rzk(αηzk)) > F (zk)− σα‖ηzk‖2F and iiter < Nmax do
4: α = να; iiter = iiter + 1;
5: end while
6: if iiter = Nmax then
7: Line search fails;
8: end if
9: if F (Rzk(αηzk)) < F (xk) then . Safeguard takes effect

10: xk = Rzk(αηzk), yk = Rzk(αηzk), and tk = 1;
11: else
12: xk, yk and tk keep unchanged;
13: end if
14: zk+N = xk; . Update the compared iterate;
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Algorithm 15 A regularized semi-smooth Newton Algorithm
Input: (x,Λ, ξx), Lg is the Lipschitz constant of the function g, the line search parameter

c = 0.001, τ ∈ (0, 1), β > 0, λ = 0.1, 0 < κ1 ≤ κ2 < 1, 1 < γ1 < γ2, λ ∈ (0, 1);

Output: [ηx,Λ];
1: Compute v(Λ) = Proxµg(x− (ξx −BxΛ))− x, v̂(Λ) = PTxM (v(Λ)) and Ψ(Λ) = NT

x (v(Λ));
2: while κu||Ψ(Λ)|| >

√
4µ2L2

g + ||v̂(Λ)||2/2− 2µLg do
3: Compute δ = min(λ||Ψ(Λ)||, 0.01);
4: Approximately solve

(JΨ(Λ) + δI)[d] = −Ψ(Λ)

for d such that ||(JΨ(Λ) + δI)[d] + Ψ(Λ)|| ≤ τ min(1, λ||Ψ(Λ)||||d||);
5: Λu = Λ + d; . Compute a Newton step
6: if ||Ψ(Λu)|| < ν||Ψ(Λ)|| then
7: Λ← Λu;
8: else
9: Compute ρ = − tr(Ψ(Λu)T d)

||d||2 ;
10: Update iterate

Λ←


Λv if ρ ≥ κ1 and ||Ψ(Λv)|| ≤ ||Ψ(Λ)||
Λw if ρ ≥ κ1 and ||Ψ(Λv)|| > ||Ψ(Λ)||
Λ if ρ < κ1,

where
Λv = Λ− tr(Ψ(Λu)T (Λ− Λu))

||Ψ(Λu)||2 Ψ(Λu),Λw = Λ− βΨ(Λ).

11: Set

λ ∈


(λ, λ) if ρ 6= κ2

[λ, γλ] if κ1 ≤ ρ < κ2

(γ1λ, γ2λ] otherwise.

12: end if
13: end while
14: ηx = v̂(Λ);
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proposed, and the theoretical conditions can guarantee local convergence rate is given. Though not

solving the Riemannian proximal mapping exactly, IRPG assumes a sufficiently small µ in (4.13)

which is usually unknown and estimating µ requires extra effort in practice. In this dissertation,

we also solve the Riemannian proximal mapping approximately. The inexact AManPG algorithm

in this dissertation avoids the problem of estimating µ in an expensive computation and allows

adaptive step size. Also, the motivation is by doing it this way it is more computationally efficient.

The need for a convergence proof then follows to maintain the confidence we have for AManPG

and IRPG. Specifically, It is shown in Lemma 5.2.2 that if the Riemannian proximal mapping is

solved with sufficient accuracy, then the search direction is descent, independently of the choice of

µ.

If η∗x is the exact solution of (4.13) (for conciseness and consistency with Algorithm 15, we omit

the subscript k, use x instead of y, and use ξx to denote grad f(x).), then it satisfies

η∗x = argmin
η
〈ξx, η〉+ 1

2µ〈η, η〉+ g(x+ η) subject to η ∈ TxM. (5.2)

It follows that η ∈ TxM is equivalent to BT
x η = 0. Therefore, the KKT condition for (5.2) is given

by

∂ηL(η,Λ) = 0, (5.3)

BT
x η = 0, (5.4)

where L(η,Λ) is the Lagrangian function defined by

L(η,Λ) = 〈ξx, η〉+ 1
2µ〈η, η〉+ g(x+ η)− 〈Λ, BT

x η〉. (5.5)

Equation (5.3) yields

η = v(Λ) := Proxµg (x− µ(ξx −BxΛ))− x, (5.6)

where

Proxµg(z) = argmin
v∈Rn×p

1
2‖v − z‖

2 + µg(v) (5.7)

denotes the proximal mapping. Substituting (5.6) into (5.4) yields that

Ψ(Λ) := BT
x (Proxµg (x− µ(ξx −BxΛ))− x) = 0, (5.8)
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which is a system of nonlinear equations with respect to Λ. Therefore, to solve (5.2), one can first

find the root of (5.8) and substitute it back to (5.6) to obtain η∗x.

The equation (5.8) can be solved efficiently by a regularized semi-smooth Newton method in

Algorithm 15 [119]. Analogous to the classical Newton method, the estimation of Λ is updated by

Λk+1 = Λk + dk, where dk is computed by solving a Newton equation, i.e.,

JΨ(Λk)[d] = −Ψ(Λk), (5.9)

where JΨ(Λk) is a generalized Jacobian of Ψ. Moreover, by the chain rule, we have

JΨ(Λk)[d] = BT
x (∂ Proxµg (x− µ(ξx −BxΛk))� (µBxd)) ,

where ∂ Proxµg(·) denotes the generalized Clarke subdifferential of Proxµg(·) and � denotes the

entrywise product of two matrices. Note that when g(x) = λ‖x‖1, the generalized Clarke subdiffer-

ential of Proxµg(·) can be computed in an entrywise manner [26, 118, 68]. Here we do not require

solving (5.8) exactly but only find a Λ such that ||Ψ(Λ)|| is sufficiently small in the sense that

||Ψ(Λ)|| ≤

√
4µ2L2

g + ||v̂(Λ)||2/2− 2µLg
κu

, (5.10)

where v̂(Λ) = PTxkM(Proxµg(x− µ(ξx −BxΛ))− x) is the resulting search direction ηx.

5.2 Global Convergence Analysis of I-AManPG

Lemma 5.2.1 states the key result used to prove the global convergence. In [25, Lemma 5.1], the

inequality (5.12) is proven up to a coefficient under the assumption that the subproblem (4.13) is

solved exactly. Here, it is shown that if the subproblem is solved accurately enough such that (5.11)

holds, then we also have the inequality (5.12).

Lemma 5.2.1. Let `x(η) = 〈ξx, η〉 + 1
2µ〈η, η〉 + g(x + η). Let ε denote Ψ(Λ) = BT

x v(Λ). We then

have

g(x) ≥ 〈ξx, v̂(Λ)〉 + 1
2µ‖v̂(Λ)‖2 + g(x+ v̂(Λ))− (2Lg + 1

2µ‖ε‖)‖ε‖,

where v̂ is defined in (5.10). Furthermore, if ε is sufficiently close to 0 in the sense that

‖ε‖ ≤
√

4µ2L2
g + ‖v̂(Λ)‖2/2− 2µLg, (5.11)
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then it holds that

`x(αv̂(Λ))− `x(0) ≤ −
(
α(1− 2α)

4µ

)
‖v̂(Λ)‖2, ∀α ∈ [0, 1]. (5.12)

Proof. Consider the optimization problem

min
BTx η=ε

`x(η). (5.13)

Its KKT condition is given by

∂ηL(η,Λ) = 0, BT
x η = ε,

which is satisfied by v(Λ) defined in (5.6). Therefore, v(Λ) is the minimizer of `x(η) over the set

S = {v : BT
x v = ε}, i.e.,

v(Λ) = argmin
v∈S

`x(η) = 〈ξx, η〉+ 1
2µ〈η, η〉+ g(x+ η). (5.14)

Define the vector v0 = Bxε. It can be easily verified that BT
x v0 = BT

xBxε = ε. Therefore, it

holds that v0 ∈ S. By 1
µ -strong convexity of `x, we have

`x(v0) ≥ `x(v(Λ)) + 〈∂`x(v(Λ)), v0 − v(Λ)〉 + 1
2µ‖v0 − v(Λ)‖2. (5.15)

From the optimality condition of Problem (5.13), we have that 0 ∈ PTη S∂`x(v(Λ)). Since Tη S =

{u : BT
x u = 0} and BT

x (v0 − v(Λ)) = ε− ε = 0, it holds that v0 − v(Λ) ∈ Tη S. Therefore, we have

0 ∈ 〈∂`x(v(Λ)), v0 − v(Λ)〉. (5.16)

It follows from (5.15) and (5.16) that

`x(Bxε) ≥ `x(v(Λ)) + 1
2µ‖v(Λ)−Bxε‖2. (5.17)

Substituting the definition of `x into inequality (5.17) and noting ε = BT
x v(Λ), we have that

1
2µ‖BxB

T
x v(Λ)‖2 + g(x+BxB

T
x v(Λ)) ≥

〈ξx, v(Λ)〉 + 1
2µ‖v(Λ)‖2+g(x+ v(Λ)) + 1

2µ‖v(Λ)−BxBT
x v(Λ)‖. (5.18)
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It follows that

g(x) ≥ 〈ξx, PTxMv(Λ)〉 + 1
2µ‖PTxMv(Λ)‖2 + g(x+ v(Λ)) + g(x)

− g(x+Bxε)−
1

2µ‖BxB
T
x v(Λ)‖2

≥〈ξx, v̂(Λ)〉 + 1
2µ‖v̂(Λ)‖2 + g(x+ v̂(Λ)) + g(x+ v(Λ))

− g(x+ (I −BxBT
x )v(Λ)) + g(x)− g(x+Bxε)−

1
2µ‖Bxε‖

2

≥〈ξx, v̂(Λ)〉 + 1
2µ‖v̂(Λ)‖2 + g(x+ v̂(Λ))− |g(x+ v(Λ))− g(x+ v(Λ)−Bxε)|

− |g(x)− g(x+Bxε)| −
1

2µ‖Bxε‖
2

≥〈ξx, v̂(Λ)〉 + 1
2µ‖v̂(Λ)‖2 + g(x+ v̂(Λ))− (2Lg + 1

2µ‖Bxε‖)‖Bxε‖, (5.19)

where the first inequality follows from (5.18) and ‖v(Λ)‖2 ≥ 0, the second inequality follows from

v̂(Λ) = PTxMv(Λ) = (I − BxBT
x )v(Λ), and the fourth inequality follows from the Lipschitz conti-

nuity of g with Lipschitz constant Lg. This completes the proof for the first result.

Since g is convex, we have

g(x+ αv̂(Λ))− g(x) = g(α(x+ v̂(Λ)) + (1− α)x)− g(x) ≤ α(g(x+ v̂(Λ))− g(x)). (5.20)

Combining (5.19) and (5.20) yields

`x(αv̂(Λ))−`x(0) = 〈ξx, αv̂(Λ)〉 + 1
2µ‖αv̂(Λ)‖2 + g(x+ αv̂(Λ))− g(x)

≤α
(
〈ξx, v̂(Λ)〉 + α

2µ‖v̂(Λ)‖2 + g(x+ v̂(Λ))− g(x)
)

≤α
(
α

2µ‖v̂(Λ)‖2 − 1
2µ‖v̂(Λ)‖2 + (2Lg + 1

2µ‖Bxε‖)‖Bxε‖
)
. (5.21)

By ‖ε‖ = ‖Bxε‖ ≤
√

4µ2L2
g + ‖v̂(Λ)‖2/2− 2µLg, we have

(2Lg + 1
2µ‖Bxε‖)‖Bxε‖ ≤

1
4µ‖v̂(Λ)‖2. (5.22)

The second result follows from (5.21) and (5.22). Finally, (5.11) follows from the definition of

Ψ(Λ).

Lemma 5.2.2 implies that the while loop in Step 3 of Algorithm 7 terminates in a finite number

of iterations. Given (5.12) in Lemma 5.2.1, the proof of Lemma 5.2.2 follows the same steps as that

of [25, Lemma 5.2] is therefore omitted.
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Lemma 5.2.2. Suppose Assumption 4.2.1 holds. Then for any µ > 0, there exists a constant

ᾱ ∈ (0, 1] such that for any 0 < α < ᾱ, Step 3 of Algorithm 7 is satisfied, and the sequence {zk}

generated by Algorithm 6 satisfies

F (Rzk(αηzk))− F (zk) ≤ −
α

8µ‖ηzk‖
2.

Moreover, the step size α > ρᾱ for all k.

Though the subproblem is solved inexactly, a zero search direction given by v̂(Λ) with con-

dition (5.10) implies that the current iterate x is a stationary point, which coincides with [25,

Lemma 5.3].

Lemma 5.2.3. If ηx = v̂(Λ) = 0, then x is a stationary point of Problem 4.11.

Proof. If ηx = v̂(Λ) = 0, then by (5.10), we have that Ψ(Λ) = 0, which implies that the sub-

problem (5.2) is solved exactly and η∗x = 0. By [25, Lemma 5.3], x is a stationary point of

Problem 4.11.

The main convergence result is given in Theorem 5.2.4. The proof follows the spirit of [53,

Theorem 1]. Here, we only highlight their differences.

Theorem 5.2.4. Suppose Assumption 4.2.1 holds, then any accumulation point of the sequence

{z0, zN , z2N , . . . , ziN , . . .} generated by Algorithm 13 is a stationary point, i.e., if z∗ is an accumu-

lation point of the above sequence, then 0 ∈ PTz∗M∂F (z∗).

Proof. Since the subscript of zk in Algorithm 13 is a multiple ofN , we use {z̃i} to denote {zk}, where

z̃i = ziN . Let (ηz̃i ,Λz̃i) denote the output of Algorithm 15 when the input is (z̃i,Λz̃i−1 , grad f(z̃i)),

i.e., the input and output of Step 1 of Algorithm ??.

By the safeguard in Algorithm ?? and Lemma 5.2.2, we have

F (z̃i+1)− F (z̃i) ≤ −
ρᾱ

8µ‖ηz̃k‖
2.

Since F is continuous and Fv is compact, the function F is bounded from below. It follows that

∞ >
∞∑
i=0

F (z̃i)− F (z̃i+1) ≥ ρᾱ

8µ‖ηz̃k‖
2, (5.23)
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which implies

lim
i→∞
‖ηz̃k‖ = 0. (5.24)

By (5.24), (5.10), and ηz̃k = v̂(z̃i), we have

lim
i→∞
‖Ψ(Λz̃i)‖ = 0. (5.25)

Since v̂(Λz̃i) = PTz̃iMv(Λz̃i) = v(Λz̃i)−Bz̃iΨ(Λz̃i), we have

‖v(Λz̃i)‖ = ‖v̂(Λz̃i) +Bz̃iΨ(Λz̃i)‖ ≤ ‖v̂(Λz̃i)‖+ ‖Bz̃iΨ(Λz̃i)‖ = ‖ηz̃k‖+ ‖Ψ(Λz̃i)‖. (5.26)

Combining (5.24), (5.25) and (5.26) yields

lim
i→∞
‖v(Λz̃i)‖ = 0. (5.27)

By (5.14), we have

v(Λz̃i) = argmin
η∈Sz̃i

`x(η) = 〈grad f(z̃i), η〉+ 1
2µ〈η, η〉+ g(z̃i + η), (5.28)

where Sz̃i = {v : BT
z̃i
v = BT

z̃i
v(Λz̃i)}. Using (5.27) and (5.28) and following the steps in the proof

of [53, Theorem 1], we have that any accumulation point of {z̃i} is a stationary point.
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CHAPTER 6

INEXACT ACCELERATED MANIFOLD
PROXIMAL GRADIENT OPTIMIZATION FOR

APPLICATIONS

In this chapter, we design some numerical experiments solving the community detection, k-means

model, discriminative k-means model and normalized cut problems to test our algorithms. We

denote Algorithm 13 by I-AManPG and Algorithm 13 by E-AManPG with the condition that

‖Ψ(Λ)‖ ≤ 10−10. Therefore, we can view I-AManPG as an inexact Riemannian proximal gradient

method while E-AManPG is essentially an exact one since E-AManPG solves the Riemannian

proximal mapping to high accuracy.

The parameters Lf and λ are problem-dependent and are specified later. The other parameters

are set to be µ = 1/Lf , σ = 10−4, ν = 0.5, N = 5, Λy = Λz = 0, Nmax = 5, νSSN = 0.9999, β = 0.1,

κ1 = 0.2, κ2 = 0.75, γ1 = 2, γ2 = 5, λ = 10−5, and the initial value εΨ = 1.

Unless otherwise indicated, I-AManPG and E-AManPG stop if the value of ‖ηzk‖ reduces at

least by a factor of 103. The last iterate is projected to the set An,qv by the projection

PAn,qv (X) = diag(v)PAn,q1n
(diag(v)−1X)

where PAn,q1n
(X) =

[
b1
‖b1‖

b2
‖b2‖ . . .

bq
‖bq‖

]
, bj ∈ Rn for j = 1, 2, . . . , q, and

(bj)i =
{

1 if Xij has the largest magnitude in the i-th row;1
0 otherwise.

If the i-th row j-th column of PAn,qv (X) is not zero, then this implies that the i-th object is in the

j-th cluster.

I-AManPG and E-AManPG are implemented in MATLAB. All the experiments are performed

on a MAC platform with 1.4 GHz Quad-Core Intel Core i5.
1If there is a tie in the i-th row, then j can be any one with the largest magtinude.
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6.1 Inexact Accelerated Manifold Proximal Gradient
Optimization for Community Detection

In this section, we evaluate the performance of community detection by optimizing the formu-

lation

min
X∈F1n

−trace(XTMX) + λ‖X‖1, (6.1)

with I-AManPG algorithm. Firstly, we compare the efficiency of E-AManPG and I-AManPG on

the community detection problem. Then we evaluate the empirical performance of I-AManPG

on community detection by comparing it with some classical algorithms, such as Danon et al.’s

algorithm [28], the Louvain method [12] and Newman’s spectral optimization method [82].

6.1.1 Data Sets

We solve the community detection problems on synthetic LFR benchmark networks which are

introduced in [65]. For more details, see Section 3.3.1.

The second collection of benchmark data sets consist of four real-world networks. The first three

real-world networks are the same as in Section 3.3.2, that is, American college football network,

Zachary’s karate club network and the Polbook network. The fourth network was generated using

email data from a large European research institution [122] [67]. It is generated from anonymized

information about all incoming and outgoing email between members of the research institution.

There is an edge (u, v) in the network if person u sent person v at least one email. The e-mails only

represent communication between institution members (the core), and the dataset does not contain

incoming messages from or outgoing messages to the rest of the world. The dataset also contains

"ground-truth" community memberships of the nodes. Each individual belongs to exactly one of

42 departments at the research institute. This network represents the "core" of the email-EuAll

network, which also contains links between members of the institution and people outside of the

institution (although the node IDs are not the same).

6.1.2 Compare the Efficiency of I-AManPG and E-AManPG on LFR
benchmarks networks

In this section, we compare the efficiency of I-AManPG and E-AManPG method on detecting

community structures of LFR benchmark networks [65]. Throughout this section, the parameters
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τ1, τ2, and µLFR are set to −2, −1, and 0.1 respectively. Four sets of other parameters are given

as follows

• N = 500, dave = 10, dmax = 20, Nc = 50, nc = 10;

• N = 1000, dave = 20, dmax = 40, Nc = 100, nc = 10;

• N = 5000, dave = 40, dmax = 80, Nc = 500, nc = 10;

• N = 10000, dave = 40, dmax = 80, Nc = 1000, nc = 10;

where N denotes the number of nodes, dave denotes the average node degree, dmax denotes the

maximum node degree, Nc denotes the number of nodes that all communities have, and nc denotes

the number of communities. The balancing parameter λ in (6.1) is set to 0.3.

From the cost function −trace(XTMX) + λ||X||1, and λ > 0 is a tuning parameter, we can

deduce λ = trace(XTMX)/||X||1 ' max eig(M) ∗ p/n. To explain the directly chosen value of λ

0.3, we can compute the max eig(M) ∗ p/n on LFR benchmarks as in Table 6.1. The average of all

the values of max eig(M) ∗ p/n is 0.324.

Table 6.1: max eig(M) ∗ p/n for ground-truth partition for LFR benchmark n=1000, p=20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
max eig(M) ∗ p/n 0.4969 0.4493 0.4023 0.3565 0.3119 0.2681 0.2321 0.2042 0.1947

In Table 6.2, an average result of 10 random runs for the graphs generated randomly as LFR

benchmark networks. I-A denotes I-AManPG and E-A denotes E-AManPG. n is the number

of nodes N , q is the number of communities nc; The notation iter, SSNiter, nf, ng, nR, nSG,

F, ‖ηzk‖‖ηz0‖
, and time, respectively, denote the number of iterations in AManPG, the number of

iterations in semi-smooth Newton method, the number of function evaluations, the number of

gradient evaluations, the number of retraction evaluations, the number of safeguards (Step 9) that

are taken, the function value at the final iterate, the reduction of the norm of search directions
‖ηzk‖
‖ηz0‖

, and the computational time in seconds. The subscript k denotes a scale of 10k. As shown

in Table 6.2, I-AManPG and E-AManPG find the same solutions in the sense that their function

values are the same up to three significant digits. Actually, though not reported in the table, we find

that, in our experimental setting, both I-AManPG and E-AManPG always converge to the same
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Table 6.2: Compare the efficiency of I-AManPG and E-AManPG on LFR benchmark networks.

I-A E-A I-A E-A I-A E-A I-A E-A
(n, q) (500, 10) (1000, 10) (5000, 10) (10000, 10)
iter 64 52 50 59 63 58 55 55

SSNiter 28 212 13 248 34 311 52 330
nf 143 115 112 131 140 128 123 122
ng 83 65 64 73 81 72 71 68
nR 142 114 111 130 139 127 122 121
nSG 4 14 2 15 4 13 3 10
F -67.00 -67.0 -149 -149 -284 -284 -251 -251
‖ηzk

‖
‖ηz0‖

7.0−4 5.7−4 5.5−4 5.1−4 6.3−4 5.8−4 5.2−4 6.9−4

time 0.15 0.31 0.17 0.75 0.84 3.03 1.54 5.19
NMI 1 1 1 1 1 1 1 1
AMI 1 1 1 1 1 1 1 1

Modularity 0.7998 0.7998 0.7998 0.7998 0.8001 0.8001 0.8000 0.8000
Purity 1 1 1 1 1 1 1 1

solution which always represents the ground truth partition. I-AManPG and E-AManPG find the

same partitioning in terms of the NMI, AMI, modularity, and purity. In addition, I-AManPG takes

less work on solving the Riemannian proximal mapping in the sense that the number of semi-smooth

Newton iterations in each outer iteration is small compared to E-AManPG. Moreover, less accuracy

for solving the Riemannian proximal mapping does not influence the number of outer iterations

significantly. Therefore, I-AManPG is more efficient than E-AManPG in terms of computational

time. In later comparisons, we use I-AManPG as the representative method.

6.1.3 Compare the Effectiveness of the Model (6.1) and Existing Community
Detection Methods

In this section, community detection by the optimization model (6.1) with I-AManPG is com-

pared to three state-of-the-art methods: Danon et al.’s algorithm [28], the Louvain method [12] and

Newman’s spectral optimization method [82].

These algorithms all aim to maximize the modularity Q = 1
2m tr(XTMX) over the set of

indicator matrices, where m is the number of edges, and an indicator matrix X is defined by

X ≥ 0, XTX is diagonal, and each row of X has an entry being one. Each indicator matrix specifies

a partitioning of the nodes into communities. Danon et al.’s algorithm is a variant algorithm of

Newman’s fast greedy method [80] which assumes that edges are not initially present and are

76



added one by one by choosing the edge such that this partition gives the maximum increase of

modularity with respect to the previous configuration. Louvain method is divided into two phases

that are repeated iteratively. The first phase creates intermedia-communities by merging nodes

such that the modularity increases. In the second phase, a smaller graph, called reduced graph,

is created where each node in this graph represents an intermedia-community. Newman’s spectral

optimization method computes the eigenvectors of the modularity matrix M corresponding to

the largest positive eigenvalues. The nodes are grouped into two parts based on the signs of the

component of the eigenvectors. The process is then repeated for each of the parts until making a

zero or negative contribution to the total modularity.

To make fair comparisons, we use public-available Matlab implementations of these algorithms.

The codes for Danon et al.’s algorithm, Louvain’s algorithm, and Newman’s spectral method are

respectively from [61], [100] and [14]. Note that the codes for Newman’s spectral method in [14] do

not embed the fine-tuning stage and use a different stopping criteria as in paper [82]. We modified

the stopping criteria in the codes such that it has the same stopping criteria as in paper [82]. The

codes in [14] use dense matrix computations, and we modified them with significantly more efficient

sparse computations. In this way, the computational efficiency was improved to the point where it

produced times that were reasonable to include in these comparisons.

To compare the effectiveness of the four methods, we use three quality measurements, which

are the normalized mutual information (NMI) [29], the adjusted mutual information (AMI) [114],

and the purity [74]. The descriptions of NMI and AMI are in Section 3.3.3.

Given two partitions X and Y of N nodes, the purity is given by

purity(X,Y ) = 1
N

∑
k

max
j
|Xk ∩ Yj |, (6.2)

where Xk denotes the set of nodes in k-th community of partition X, and likewise for Yj , and

|Xk ∩ Yj | denotes the number of nodes in Xk ∩ Yj . The value of purity is also between 0 and 1.

From the definition of purity 6.2, we can see that

• Purity is not symmetric;

• If the graphs are nested, then the purity is 1 if we compare the cluster assignment with larger
number of clusters to the clusters with smaller number of cluster assignment.
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Algorithm 16 Algorithm for purity modification
1: if max(cluster1)≥ max(cluster2) then
2: purity=purity(cluster1, cluster2)
3: else
4: purity=purity(cluster2,cluster1)
5: end if

So, we modify purity by the following Algorithm 16.

Even though we cannot use purity to trade off the quality of the clustering against the number

of clusters, we can use it to measure whether two partitions are nested or not. The closer it is

to one, the better the two partitions are nested. In our numerical experiments, the ground truth

is known and therefore the computed partition is compared to the ground truth. When we do

not have the same number of clusters as the ground-truth assignment to clusters, purity checks

if the assignment at least preserves the ground-truth in a hierarchical fashion and therefore can

potentially be recovered with further aggregation or division. The latter of which we use in the

recursive algorithm in Chapter 7.

LFR Benchmarks. For LFR benchmark networks that we use in this section, the parameters

τ1, τ2, N , dave, dmax, Nc, and nc are respectively set to −2, −1, 1000, 20, 40, 50, and 20. The value

of λ in (6.1) is 0.3. The numerical results with multiple values of µLFR are reported in Table 6.3.

Each result in Table 6.3 is an average result of 10 random runs for the graphs generated randomly

as LFR benchmark networks. From the results in Table 6.3, we observe that when µLFR = 0, I-

AManPG yields NMI = AMI = purity = 1, the same modularity value and the same assignment

to qtrue = 20 strongly connected communities. The Louvain method also has the same results with

ground-truth communities while Danon et al.’s algorithm and Newman’s spectral algorithm can get

the results which are very close to the ground-truth communities, specifically they can detect exactly

ground-truth communities for 9 of 10 random LFR graphs. When µLFR takes 0.1 to 0.4, I-AManPG

and Louvain algorithm can detect the exact ground-truth communities. When µLFR = 0.5, 0.6, I-

AManPG can get results very close to ground-truth partitions and the results are competitive

results with the Louvain algorithm, but with less time. When µLFR = 0.7, 0.8, the results for all

of these four algorithms are far away from the ground-truth partitions because the community

structures in these cases are not strong. Danon’s algorithm and Newman spectral algorithm detect
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Table 6.3: Compare the effectiveness of I-AManPG to other state-of-the-art methods. qc is the
computed number of communities, q is the input parameter for I-AManPG and "force_q" algorithms
denote the algorithms by adding a forcing criteria such that the algorithms stop when qc is smaller
than or equal to qtrue = 20.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Danon

NMI 0.9998 0.9891 0.9394 0.8504 0.7331 0.5808 0.3781 0.1412 0.0548
AMI 0.9998 0.9870 0.9166 0.7922 0.6399 0.4736 0.2878 0.0935 0.0215
Mod. 0.9496 0.8436 0.7225 0.5920 0.4687 0.3452 0.2458 0.1892 0.1814
purity 0.9999 0.9938 0.9739 0.9414 0.9058 0.8344 0.6886 0.4269 0.3095
time 2.8304 2.8597 2.8199 2.7648 2.7287 2.8318 2.7739 2.7625 2.7318
qc 20 20 18 15 11 9 7 7 8

Danon_force_q

NMI 0.9998 0.9889 0.9397 0.8494 0.7309 0.5794 0.3939 0.1778 0.0954
AMI 0.9998 0.9870 0.9201 0.7962 0.6415 0.4727 0.2950 0.1035 0.0282
Mod. 0.9496 0.8433 0.7209 0.5868 0.4615 0.3394 0.2431 0.1872 0.1794
purity 0.9999 0.9935 0.9714 0.9349 0.8954 0.8198 0.6778 0.4201 0.3065
time 2.8353 2.9606 2.8222 2.8068 2.8055 2.8959 2.8183 2.8459 2.7432
qc 20 20 20 20 20 20 20 20 20

Louvain

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2862 0.0784
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2249 0.0358
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4734 0.2660
time 0.5444 0.7291 1.3703 1.8963 2.6797 3.3418 4.5768 9.2669 8.8130
qc 20 20 20 20 20 20 19 11 11

Louvain_force_q

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2981 0.0847
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2382 0.0392
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4642 0.2418
time 0.5440 0.7478 1.0333 1.2042 1.7002 2.0761 2.7676 5.4529 5.5061
qc 20 20 20 20 20 20 19 12 12

Newman_Eig Sparse

NMI 0.9988 0.7225 0.7132 0.6760 0.5498 0.3912 0.2807 0.1340 0.0497
AMI 0.9985 0.6521 0.6396 0.6122 0.4704 0.3071 0.2098 0.0907 0.0235
Mod. 0.9482 0.5493 0.5057 0.4157 0.3051 0.2379 0.1917 0.1578 0.1461
purity 0.9994 0.7828 0.8134 0.7460 0.6723 0.6366 0.5654 0.4367 0.3594
time 0.6346 0.4391 0.4197 0.4522 0.4140 0.3333 0.3565 0.3130 0.3026
qc 20 24 21 19 15 9 7 6 6

Newman_Eig_force_q Sparse

NMI 0.9988 0.6831 0.6787 0.6674 0.5498 0.3912 0.2807 0.1340 0.0497
AMI 0.9985 0.5996 0.5991 0.6026 0.4704 0.3071 0.2098 0.0907 0.0235
Mod. 0.9482 0.4747 0.4463 0.4004 0.3051 0.2379 0.1917 0.1578 0.1461
purity 0.9994 0.7998 0.8001 0.7358 0.6723 0.6366 0.5654 0.4367 0.3594
time 0.6458 0.4666 0.4373 0.4528 0.4231 0.3418 0.3656 0.3213 0.3114
qc 20 18 17 18 15 9 7 6 6

I-AManPG

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9600 0.4517 0.1294
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9539 0.4037 0.0563
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3416 0.1735 0.1113
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9679 0.5605 0.3044
time 0.6357 0.4693 0.5870 0.9494 0.6749 0.4720 1.0332 1.6307 1.6757
q 20 20 20 20 20 20 20 20 20
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relatively inaccurate communities and relatively small qualifying external or internal measurements,

i.e., NMI, AMI, purity and modularity for all noisy cases. From the computational times, we can see

that I-AManPG requires relatively less time than the others. The reason that the computational

time of the Newman’s spectral method is less than I-AManPG is that Newman’s spectral method is

one recursive algorithm. When we compare it to the recursive I-AManPG algorithm in Chapter 7,

the recursive I-AManPG takes less time than Newman’s spectral method. In this sense, it motivates

the generation of the recursive I-AManPG. It is worth noting that the number of edges m does not

change much and only the distribution of edges changes a lot as the mixing parameter increases.

So, the computational time for Danon’s algorithm and Newman’s spectral method do not change

much as the mixing parameter increases because the computational time of these two algorithms

depends more on m rather than on the distribution of edges.

As the mixing parameter increases, the difficulty level of detecting the number of communities

q increases as well. I-AManPG requires the desired number of communities as a parameter value

and the choice of an initial q and the development of a dynamic adaptation strategy are key

ongoing tasks for I-AManPG. To make more fair comparisons with other algorithms, we modified

the stopping criteria of the algorithms to which I-AManPG is compared such that they try to reach

the number of correct communities of the ground-truth partition which is added to their parameter

list. Note that the computed number of communities is not necessarily the same with qtrue even

though the modification to the stopping criteria attempts to force this. The computed numbers

still depends on the properties of the specified algorithm and the particular sequence of cluster

assignments it produces for the given graph and parameter values. Even when we force the number

of communities to be 20 for the other three methods, we observe that the partitions from the other

three methods are not as close as the ground-truth partitions as the partitions from I-AManPG by

comparing the results of NMI, AMI and purity.

To make more fair comparisons with the other algorithms, we tried different choices of number of

communities q as inputs for the I-AManPG algorithm. The implementation on the modified versions

of other algorithms was run on 10 random generated LFR benchmark networks for different mixing

parameters µ and the results are shown in Table 6.4.

Consider the results of different algorithms for the cases with the same computed number of

communities. From the results in Table 6.3 and Table 6.4, we observe that NMI, AMI, modularity
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Table 6.4: Test the effectiveness of I-AManPG for different input parameter q.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I-AManPG

NMI 0.7178 0.7178 0.7178 0.7176 0.7137 0.6966 0.6230 0.2957 0.0795
AMI 0.5452 0.5452 0.5452 0.5451 0.5428 0.5327 0.4856 0.2202 0.0324
Mod. 0.6924 0.6198 0.5474 0.4733 0.4005 0.3251 0.2531 0.1534 0.1007
purity 1.0000 1.0000 1.0000 0.9999 0.9971 0.9842 0.9243 0.6363 0.5118
time 0.1939 0.2175 0.5020 0.3373 0.2593 0.4983 0.3297 0.7154 0.6616
q 10 10 10 10 10 10 10 10 10

I-AManPG

NMI 0.9531 0.9523 0.9531 0.9523 0.9531 0.9493 0.9121 0.4132 0.1124
AMI 0.9049 0.9034 0.9049 0.9034 0.9049 0.8999 0.8675 0.3535 0.0466
Mod. 0.9245 0.8266 0.7306 0.6324 0.5363 0.4367 0.3362 0.1724 0.1100
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9704 0.5765 0.3498
time 1.0201 0.7729 0.6772 0.6584 0.7162 0.7193 1.0411 1.7427 1.5559
q 17 17 17 17 17 17 17 17 17

I-AManPG

NMI 0.9717 0.9722 0.9665 0.9726 0.9717 0.9709 0.9411 0.4298 0.1183
AMI 0.9415 0.9424 0.9368 0.9433 0.9415 0.9417 0.9131 0.3733 0.0498
Mod. 0.9362 0.8382 0.7367 0.6423 0.5427 0.4442 0.3424 0.1721 0.1089
purity 1.0000 1.0000 0.9947 1.0000 1.0000 0.9989 0.9773 0.5746 0.3379
time 1.0509 0.9585 0.7564 0.7069 0.8014 0.7777 1.1587 2.0853 1.9374
q 18 18 18 18 18 18 18 18 18

I-AManPG

NMI 0.9883 0.9883 0.9845 0.9883 0.9796 0.9828 0.9520 0.4339 0.1264
AMI 0.9753 0.9753 0.9716 0.9753 0.9667 0.9699 0.9365 0.3803 0.0557
Mod. 0.9453 0.8460 0.7446 0.6474 0.5445 0.4468 0.3427 0.1728 0.1111
purity 1.0000 1.0000 0.9962 1.0000 0.9914 0.9949 0.9714 0.5634 0.3203
time 0.9389 0.9057 0.8584 0.9534 0.7417 1.0226 1.0085 2.1798 1.8913
q 19 19 19 19 19 19 19 19 19

I-AManPG

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9600 0.4517 0.1294
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9539 0.4037 0.0563
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3416 0.1735 0.1113
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9679 0.5605 0.3044
time 0.6577 0.5052 0.6423 0.9890 0.7112 0.4951 1.0755 1.7648 1.7855
q 20 20 20 20 20 20 20 20 20

I-AManPG

NMI 0.9944 0.9946 0.9946 0.9945 0.9945 0.9927 0.9620 0.4541 0.1322
AMI 0.9881 0.9885 0.9885 0.9881 0.9883 0.9863 0.9547 0.4056 0.0566
Mod. 0.9303 0.8338 0.7370 0.6380 0.5402 0.4422 0.3384 0.1731 0.1107
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9671 0.5498 0.1751
time 1.6041 1.2957 1.4677 1.1984 2.4890 1.3366 1.0639 1.9795 2.0597
q 21 21 21 21 21 21 21 21 21

I-AManPG

NMI 0.9890 0.9890 0.9894 0.9890 0.9887 0.9868 0.9649 0.4649 0.1352
AMI 0.9764 0.9765 0.9773 0.9765 0.9763 0.9742 0.9500 0.4159 0.0574
Mod. 0.9124 0.8161 0.7239 0.6263 0.5315 0.4349 0.3358 0.1728 0.1123
purity 1.0000 1.0000 1.0000 1.0000 0.9996 0.9981 0.9831 0.5642 0.1770
time 1.7685 1.6543 1.4107 0.8671 1.7232 1.4291 0.9652 2.4757 2.5771
q 22 22 22 22 22 22 22 22 22

I-AManPG

NMI 0.9835 0.9838 0.9842 0.9834 0.9836 0.9805 0.9532 0.4622 0.1402
AMI 0.9649 0.9654 0.9663 0.9647 0.9655 0.9618 0.9317 0.4105 0.0606
Mod. 0.8937 0.8009 0.7114 0.6148 0.5233 0.4278 0.3288 0.1710 0.1120
purity 1.0000 1.0000 1.0000 1.0000 0.9997 0.9975 0.9784 0.5662 0.1798
time 1.9044 1.7584 1.6944 1.2244 1.8282 2.0833 1.3244 2.9445 2.5133
q 23 23 23 23 23 23 23 23 23
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and purity of I-AManPG are larger than the results of Danon’s algorithm for q = 18 and µ = 0.2,

Newman’s spectral algorithm for q = 21 and µ = 0.2 and Newman’s spectral algorithm for q = 19

and µ = 0.3. NMI, AMI, modularity and purity of I-AManPG are competitive with the results of

Louvain’s algorithm for q = 19 and µ = 0.6 and I-AManPG requires less time.

Table 6.4 also provides promising evidence for the possibility of development of a dynamic

adaptation strategy for I-AManPG. When µLFR takes 0 to 0.7, q = 10, 17, 18, 19, 20, 21, 22, 23, i.e.,

near qtrue, the modularity, NMI and AMI of I-AManPG decreases as q moves away from qtrue. Of

course this information is not available for the algorithm to use, but it is due to the fact though

not reported in Table 6.4 that when µLFR = 0, 0.1 the partitionings for q = 17, 18, 19, 20, 21, 22

are perfectly nested, i.e., the extra communities of q + 1 are refinements of the partition of q by

splitting without crossing the ideal community boundaries. When comparing the cases q = 10,

q = 17 and ground-truth, we observe that they all have perfect nesting with respect to each other.

From the results of Table 6.4, we observe that when µLFR takes 0.2 to 0.6, each partitioning for

q = 10, 17, 18, 19, 21, 22, 23 is well nested with partitioning of qtrue because the purities are very

close to 1.

Real-World Networks. In this section, we apply the I-AManPG algorithm to the four real-

world networks mentioned in Section 6.1.1 and compared with the Danon et al.’s algorithm [28],

the Louvain method [12] and Newman’s spectral optimization method [82]. The results are shown

in Table 6.5. From Table 6.5 and Table 6.6, we can analyze the results for each network. For the

football network, I-AManPG achieves better NMI, AMI, purity than the other methods and com-

parable modularity with Louvain method. In addition, we can successfully force Danon, Louvain

and Newman’s methods to determine assignments with the same number of communities as the

ground-truth (12). Note that the computed number of communities is not necessarily the same

with 12 even though the modification to the stopping criteria attempts to force this. Even when

we force the number of communities to be 12 for the other three methods, we can observe that

the partitions from Danon and Newman’s methods are not as close as the ground-truth partitions

than the partitions from I-AManPG by comparing the results of NMI, AMI and purity. Louvain

and the forced Louvian gets the same NMI, AMI and purity results. From Table 6.6, it can be

seen that I-AManPG with q = 10 has larger purity than the Louvain algorithm, and NMI, AMI

are comparable.
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For the Karate club network, I-AManPG achieves all 1’s for NMI, AMI and purity while the

others can not as they can not get the same number of communities as the ground-truth commu-

nities. The modularity for I-AManPG is a bit smaller than the others, but it is still comparable

to other methods and larger than the forced Newman method which can get the same number of

communities. When we try q = 4 as the input of I-AManPG in Table 6.6, the NMI, AMI and

purity are larger than Danon, Newman, and Louvain algorithms. Modularity in this case is larger

than Danon’s, and Newman’s algorithms and comparable with the Louvain algorithm.

The Polbooks and email network are difficult to analyze as modularity does not predict well

the quality of the assignment measured by NMI and AMI. All the results are comparable for these

two networks overall. This indicates that the modularity should be replaced with some other cost

function. This can be investigated as a future work of this dissertation. Note that, I-AManPG takes

a longer time than the other algorithms especially for relatively larger network email network. To

improve the efficiency and the adaption on the number of communities, we propose one recursive

I-AManPG algorithm in Chapter 7.

6.1.4 Continuation Technique for the Balancing Parameter of λ

As we know, we can apply I-AManPG to solve the community detection problems by solving

the following optimization problem

min
X∈Fv

f(X) + λ||X||1, (6.3)

where λ > 0 is a tuning parameter and F1n = {X ∈ Rn×q : XTX = Iq,1n ∈ span(X)} is

the domain. f(X) = −trace(XTMX) in particular for community detection, where M = A −

A1n1TnA/(1TnA1n) is the modularity matrix and A is the adjacency matrix of the graph.

The choice of the balancing parameter λ is very important to improve the effectiveness for

I-AManPG. In this section, we apply the same continuation technique for ARPPG in Algorithm

5 to I-AManPG in Algorithm 17. In this section, we compare the results of I-AManPG algorithm

with and without the continuation technique. Let us compare the results on LFR benchmark for

n=1000, p=20 and mixing parameter in the range of [0:0.1:0.8] with the tuning parameter λ directly

chosen as 0.3 and using the continuation technique in the following algorithm.

There are some choices for the criteria of Algorithm 17. Firstly, we take (the minimum difference

of the first two largest magnitude of each row of X) larger than 0.5 to guarantee enough sparse of
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Table 6.5: Compare the effectiveness of I-AManPG to other state-of-the-art methods. Each result
is an average result of 10 random runs for the real-world networks.

Football Karate-2 Polbooks Email

Danon

NMI 0.7298 0.5305 0.5740 0.5261
AMI 0.5744 0.3830 0.5075 0.3715
Mod. 0.5661 0.4087 0.5225 0.4240
purity 0.9043 0.9412 0.8571 0.8587
time 0.0269 0.0063 0.0221 2.9917
qc 6 4 4 26

Danon_force_q

NMI 0.7031 0.5305 0.5740 0.5531
AMI 0.5490 0.3830 0.5075 0.3954
Mod. 0.5183 0.4087 0.5225 0.4188
purity 0.5826 0.9412 0.8571 0.4119
time 0.0267 0.0056 0.0215 2.9443
qc 12 4 4 42

Louvain

NMI 0.8903 0.5866 0.5745 0.5296
AMI 0.8208 0.4254 0.5560 0.3763
Mod. 0.6046 0.4188 0.4986 0.4100
purity 0.9217 0.9706 0.8476 0.8736
time 0.0548 0.0353 0.0486 1.9203
qc 10 4 3 25

Louvain_force_q

NMI 0.8903 0.5866 0.5745 0.5296
AMI 0.8208 0.4254 0.5560 0.3763
Mod. 0.6046 0.4188 0.4986 0.4100
purity 0.9217 0.9706 0.8476 0.8736
time 0.0525 0.0278 0.0454 1.6455
qc 10 4 3 25

Newman_Eig Sparse

NMI 0.6987 0.6771 0.5201 0.5176
AMI 0.5611 0.4936 0.4429 0.3805
Mod. 0.4926 0.3934 0.4672 0.3951
purity 0.8087 1.0000 0.8476 0.4100
time 0.0311 0.0082 0.0312 0.3794
qc 8 4 4 43

Newman_Eig_force_q Sparse

NMI 0.6987 0.8041 0.5201 0.5176
AMI 0.5611 0.6618 0.4429 0.3805
Mod. 0.4926 0.2064 0.4228 0.3950
purity 0.8087 1.0000 0.8476 0.4100
time 0.0314 0.0065 0.0291 0.3804
qc 8 2 3 42

I-AManPG

NMI 0.9047 1.0000 0.4874 0.5908
AMI 0.8652 1.0000 0.4756 0.4645
Mod. 0.5875 0.3715 0.4878 0.2419
purity 0.9130 1.0000 0.8190 0.5692
time 0.2214 1.5514 0.0582 13.4378
q 12 2 3 42
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Table 6.6: Compare the effectiveness of I-AManPG with different q which is set to near qtrue. Each
result is an average result of 10 random repeated runs for the real-world networks.

I-AManPG

Football

NMI 0.8928 0.9035 0.9047 0.9108
AMI 0.8194 0.8536 0.8652 0.8633
Mod. 0.5987 0.6022 0.5875 0.5768
purity 0.9304 0.9217 0.9130 0.9304
time 0.2206 0.2449 0.2452 0.0712
q 10 11 12 13

Karate

NMI 1.0000 0.8041 0.6956 0.5631
AMI 1.0000 0.6618 0.5147 0.3827
Mod. 0.3715 0.3922 0.4112 0.3912
purity 1.0000 1.0000 1.0000 0.9706
time 1.7951 1.4493 0.4192 0.2041
q 2 3 4 5

Polbooks

NMI 0.4874 0.4844 0.4853 0.4461
AMI 0.4756 0.4175 0.3863 0.3331
Mod. 0.4878 0.4902 0.5121 0.5052
purity 0.8190 0.8286 0.8381 0.8476
time 0.1444 0.2353 0.3954 0.3608
q 3 4 5 6

Email

NMI 0.5497 0.6040 0.6051 0.5908
AMI 0.4098 0.4775 0.4804 0.4645
Mod. 0.3422 0.2914 0.2946 0.2419
purity 0.7095 0.6388 0.6259 0.5692
time 2.2626 2.6843 6.3719 13.4378
q 15 25 26 42

Algorithm 17 Algorithm for Assignment Matrix with Continuation
1: λ0 = λmax(M) ∗ q ∗ ρ0/n, λmax(M) is the largest eigenvalue of the modularity matrix M , ρ0 is

a fixed small number and we set it as 0.5 here;
2: X∗ = I-AManPG(x0, λ0);
3: X̂∗ = Assign(X∗);
4: while Some criteria do
5: x0 = X∗;
6: ρ0 = ρ0 + 0.01, λ0 = λmax(M) ∗ q ∗ ρ0/n;
7: X∗ = I-AManPG(x0, λ0);
8: X̂∗ = Assign(X∗).
9: end while
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the result. If we only consider this sparse criteria, the algorithm will update λ for many many times

even after λ > 2. Except that we may also consider the criteria if |||x|−|x0|||F /(n∗p) > 1e−4, break

in the while loop to stop it if we have closer results of X∗.

The comparison results are in Table 6.8.From the results in Table 6.8, it is seen that these two

ways can get the same NMI, AMI, Modularity and purity results and competitive efficiency for the

mixing parameter µ = [0 : 0.1 : 0.5], when the graph become more noisy, i.e., µ = 0.6, 0.7, the

continuation technique can get larger NMI, AMI, Modularity and purity results than choosing λ

directly as 0.3 but with more time. When the graph become much more noisy µ = 0.7, 0.8, and

it does not have strong community structure to be detected. These two ways behave similarly

and continuation technique takes much more time. In addition, we can compute the modularity

of the Ground-Truth partition for each LFR benchmark as in Table 6.7. When µ = 0.7, 0.8, the

modularity is less than 0.3, and usually we say that there is no community structure.

Table 6.7: Modularity for ground-truth partition for LFR benchmark n=1000, p=20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modularity 0.9497 0.8499 0.7503 0.6500 0.5499 0.4499 0.3499 0.2500 0.1501

Whether we use the continuation technique or not depends on our purposes. If one would

like to get more precise community structures and regardless of the computational time, then the

continuation technique is recommended to be used.

Now, let us compare the results of I-AManPG with the continuation technique to the state-

of-the-art methods, Danon’s, Newman’s, and the Louvain algorithm.From Table 6.9, it is seen

that I-AManPG with λ continuation performs much better than Danon and Newman_Eig for

µLFR = [0 : 0.1, 0.6] in terms of both quality of assignment and time. For the very noisy cases

µLFR = 0.7, 0.8, all algorithms produce far less effective assignments. However, I-AManPG and

Louvain algorithm are relatively more effective than the other two algorithms.

When we compare the effectiveness with Louvain algorithm, it is seen that I-AManPG with

continuation can get the same results of NMI, AMI, Modularity and purity for µLFR = [0 : 0.1, 0.4].

For µLFR = 0.5, 0.6, 0.7 and 0.8, I-AManPG can get larger NMI, AMI and competitive modularity

and purity compared with Louvain algorithm. From the comparison of efficiency with Louvain
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Table 6.8: Compare the results of I-AManPG by choosing the balance parameter λ directly and
using the continuation technique. An average result of 10 random runs for the randomly generated
graphs by LFR benchmark networks.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I-AManPG-λ-directly

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9600 0.4517 0.1294
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9539 0.4037 0.0563
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3416 0.1735 0.1113
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9679 0.5605 0.3044
time 0.6103 0.4981 0.6764 0.9192 0.6559 0.4580 1.0048 1.5865 1.6467

I-AManPG-λ-continuation

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9824 0.5684 0.1212
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9811 0.5357 0.0567
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3475 0.1951 0.1312
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9891 0.6721 0.1654
time 1.5690 1.3803 1.1894 1.3832 1.1236 1.2255 3.3668 34.9186 42.8637
λ 0.2534 0.2291 0.2052 0.1818 0.1591 0.1367 0.1184 0.1041 0.0999

# updates of λ 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.3000

algorithm, I-AManPG can obtain the competitive time for µLFR = [0 : 0.1 : 0.6] and is slower than

Louvain algorithm for µLFR = 0.7, 0.8.

For the criteria of Algorithm 17, it is more reasonable to change the distance criteria (the

minimum difference of the first two largest magnitude of each row of X) larger than 0.5 to the ratio

criteria (the minimum ratio of the first two largest magnitude of each row of X) larger than 5 to

guarantee enough sparse of the result. If we only consider this sparse criteria, the algorithm will

update λ for many many times even after λ > 2. Except that we may also consider the criteria

if |||x| − |x0|||F /(n ∗ p) > 1e− 6, break in the while loop to stop it if we have closer results of X∗.

In addition, we add one more criteria if ρ > 1, break.

From the results in Table 6.10, we can find that the ratio criteria is also a choice for the

criteria. I-AManPG with continuation technique with ratio criteria can get the same NMI, AMI,

Modularity and purity results as I-AManPG with continuation technique with distance criteria.

For the case µ = 0, I-AManPG with continuation technique with ratio criteria takes less time than

I-AManPG with continuation technique with distance criteria. For the other cases, I-AManPG

with continuation technique with ratio criteria takes more time than I-AManPG with continuation

technique with distance criteria.
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Table 6.9: Compare the effectiveness of I-AManPG with λ continuation to other state-of-the-art
methods. Each result is an average result of 10 random runs for the graphs generated randomly as
LFR benchmark networks. qc is the computed number of communities, q is the input parameter
for I-AManPG and "force_q" algorithms denote the algorithms by adding a forcing criteria such
that the algorithms stop when qc is smaller than or equal to qtrue = 20.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Danon

NMI 0.9998 0.9891 0.9394 0.8504 0.7331 0.5808 0.3781 0.1412 0.0548
AMI 0.9998 0.9870 0.9166 0.7922 0.6399 0.4736 0.2878 0.0935 0.0215
Mod. 0.9496 0.8436 0.7225 0.5920 0.4687 0.3452 0.2458 0.1892 0.1814
purity 0.9999 0.9938 0.9739 0.9414 0.9058 0.8344 0.6886 0.4269 0.3095
time 2.7403 2.8018 2.7810 2.8066 2.7341 2.7161 2.7317 2.7749 2.7852
qc 20 20 18 15 11 9 7 7 8

Danon_force_q

NMI 0.9998 0.9889 0.9397 0.8494 0.7309 0.5794 0.3939 0.1778 0.0954
AMI 0.9998 0.9870 0.9201 0.7962 0.6415 0.4727 0.2950 0.1035 0.0282
Mod. 0.9496 0.8433 0.7209 0.5868 0.4615 0.3394 0.2431 0.1872 0.1794
purity 0.9999 0.9935 0.9714 0.9349 0.8954 0.8198 0.6778 0.4201 0.3065
time 2.7430 2.7314 2.7501 2.7762 2.7314 2.7514 2.7580 2.7477 2.7608
qc 20 20 20 20 20 20 20 20 20

Louvain

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2862 0.0784
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2249 0.0358
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4734 0.2660
time 0.5346 0.6764 1.2988 1.8051 2.5857 3.2167 4.3215 8.5401 8.5827
qc 20 20 20 20 20 20 19 11 11

Louvain_force_q

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2981 0.0847
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2382 0.0392
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4642 0.2418

sum_time 0.5733 0.7016 1.0253 1.2292 1.6447 1.9749 2.6044 5.1309 5.1496
qc 20 20 20 20 20 20 19 12 12

Newman_Eig Sparse

NMI 1.0000 0.6251 0.8797 0.7618 0.5400 0.4247 0.2852 0.1265 0.0516
AMI 1.0000 0.5101 0.8613 0.7127 0.4707 0.3377 0.2116 0.0846 0.0244
Mod. 0.9498 0.5271 0.6391 0.4721 0.3011 0.2638 0.1955 0.1523 0.1426
purity 1.0000 0.8230 0.9120 0.8080 0.6470 0.6590 0.5710 0.4140 0.3490
time 0.6997 0.3057 0.4958 0.4621 0.4470 0.3238 0.2723 0.2773 0.2716
qc 20 11 23 20 15 8 6 6 6

Newman_Eig_force_q Sparse

NMI 1.0000 0.6251 0.8501 0.7618 0.5400 0.4247 0.2852 0.1265 0.0516
AMI 1.0000 0.5101 0.8233 0.7127 0.4707 0.3377 0.2116 0.0846 0.0244
Mod. 0.9498 0.5271 0.5396 0.4721 0.3011 0.2638 0.1955 0.1523 0.1426
purity 1.0000 0.8230 0.8920 0.8080 0.6470 0.6590 0.5710 0.4140 0.3490
time 0.5973 0.2935 0.4171 0.4340 0.4191 0.3101 0.2692 0.2744 0.2763
qc 20 11 20 20 15 8 6 6 6

I-AManPG-λ-continuation

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9824 0.5684 0.1212
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9811 0.5357 0.0567
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3475 0.1951 0.1312
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9891 0.6721 0.1654

sum_time 1.5690 1.3803 1.1894 1.3832 1.1236 1.2255 3.3668 34.9186 42.8637
λ 0.2534 0.2291 0.2052 0.1818 0.1591 0.1367 0.1184 0.1041 0.0999

# updates of λ 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.3000
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Table 6.10: Compare the results of I-AManPG by choosing the balance parameter λ directly and
using the continuation technique with ratio criteria and ρ ≤ 1. An average result of 10 random
runs for the randomly generated graphs by LFR benchmark networks.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I-AManPG-λ-directly

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9600 0.4517 0.1294
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9539 0.4037 0.0563
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3416 0.1735 0.1113
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9679 0.5605 0.3044
time 0.6381 0.4846 0.6009 0.9273 0.6475 0.4750 1.0690 1.5725 1.6410

I-AManPG-λ-continuation

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9841 0.5836 0.1253
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9829 0.5521 0.0608
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3478 0.2003 0.1404
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9902 0.6868 0.1722
time 0.5395 6.7830 5.1047 6.8252 6.4411 4.9513 7.6709 122.3704 174.9319
λ 0.2485 0.4058 0.3822 0.3387 0.2963 0.2547 0.2205 0.1940 0.1850

# updates of λ 1.0000 9.1000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

We also implement I-AManPG with and without continuation technique on the real-world

networks, the Football, Karate Club, and Polbooks networks. Here, we take the ratio criteria as

one example to compare the results in Table 6.11. For Karate club network and the Polbooks

network, the effectiveness of I-AManPG is not improved by using the λ continuation technique.

For the Football network, it can be seen that I-AManPG with the λ continuation technique can

improve the effectiveness of I-AManPG. NMI, AMI, modularity and purity by I-AManPG with

λ continuation technique are larger than I-AManPG with λ choosing directly while the former

takes longer time than the latter. If one would like to get more precise community structures and

regardless of the computational time, then the λ continuation technique is recommended.

The choice of the balancing parameter λ plays an important role for clustering. The continuation

technique is a good idea to choose λ. As mentioned before, the criteria in the continuation technique

Algorithm 17 can be chosen as well. Another criteria is to use the cost function by modifying this

criteria to some other criteria like modu(X̂∗) > modu(x̂0). This can be taken as a future work of

this dissertation.
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Table 6.11: Compare the results of I-AManPG by choosing the balance parameter λ directly and
using the continuation technique with ratio criteria and ρ ≤ 1. An average result of 10 random
runs for the randomly generated graphs by real-world networks.

Football Karate Polbooks

I-AManPG-λ-directly

NMI 0.9047 1.0000 0.4874
AMI 0.8652 1.0000 0.4756
Mod. 0.5875 0.3715 0.4878
purity 0.9130 1.0000 0.8286
time 0.2778 2.3722 0.1529
q 12 2 3

I-AManPG-λ-continuation

NMI 0.9242 1.0000 0.4874
AMI 0.8979 1.0000 0.4756
Mod. 0.6005 0.3715 0.4878
purity 0.9217 1.0000 0.8286
time 21.5983 21.8246 1.9287
q 12 2 3
λ 0.9218 0.2781 0.3167

# updates of λ 10.0000 10.0000 10.0000

6.2 Inexact Accelerated Manifold Proximal Gradient
Optimization for the k-means model

6.2.1 k-means Model

The classic k-means model is commonly written in terms of k centroids. It can also be written

in terms of assignment matrices. Let A ∈ Rn×d be a data matrix where each data point in Rd

corresponds to a row of A. LetX ∈ Rn×q be the assignment matrix such thatXTX = Iq, XX
T1n =

1n, which forces non-zero elements in each column of X to have the same value (i.e., 1√
ni
) so X

would be the normalized assignment matrix. The classic k-means model can also be rewritten as

[23]

min
X
||A−XXTA||2F s.t. X ∈ F1n = {X ∈ Rn×q : XTX = Iq, XX

T1n = 1n}. (6.4)

To see this, we notice that ||A − XXTA||2F =
∑n
i=1 ||A(i) − X(i)X

TA||22, where A(i) and X(i)

denote the i-th row of A and X, respectively, and X(i)X
TA denotes the centroid of the cluster the

i-th data point belongs to [15].
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6.2.2 The Connection Between k-means Model and AManPG

To deal with k-means model, that is to minimize the cost function ||A − XXTA||2F , where

X ∈ F1n = {X ∈ Rn×q : XTX = Iq, XX
T1n = 1n}.

Minimizing ||A−XXTA||2F is equivalent to minimizing − tr(XTAATX) over F1n , also we know

that X is sparse, so we can add a penalty term λ||X||1 := λ
∑
ij |Xij | as we did for community

detection, where λ > 0 is a tuning parameter controlling the balance between variance and sparsity.

Therefore, to deal with k-means model, we just need to solve a constrained Stiefel optimization

problem

X∗ = argmin
X∈F1n

− tr(XTAATX) + λ‖X‖1, (6.5)

whereA ∈ Rn×d be a data matrix, and X∗ is the optimal assignment matrix.

We have shown that the feasible set F1n is a submanifold in Section 4.1, so we can apply I-

AManPG algorithm to the optimization problem (6.5). So, I-AManPG over the feasible set can be

applied to k-means model.

6.2.3 Numerical Experiments

To see the performance of AManPG method on k-means model, we compare the results with

the classical k-means clustering method (k-means++) on some datasets. The datasets that we use

are listed as follows. The first 3 datasets are obtained from UCI Machine Learning Repository [4]

which is a good data source. The last dataset is obtained from ELKI.

• The Zoo dataset is obtained from UCI and it contains 101 animals with 16 attributes and
these animals can be classified into 7 classes.

• Iris dataset is one famous clustering dataset from Fisher [38], and it contains 150 iris plants
with 4 attributes. It can be classified into 3 classes of 50 instances each, where each class
refers to a type of iris plant.

• The leaf dataset [104] comprises 340 samples from 30 different plant species, and each plant
comprises 14 shape and texture attributes.

• Mouse Head dataset is an artificial data set from ELKI. The original mouse head dataset
contains 500 data points including 10 noise data points. Here we do not consider the noises and
only consider the other 490 data points. So the mouse head dataset used in this dissertation
contains 490 data points with 2 attributes which can be classified into 3 classes, which refer
to head, left ear and right ear.
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For the classical k-means method we use the k-means clustering method with k-means++

as the initiation algorithm. For I-AManPG method, we use the same initial assignment as in

k-means clustering and set the balancing parameter directly as maxeig(AAT ) ∗ q/n. We call the

function idx = kmeans(X, k) for k-means method in Matlab, and this function uses the k-means++

algorithm as the cluster center initialization by default.This function is implemented in an C++

toolbox, while the implementation of I-AManPG is just the simple Matlab implementation. As

a result, we are mainly concerned with evaluating the quality of results of I-AManPG relative to

that of kmeans++ for Euclidean data. This shows the flexibility of the approach, i.e., graph-based

problems and Euclidean data-based problems. The computational time is also reported to motivate

further development of the I-AManPG algorithm to improve efficiency before implementing an

efficient high-performance codes in the C++ ROPTLIB library [52].

Table 6.12: Performance of I-AManPG to k-means model over 10 runs

Datasets size q Measurements I-AManPG k-Means++

Iris 150× 4 3
NMI 0.7132 0.7330
AMI 0.6837 0.7187
purity 0.8887 0.8860
time(s) 0.1061 0.0063

Mouse 490× 2 3
NMI 0.7446 0.6173
AMI 0.7240 0.5824
purity 0.9163 0.8388
time(s) 0.5923 0.1535

Zoo 101× 16 7
NMI 0.6332 0.6353
AMI 0.5715 0.5653
purity 0.7109 0.6990
time(s) 0.2801 0.0126

Leaf 340× 14 30
NMI 0.6299 0.6420
AMI 0.4376 0.4558
purity 0.5841 0.5826
time(s) 0.4669 0.0075

The comparison results are shown in Table 6.12 and Figure 6.2. The NMI, AMI, and purity are

used as the measurements for the quality of the clustering assignments. The computational time

is included for completeness. From the results in Table 6.12 and Figure 6.2, it can be seen that

the I-AManPG algorithm can get a better clusters assignment of the mouse head dataset than the

k-means clustering algorithm with k-means++ initialization algorithm from the NMI, AMI, and
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Figure 6.1: Mouse Head Original Data
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Figure 6.2: Mouse Head results
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purity. For the Iris, Zoo, and Leaf datasets, the I-AManPG algorithm can get comparable NMI,

AMI, and purity as the k-means clustering algorithm with k-means++ initialization algorithm in

terms of the effectiveness.

6.3 Inexact Accelerated Manifold Proximal Gradient
Optimization for Discriminative k-means model

A second more complicated k-means related model on Euclidean data is often motivated by

the assumption of high dimensionality of the data or the assumption that the, high or possibly

moderate, dimensionality is an over-parameterization of the data that admits a representation in

a space of smaller dimension. Here we are interested in the problem as an increased complexity

problem that subsumes the k-means model that can be handled by the Riemannian approach

of I-AManPG. In [33], the dimensionality reduction technique, Linear Discriminant Analysis, is

combined with the k-means clustering. It is further analyzed in [121] and is shown to be equivalent

to a kernel k-means. The resulting optimization problem is given therein by

min
X∈An×q ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA), (6.6)

where A is the data matrix, λregu > 0 is the regularization parameter. This problem is solved [33]

by alternating between the computation of X for a given λregu and the computation of λregu for a

given X. Given λregu, (6.6) is in the form of (1.5). This can be reformulated into

min
X∈An×q ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA) + λ||X||1, (6.7)

which is in form of (1.10). Given λregu, we apply the I-AManPG algorithm to the discriminative

k-means problem (6.7).

We compare the results of I-AManPG with some classic algorithms, the DisKmeans algorithm

[121], Local Linear Embedding (LLE) [99], and Laplacian Eigenmap (LEI) [10]. These algorithms

are described in Section 2.3.2.

6.3.1 Numerical Experiments

To compare the performance of I-AManPG with some representative clustering algorithms on

discriminative k-means, we use the following 4 datasets. The first 3 datasets are obtained from UCI
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Machine Learning Repository, and the other one is USPS dataset from (ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/

data/).

• Segment dataset has 2309 instances which were drawn randomly from a database of 7 outdoor
images. Each instance has 19 attributes.

• Pendigits dataset is a handwritten digit classification dataset [3]. It contains 10992 handwrit-
ten digits [0, 1, ..., 9], where each handwritten digit is made up of the x and y coordinates of
the pen traced across a digital screen. Each instance has 16 attributes.

• Satimage dataset consists of the multi-spectral values of pixels in 3 × 3 neighborhoods in
a satellite image. There are 36 attributes (=4 spectral bands × 9 pixels in neighborhood).
There are 6435 samples, each sample is categorized as one of 6 classes.

• USPS dataset is a digit dataset automatically scanned from envelopes by the U.S. Postal
Service containing a total of 9298 16 × 16 pixel grayscale samples, (256 attributes) [55].
These samples are categorized into 10 groups, where each group was drawn from a different
ZIP Code region.

A summary of the data sets used for discriminative k-means model is given in Table 6.13.

Table 6.13: Summary of data sets used for discriminative k-means model

Data Set # INST (n) # DIM (d) # CL (qtrue)
segment 2309 19 7
pendigits 10992 16 10
satimage 6435 36 6
USPS 9298 256 10

To make the results of different algorithms comparable, we first run k-means and the cluster-

ing result of k-means is used to construct the set of k initial centroids, for all experiments. To

measure the performance of the algorithms, we use the NMI and Accuracy (ACC) in (6.8) as two

measurements for clustering quality as the authors did in [121]. Since the codes evaluated in [121]

are not publicly available, we only compare the clustering quality and do not compare the compu-

tation time. As with the k-means model discussion, we are concerned with evaluating the quality

of results of I-AManPG relative to state-of-the-art algorithms for Euclidean data to demonstrate

the flexibility of the method and its viability as the candidate of an efficient library version.

For n samples in a dataset, let yi be the class label for the i-th sample and ŷi the predicted

value. Accuracy between the class labels y and the predicted values ŷ for the clustering tasks is
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defined by

accuracy(y, ŷ) = max
perm∈P

1
n

n−1∑
i=0

1(perm(ŷi = yi)), (6.8)

where 1(ŷi = yi) is the indicator function, andP is the set of all permutations in [1 : q], where q is

the number of clusters. It is important to note that there are q! permutations in P, which is quite

high and the computation of accuracy is therefore prohibitive if we apply blindly this formula. The

Hungarian algorithm [63, 58] is used to compute it in O(q3) which is significantly faster.

We use q = qtrue which is listed in the last column of Table 6.13 as the input for I-AManPG. In

addition, I-AManPG’s another two parameters, the balancing parameter λ and the regularization

parameter λregu are set as follows. The balancing parameter λ as λ = (maxeig((In+ 1
λregu

ATA)−1)∗

q + log det(In + 1
λregu

ATA))/n by taking the second half cost function the regularization term

log det(In + 1
λregu

ATA) into account, as the balancing parameter is used to make the results as

sparse as possible. The choice of λregu follows the optimal choice which is shown in Figure 1 of

[121].

Table 6.14: Numerical Results on the DisKmeans Model. DisKmeans stands for DisKmeans al-
gorithm in [121]. LLE stands for Local Linear Embedding and LEI for Laplacian Eigenmap.NA
stands for Not Applicable.

Dataset Method λ λregu NMI ACC

segment I-AManPG 0.0704 1 0.605 0.422
DisKmeans NA 1 0.628 0.687

LLE NA NA 0.539 0.594
LEI NA NA 0.618 0.663

pendigits I-AManPG 0.0199 10 0.663 0.665
DisKmeans NA 10 0.669 0.699

LLE NA NA 0.577 0.599
LEI NA NA 0.645 0.697

satimage I-AManPG 0.0289 1e3 0.598 0.699
DisKmeans NA 1e3 0.593 0.701

LLE NA NA 0.493 0.627
LEI NA NA 0.548 0.663

usps I-AManPG 0.0123 1e3 0.645 0.679
DisKmeans NA 1e3 0.647 0.712

LLE NA NA 0.569 0.631
LEI NA NA 0.640 0.700
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The results for the DisKmeans model are in Table 6.14. For the segment dataset, the NMI by

I-AManPG is larger than the LLE, and less than but close to the LEI and DisKmeans algorithm.

The ACC by I-AManPG is less than the other algorithms. For the pendigits network, the NMI and

ACC by I-AManPG are larger than the LLE algorithm and close to DisKmeans, and LEI. For the

satimage dataset, I-AManPG performs relatively better than the others overall. NMI by I-AManPG

is higher than all the other algorithms. ACC by I-AManPG is larger than LLE, and LEI and close to

the DisKmeans algorithm. For the USPS dataset, NMI and ACC by I-AManPG is larger than LLE

and close to DisKmeans and LEI algorithm. Overall, the performance of IAManPG are comparable

to the other algorithms in terms of NMI and ACC. The I-AManPG algorithm provides some new

opportunities for solving the clustering problems in terms of Riemanian Optimization.

6.4 Inexact Accelerated Manifold Proximal Gradient
Optimization for Normalized Cut

Normalized cut has been widely used for image segmentation. Its optimization formulation is

given by

min
X∈An,qv

fNC(X) = −trace(XTD−1/2WD−1/2X). (6.9)

This problem assumes that graph-based data are represented by an appropriate matrix character-

izing the relationships between the basic data elements from the application problem. In the case

of gray image segmentation, the matrix W ∈ Rmn×mn is an affinity matrix of an m by n pixels gray

image, D ∈ Rmn×mn is a diagonal matrix with Dii =
∑mn
j=1Wij , and v = diag(D1/2). Here, we use

the approach in [105] to choose W and D, to further shift the diagonal entries of W and D by a

constant.

As mentioned in Section 2.4.1,(6.9) can be optimized by the weighted kernel k-means algorithm,

see e.g., [31, Algorithm 1]. Since that Problem (6.9) has many low-quality local minimizers and

descent algorithms are usually not able to escape from them, the initialization plays an important

role in finding an acceptable solution. Four initialization methods including Bach and Jordan [6],

Shi and Malik [103], Karypis and Kumar [60], and the proposed one based on I-AManPG are

described in Section 2.4.2 and the performance of these initialization methods are compared in this

section.
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Let U be the n × q matrix of the q leading eigenvectors of the matrix D−1/2WD−1/2. If X is

only required to be orthonormal, then U is a global minimizer of (6.9). Since U is unlikely to be

in An,qv , one approach is to find a matrix in An,qv that is close to U . Different notions of closeness

yield different methods. Bach and Jordan [6] seek to find a matrix Y ∈ An,qv that minimizes

‖UUT − Y Y T ‖F . (6.10)

The difference between U and Y is measured by the difference between the two orthogonal projection

matrices. The weighted kernel k-means is suggested to solve (6.10) see [6, Figure 1]. However,

similar to (6.9), the kernel k-means for (6.10) may also get stuck in a local minimizer. We use

k-means++ as implemented in Matlab for the initialization of the kernel k-means for (6.10).

The task of Shi and Malik [103] is to find an indicator matrix Z and a q-by-q orthonormal

matrix Q that minimize

‖Z − ŨQ‖F .

It uses the alternate minimization algorithm to find Z and Q in ‖Z−ŨQ‖F . Note that this approach

neither guarantees to find the global optimum nor use the weight vector v. Therefore, this approach

may not find a satisfactory solution. Here, we use the C and Matlab hybrid implementation

from [105].

Karypis and Kumar [60] give a fast, multi-level graph partitioning algorithm that produces

equally-sized clusters and is called METIS. It is shown to be an effective method for the kernel

k-means initialization. Note that METIS does not aim to minimize the objective (6.9). To imple-

ment Karypis and Kumar [60], we use the C implementation from http://glaros.dtc.umn.edu/

gkhome/metis/metis/download with the Matlab interface from https://github.com/dgleich/

metismex.

To get the initial X0 for the weighted kernel k-means algorithm to solve (6.9), we propose to

use some number of iterations of I-AManPG on related and equivalent problem (6.11).

Specifically, Problem (6.9) can be reformulated as

min
X∈Fv

−trace(XTD−1/2WD−1/2X) + λ‖X‖1, (6.11)

which can be optimized by I-AManPG. We further propose to gradually increasing λ rather than a

fixed value of λ since increasing λ tends to give better solutions in our experiments2. The clusters
2The λ in I-AManPG increases by 0.01, 0.04, and 0.2
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are specified by PAn,qv (X∗) = diag(v)PAn,q1n
(diag(v)−1X), where PAn,q1n

(X) =
[
b1
‖b1‖

b2
‖b2‖ . . .

bq
‖bq‖

]
,

bj ∈ Rn for j = 1, 2, . . . , q, and

(bj)i =
{

1 if Xij has the largest magnitude in the i-th row;3
0 otherwise.

Such clusters are then used as initializations for the weighted kernel k-means algorithm. The

initialization by I-AManPG, essentially uses a normalized cut problem to start a state-of-the-art

method for the same normalized cut problem. At first glance this seems difficult to motivate. Note

however, that we exploit two key properties of the Riemannian approach in this dissertation. The

feasible set is changed to Fv to exploit the geometry rigorously. The cost function is changed to

combine a trace term and a sparsity term. When optimized alone the trace term is driven by

eigenvalue and invariant subspace information in a manner similar to the other standard initial-

ization approaches. As a result, standard descent or related methods could experience the pull of

unacceptable local minima and the associated subspaces. The sparsity term forces the algorithm to

move toward vectors that satisfy the demand of the problem for a minimizing assignment matrix.

The weight λ allows the tuning of this modifcation to the path produced in Fv. Of course, if the

sparsity term alone was optimized it would also tend to fail to solve the problem since it would

not necessarily satisfy the spectral properties demanded by the problem from the trace term or the

cost functions of the other standard initialization algorithms. This motivates the expectation of

superior initialization from the Riemannian I-AManPG approach.

The above four initialization methods are respectively denoted by BJ, SM, ME, and AM. Their

combinations with the weighted kernel k-means algorithms are respectively denoted by BJ-k, SM-

k, ME-k, and AM-k. The implementation of the weighted kernel k-means algorithm is modified

from [24]4. The tested 12 images are from [105] and the built-in images in Matlab. We further

resize them to have 160-by-160 pixels as shown in Figure 6.3. The 12 images are baby, cameraman,

coins, football, gantrycrane, liftingbody,onion, panther, pears, peppers, saturn, and tape images.

We implement the four initialization methods and then combine with the weighted kernel k-means

algorithm on each image with 3, 5, and 7 clusters.

As an example, the segmentation results of the four methods for the baby image are shown in

Figure 6.4. It can be seen that the segmentation results by AM-k for 3, 5, and 7 clusters perform

better than BJ-k and ME-k methods and comparable with SM-k method.

99



baby cameraman coins football

gantrycrane liftingbody onion panther

pears peppers saturn tape

Figure 6.3: The tested images

An average of the negative function values −fNC of 10 random runs are reported in Figure 6.5

and Figure 6.6.We do not report the computational time since the implementations of these methods

use different languages and their computational time can not be rigorously compared. The qualities

of these methods are compared based on the object function value fNC. As shown in the figures,

METIS initializations are not preferred since they do not aim to minimize fNC. Though SM, SM-k,

BJ, BJ-k are competitive to AM and AM-k in many cases, they do not perform well on certain

images, such as SM and SM-k for the football image and and the tape image with 3 clusters, and

BJ and BJ-k for the pears, the tape image with 3 clusters. I-AManPG based methods are clearly

most robust in the sense of minimizing the function fNC, where the function fNC is minimized

over Fv and then projects the final solution onto An,qv . The values of −fNC by AM-k are often the

highest one. Even if they are not, they are still close to the highest ones. The empirical evidence

supports the expectations given in the motivation discussion above that I-AManPG is competitive

with or superior to initialization strategies in the current literature.

4The implementation in [24] is for unweighted kernel k-means. We modified it for weighted kernel k-means.
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Figure 6.4: Image Segmentation Comparisons on Baby Image
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Figure 6.5: An average of 10 random runs on baby, cameraman, coins, football, gantrycrane, and
liftingbody is reported. y-axis represents the function values. Multiple numbers of clusters are
tested.
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Figure 6.6: An average of 10 random runs on onion, panther, pears, peppers, saturn, and tape is
reported. y-axis represents the function values. Multiple numbers of clusters are tested.
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CHAPTER 7

RECURSIVE INEXACT ACCELERATED
MANIFOLD PROXIMAL GRADIENT

OPTIMIZATION ALGORITHM

For the I-AManPG algorithm, we fix the number of communities q ahead of time and set q as one

input of I-AManPG. But in reality, the number of communities q is unknown, so we may improve

the algorithm by adapting the parameter q. Besides that, to improve the time and space efficiency

of I-AManPG, it is necessary to design some recursive version for I-AManPG. In this chapter,

we propose a recursive version for the I-AManPG algorithm in Algorithm 18, and compare the

performance of the recursive I-AManPG with the base I-AManPG on the community detection

problem.

7.1 The Proposed Recursive Version of I-AManPG Algorithm

To design the recursive I-AManPG Algorithm 18, we use the similar logic of the Newman’s

spectral method [82] except that we change the bisection from spectral partitioning according to

the signs of the leading eigenvector of the modularity matrix to the partitioning by I-AManPG with

q = 2. The standard approach to find more than two clusters is repeated division into two: we use

the I-AManPG with q = 2 first to divide the network into two partitions, then divide those parts,

and so forth. In the community detection problem, it is not correct, after first dividing a network

into two, to simply delete the edges falling between the parts and then apply the algorithm again

to each subgraph [82]. This is because the degrees in the modularity matrix Mij = Aij − kikj
2m will

change if edges are deleted, and any subsequent optimization of cost function would thus optimize

the wrong quantity. Instead, the correct approach is to define a new modularity matrix M (g),

where M (g)
ij = Aij − kikj

2m − δij [k
(g)
i − ki

dg
2m ], where k(g)

i is the degree of vertex i in subgraph g and

dg is the sum of the total degrees ki of the vertices in the subgraph. So the subgraph modularity

is Qg = tr(XTM (g)X).
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Algorithm 18 Recursive I-AManPG Algorithm
1: queue{1}=[1:n]
2: ∆Q =∞
3: while length(queue) > 0 do
4: G=queue{1};
5: B̂G = BG − diag(BG ∗ ones(length(G), 1))
6: [V,E] = eigs(B̂G, length(G), eye(length(G)), 1,′ largestreal′,′ IsFunctionSymmetric′, 1);
7: if (max(diag(E))) <= 10−5 then
8: queue=queue(2:length(queue));
9: modules=[modules G];

10: continue
11: end if
12: Do bisection by calling I-AManPG algorithm with modularity matrix as B̂G and q = 2
13: comm1=one of the bisected groups and comm2 = the other one
14: ∆Q = tr(X̂T B̂GX̂)
15: if ∆Q < 10−5 then
16: queue=queue(2:length(queue));
17: modules=[modules G];
18: continue
19: end if
20: [̃, p]=size(modules);
21: queue=[queue G(comm1) G(comm2)];
22: queue=queue(2:length(queue));
23: end while
24: return modules
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If there is no division of a subgroup that will increase the modularity of the network, then there

is nothing to be gained by dividing the subgraph and then it should be left along (indivisible). This

happens when here are no positive eigenvalues to the matrixM (g), and thus the leading eigenvalues

provides a simple check for the termination of the subdivision process. The absence of positive

eigenvalues is a sufficient but not necessary condition for indivisibility. We then simply calculate

the modularity contribution for each proposed split directly and confirm that it is greater than 0.

Thus the recursive algorithm is summarized as follows. We construct the modularity matrix for

the network and find its leading eigenvalue. We divide the network into two parts by I-AManPG

with q = 2. If at any stage we find the proposed split makes a zero or negative contribution to

the total modularity, we leave the corresponding subgraph undivided. When the entire network

has been divided into indivisible subgraphs in this way, the algorithm ends. Or if we hit a desired

number, then the algorithm ends.

7.2 Comparison with Other Algorithms on Applications
7.2.1 Comparison with Other Algorithms on LFR Benchmarks

In this section, we compare the recursive I-AManPG algorithm with other algorithms on de-

tecting community structures of LFR benchmark networks [65].

Each result in Table 7.1 is an average result of 10 runs over 10 random runs for the graphs gener-

ated randomly as LFR benchmark networks. qc is the computed number of communities,"force_q"

algorithms denote the algorithms by adding a forcing criteria such that the algorithms stop when

qc is smaller than or equal to qtrue = 20. From Table 7.1, we can find that the recursive I-AManPG

algorithm is more efficient than the other methods in terms of the computation time. Regarding

the effectiveness of the recursive I-AManPG algorithm, we can analyze it by comparing to the base

I-AManPG version first and then comparing to Danon, Louvain and Newman’s algorithms. When

we compare the recursive I-AManPG algorithm to the base I-AManPG version, we can get the fol-

lowing results. For the cases of µLFR = 0, 0.1, 0.2, even though the modularity are slightly smaller

than the base I-AManPG version, the purity of the partition results by the recursive I-AManPG

are all 1. This means that the partitions are very close to the ground-truth partition, furthermore

the ground-truth partition is embedded into the partitions for some cases. For the other cases of

µLFR, the results of the recursive I-AManPG algorithm are also close to the results of I-AManPG.
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Table 7.1: Compare the effectiveness of Recursive I-AManPG to other state-of-the-art methods.

µLFR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Danon

NMI 0.9998 0.9891 0.9394 0.8504 0.7331 0.5808 0.3781 0.1412 0.0548
AMI 0.9998 0.9870 0.9166 0.7922 0.6399 0.4736 0.2878 0.0935 0.0215
Mod. 0.9496 0.8436 0.7225 0.5920 0.4687 0.3452 0.2458 0.1892 0.1814
purity 0.9999 0.9938 0.9739 0.9414 0.9058 0.8344 0.6886 0.4269 0.3095
time 2.8304 2.8597 2.8199 2.7648 2.7287 2.8318 2.7739 2.7625 2.7318
qc 20 20 18 15 11 9 7 7 8

Danon_force_q

NMI 0.9998 0.9889 0.9397 0.8494 0.7309 0.5794 0.3939 0.1778 0.0954
AMI 0.9998 0.9870 0.9201 0.7962 0.6415 0.4727 0.2950 0.1035 0.0282
Mod. 0.9496 0.8433 0.7209 0.5868 0.4615 0.3394 0.2431 0.1872 0.1794
purity 0.9999 0.9935 0.9714 0.9349 0.8954 0.8198 0.6778 0.4201 0.3065
time 2.8353 2.9606 2.8222 2.8068 2.8055 2.8959 2.8183 2.8459 2.7432
qc 20 20 20 20 20 20 20 20 20

Louvain

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2862 0.0784
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2249 0.0358
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4734 0.2660
time 0.5444 0.7291 1.3703 1.8963 2.6797 3.3418 4.5768 9.2669 8.8130
qc 20 20 20 20 20 20 19 11 11

Louvain_force_q

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9805 0.2981 0.0847
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9974 0.9652 0.2382 0.0392
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4496 0.3477 0.2098 0.1967
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.4642 0.2418
time 0.5440 0.7478 1.0333 1.2042 1.7002 2.0761 2.7676 5.4529 5.5061
qc 20 20 20 20 20 20 19 12 12

Newman_Eig sparse function

NMI 0.9988 0.7225 0.7132 0.6760 0.5498 0.3912 0.2807 0.1340 0.0497
AMI 0.9985 0.6521 0.6396 0.6122 0.4704 0.3071 0.2098 0.0907 0.0235
Mod. 0.9482 0.5493 0.5057 0.4157 0.3051 0.2379 0.1917 0.1578 0.1461
purity 0.9994 0.7828 0.8134 0.7460 0.6723 0.6366 0.5654 0.4367 0.3594
time 0.6346 0.4391 0.4197 0.4522 0.4140 0.3333 0.3565 0.3130 0.3026
qc 20 24 21 19 15 9 7 6 6

Newman_Eig_force_q sparse function

NMI 0.9988 0.6831 0.6787 0.6674 0.5498 0.3912 0.2807 0.1340 0.0497
AMI 0.9985 0.5996 0.5991 0.6026 0.4704 0.3071 0.2098 0.0907 0.0235
Mod. 0.9482 0.4747 0.4463 0.4004 0.3051 0.2379 0.1917 0.1578 0.1461
purity 0.9994 0.7998 0.8001 0.7358 0.6723 0.6366 0.5654 0.4367 0.3594
time 0.6458 0.4666 0.4373 0.4528 0.4231 0.3418 0.3656 0.3213 0.3114
qc 20 18 17 18 15 9 7 6 6

I-AManPG

NMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9600 0.4517 0.1294
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9539 0.4037 0.0563
Mod. 0.9497 0.8499 0.7503 0.6500 0.5499 0.4498 0.3416 0.1735 0.1113
purity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9679 0.5605 0.3044
time 0.6357 0.4693 0.5870 0.9494 0.6749 0.4720 1.0332 1.6307 1.6757
q 20 20 20 20 20 20 20 20 20

Recursive I-AManPG

NMI 0.9883 0.9846 0.9883 0.9885 0.9861 0.9278 0.7002 0.2280 0.1125
AMI 0.9753 0.9679 0.9753 0.9767 0.9839 0.9219 0.6670 0.1657 0.0436
Mod. 0.9454 0.8440 0.7469 0.6468 0.5426 0.4159 0.2666 0.1399 0.1204
purity 1.0000 1.0000 1.0000 0.9994 0.9921 0.9538 0.7909 0.4289 0.2389
time 0.0134 0.0194 0.0181 0.1529 0.1213 0.2216 0.3762 0.2576 0.1662
qc 19 19 19 19 20 20 19 15 20
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Comparing to the base I-AManPG version, another important advantage is that we do not need to

set the number of communities as one input in the recursive I-AManPG and we can get the well

nested partitions with the ground-truth partition as expected. Now, let us compare the results

of the recursive I-AManPG algorithm with Danon, Louvain and Newman’s algorithms. Overall,

Louvain algorithm can get the best quality of partitions over all the LFR benchmarks among these

4 algorithms, and the recursive I-AManPG can get the second best quality of partitions but with

the fastest computation.Danon algorithm works well for the cases of µLFR = 0, 0.1, 0.2, 0.3 and

then degrades. Newman’s algorithm degrades quickly for the noisy cases of LFR networks.

In addition, the NMI, AMI of the recursive I-AManPG degrade somewhat from Louvain and the

base I-AManPG, but the purity indicates that the recursive I-AManPG gets still grouped networks

correctly. Future work would be required on termination criteria. Note that Louvain has the same

thing happen to it when we look at µLFR = 0.6. We know that the base I-AManPG performs very

close to Louvain and so the recursive I-AManPG is a very efficient time and space approach clearly

competitive with the best algorithm, that is, the Louvain algorithm.

7.2.2 Comparison with Other Algorithms on Real World networks

Here we consider the four widely used real-world networks described in Section 6.1.1 for perfor-

mance evaluation on the I-AManPG algorithm.

From Table 7.2, it can be seen that overall the recursive I-AManPG is more efficient than the

base I-AManPG algorithm in terms of the computation time. As the network becomes larger, the

recursive I-AManPG algorithm clearly demonstrates its superior efficiency. We can see this from

the computation time on the network of Email. Generally speaking, the effectiveness of recursive

I-AManPG is better than Danon and Newman’s algorithm and close but not quite as good as

I-AManPG and Louvain’s algorithm in terms of NMI, AMI and purity.

If we look into the Karate club network more closely, we can find the purity of the recursive

I-AManPG algorithm on Karate Club is 1. The computed communities of recursive I-AManPG

to Karate Club are communities {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22}, {24, 35,

26, 28,32}, and {9, 10, 15, 16, 19, 21, 23, 27, 29, 30, 31, 33, 34}. They are the subgroups of the

ground-truth groups. The ground-truth partition has two groups. One of group of ground-truth

groups is the same as community 1 and the other group is the union of community 2 and 3 of the
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Table 7.2: Compare the effectiveness of I-AManPG to other state-of-the-art methods. Each result
is an average result of 10 random runs for the real-world networks (the best performance is in bold.)

Football Karate-2 Polbooks Email

Danon

NMI 0.7298 0.5305 0.5740 0.5261
AMI 0.5744 0.3830 0.5075 0.3715
Mod. 0.5661 0.4087 0.5225 0.4240
purity 0.9043 0.9412 0.8571 0.8587
time 0.0237 0.0028 0.0233 2.8354
qc 6 4 4 26

Danon_force_q

NMI 0.7031 0.5305 0.5740 0.5531
AMI 0.5490 0.3830 0.5075 0.3954
Mod. 0.5183 0.4087 0.5225 0.4188
purity 0.5826 0.9412 0.8571 0.4119
time 0.0232 0.0026 0.0228 2.7915
qc 12 4 4 42

Louvain

NMI 0.8903 0.5866 0.5745 0.5296
AMI 0.8208 0.4254 0.5560 0.3763
Mod. 0.6046 0.4188 0.4986 0.4100
purity 0.9217 0.9706 0.8476 0.8736
time 0.0587 0.0251 0.0604 1.7888
qc 10 4 3 25

Louvain_force_q

NMI 0.8903 0.5866 0.5745 0.5296
AMI 0.8208 0.4254 0.5560 0.3763
Mod. 0.6046 0.4188 0.4986 0.4100
purity 0.9217 0.9706 0.8476 0.8736
time 0.0448 0.0191 0.0448 2.0603
qc 10 4 3 25

Newman_Eig Sparse

NMI 0.6987 0.6771 0.5201 0.5176
AMI 0.5611 0.4936 0.4429 0.3805
Mod. 0.4926 0.3934 0.4672 0.3951
purity 0.8087 1.0000 0.8476 0.4100
time 0.0311 0.0082 0.0312 0.3794
qc 8 4 4 43

Newman_Eig_force_q Sparse

NMI 0.6987 0.8041 0.5201 0.5176
AMI 0.5611 0.6618 0.4429 0.3805
Mod. 0.4926 0.2064 0.4228 0.3950
purity 0.8087 1.0000 0.8476 0.4100
time 0.0314 0.0065 0.0291 0.3804
qc 8 2 3 42

I-AManPG

NMI 0.9047 1.0000 0.4874 0.5908
AMI 0.8652 1.0000 0.4756 0.4645
Mod. 0.5875 0.3715 0.4878 0.2419
purity 0.9130 1.0000 0.8190 0.5692
time 0.2214 1.5514 0.0582 13.4378
q 12 2 3 42

Recursive I-AManPG

NMI 0.8331 0.8155 0.4732 0.3531
AMI 0.7328 0.6781 0.4575 0.2181
Mod. 0.5965 0.3835 0.4376 0.2921
purity 0.9043 1.0000 0.8286 0.7114
time 0.0263 0.7580 0.9022 0.2866
q 9 3 3 10
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recursive I-AManPG algorithm. This means we can get well nested partitions with the ground-truth

partition.

These empirical results support the view that the recursive I-AManPG algorithm improves the

efficiency of the basic I-AManPG algorithm while not suffering significant loss in the quality of

the solution. Even when the algorithm is stopped with fewer than the number of clusters in the

ground-truth the high purity values indicate it produces suitably nested clustering. To further

improve the efficiency of the recursive I-AManPG algorithm implementation, the main result of the

recursive I-AManPG that will go in ROPTLIB [52] along with the non recursive I-AManPG.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, two Riemannian optimization approaches for the clustering problems in terms

of assignment matrix are proposed, which are the ARPPG method, and the I-AManPG method.

To derive the I-AManPG method, the manifold structure of the feasible set is constructed effi-

ciently. The global convergence analysis for the I-AManPG method is shown. To evaluate the

performance of our approaches, we design numerical experiments testing the performance of the

different algorithms on the community detection problems, the k-means model, the discriminative

k-means model, and the normalized cut problem in the dissertation. In addition, the recursive

I-AManPG algorithm is proposed to improve the time and space complexity of the solution process

using I-AManPG. We have achieved the goal of the thesis statement of this dissertation. We have

systematically explored the careful use of geometry, cost formulation, algorithmic rigor and efficient

computational design to produce an approach flexible enough to handle graph-based and Euclidean

data-based optimization problems arising in a range of well-known clustering related problems.

The result is a prime candidate for further exploration of the computational implementation and

related application problems.

8.1 Completed Work

The major contributions of this dissertation are:

1. The constrained nonsmooth Riemannian optimization problem over a Stiefel man-
ifold is solved by modifying the accelerated Riemannian manifold proximal gradi-
ent method to the accelerated Riemannian manifold projected proximal gradient
method (ARPPG) by adding the projection (3.4).

We formulated the community detection problem as a constrained nonsmooth optimization
problem on the compact Stiefel manifold. A Riemannian projected proximal gradient method
is proposed and used to solve the problem. We applied the Riemannian optimization approach
to the community detection problem. Numerical experimental results on synthetic LFR
benchmarks and real-world networks show that ARPPG is effective and outperforms several
state-of-art algorithms.
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2. The feasible set Fv = {X ∈ Rn×q : XTX = Iq, v ∈ span(X)}, with v > 0 is proved to
be an embedded submanifold of St(q, n). The manifold structure of the feasible
set Fv is constructed.

We showed that the feasible set Fv is a Riemannian submanifold, and particularly an em-
bedded submanifold of St(q, n). The manifold structure of Fv is constructed, and it includes
the tangent space, the normal space, the efficient retraction. Then we applied the accelerated
Riemannian manifold proximal gradient method (AManPG) in [53] over the feasible set Fv
to the clustering problems.

3. Solving approximately subsproblem of AManPG by semi-smooth Newton method
(I-AManPG) over the feasible set Fv is proposed.

To speed up the AManPG algorithm over the feasible set Fv, we apply the semi-smooth
Newton method [119], [69] to solve (3.6) approximately. The general idea of semi-smooth
Newton method is to solve a system of nonlinear equations based on the generalized Jacobian.
So, we need to reduce the optimization problem to a system of nonlinear equations in order
to use the semi-smooth Newton method. This can be obtained by considering the KKT
conditions. The corresponding algorithm is shown in Algorithm 13. In addition, the global
convergence analysis for Algorithm 13 is shown in this dissertation.

4. We apply AManPG and I-AManPG to the community detection problem by for-
mulating the community detection problem as a nonsmooth optimization problem
on the feasible set manifold Fv.

We compared AManPG with I-AManPG on the LFR benchmark networks. The results
show that I-AManPG can find the same partitioning as AManPG and I-AManPG is more
efficient than AManPG in terms of computational time. We also compared I-AManPG with
3 other state-of-art algorithms, namely, Danon et.al’s algorithm, Louvain Algorithm and
Newman’s spectral algorithm on the LFR benchmark networks and 4 real-world networks.
Numerical performance comparisons show that the I-AManPG algorithm is effective, robust
and competitive with existing algorithms.

5. Besides the community detection problem, we also apply I-AManPG algorithm
to the k-means model, the discriminative k-means model, and the normalized cut
problem.

The k-means model can be rewritten as an alternating minimization algorithm for solving
the optimization problem

min
X∈An,q

||A−XXTA||2F , (8.1)
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where A is a data matrix where each data point in Rd corresponds to a row of A. I-AManPG
over the feasible set is applied to k-means model and the results are comparable with the
standard algorithms.

The discriminative k-means model is fit for the data sets live in a very high dimensional space.
The discriminative k-means model is given by

min
X∈An×q ,λregu>0

trace(XT (In + 1
λregu

ATA)−1X) + log det(In + 1
λregu

ATA), (8.2)

where λregu > 0 is the regularization parameter. This problem is solved by alternating
between the computation of X for a given λregu and the computation of λregu for a given X.
The former one is in the form of (1.5), therefore I-AManPG can be applied to this model.

The normalized cut method has been widely used for image segmentation. The initialization
plays an important role in finding an acceptable solution to the normalized cut problem. We
applied an initialization method based on I-AManPG to the normalized cut problem and this
method is more effective than the state-of-the-art methods.

6. We use a continuation technique for the balancing parameter of λ to improve the
performance of our algorithms.

To improve the performance of ARPPG and I-AManPG, we proposed and evaluated a con-
tinuation technique to adapt the choice of the balancing parameter λ. This technique can
improve the effectiveness of ARPPG and I-AManPG to some extent.

7. Recursive I-AManPG Algorithm:

When the number of communities q is not reliably known or is too large, the I-AManPG
algorithm can have difficulties with time and space complexity. Therefore, we proposed and
evaluated a recursive version of I-AManPG algorithm by adapting the parameter q to reduce
storage and increase the speed of the algorithm especially for large data sets.

8.2 Future Work

1. The main results of the I-AManPG algorithm and the recursive I-AManPG algorithm will go
in the C++ library ROPTLIB [52], which will improve the efficiency of the algorithms.

2. We will conduct more applications to evaluate the performance of our algorithms.

(a) The orthogonal nonnegative matrix factorization (ONMF) problem can be formulated
as follows. Given an m-by-n nonnegative matrix M and a factorization rank k (with
k < n), solve the following problem

min
U∈Rm×k,V ∈Rk×n

||M − UV ||2F , s.t. U ≥ 0, V ≥ 0, V V T = Ik. (8.3)
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In [90], Pompili et.al. show the equivalence of ONMF with a weighted variant of spherical
k-means.The ONMF problem relates to data clustering and the I-AManPG algorithm
applied to the ONMF problem as an additional demonstration of the efficacy and effi-
ciency of Riemannian algorithms in this problem area.

(b) Community Detection: There are other cost functions for community detection that can
be more effective than simple modularity.
For example, we can write for the RB model [92]

MRB = A− ρA1n1
T
nA

1TnA1n

= A− A1n1TnA
1TnA1n

+ A1n1TnA
1TnA1n

− ρA1n1
T
nA

1TnA1n

= MN + (1− ρ)A1n1
T
nA

1TnA1
,

where MN has rank q − 1 and MRB has rank q (ideal case).
For A = ZZT , we saw that we could write the "good" assignment matrix as [X∗ | 1√

n
] ∈

St(q, n) and that X∗ had to maximize tr(XT
∗ MNX∗) while X∗ ∈ St(q − 1, n) and X∗ ⊥

1n√
n
.

This is still true for MRB, since 1n√
n
is in the span of Z1q = 1n, and hence for X∗ ⊥ 1n,

we have
max

X∗∈St(q−1,n), X∗⊥1n
tr(XT

∗ MRBX∗) = max tr(XT
∗ MNX∗) (8.4)

To show (8.4),

LHS of (8.4) = tr(XT
∗ MNX∗ + (1− ρ)X

T
∗ A1n1TnAX∗

1TnA1
)

= tr(XT
∗ MNX∗) + (1− ρ)1

T
nAX∗X

T
∗ A1n

1nA1n
Experiments with the RB-CNM model with various resolution parameters could yield
significant improvement in the real-world networks where we have seen simple modularity
have problems.

(c) Bipartite Networks: Bipartite network analysis is an important case of community detec-
tion problem. When modeling relations between two different classes of objects, bipartite
graphs very often arise naturally. For instance, a graph of football players and clubs,
with an edge between a player and a club if the player has played for that club, is a
natural example of an affiliation network, a type of bipartite graph used in social net-
work analysis. There are many other useful applications on bipartite network analysis,
such as the railway optimization problem and modern coding theory etc. Applying our
algorithms to the bipartite networks is very meaningful.
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(d) Role Extraction Problem: The role models which subsume community detection includ-
ing bipartite and others use a cost function like Reichardt and White quality function
in [95].
Reichardt and White quality function as follows:

QRW (σ,B) = 1
m

∑
i,j∈V

[aijAijB(σi, σj) + bij(1−Aij)(1−B(σi, σj))], (8.5)

where σi ∈ {1, ..., q} is the role to node i, and B(σi, σj) = 1 if links going form nodes of
type σi to nodes of type σj , and aij and bij are some contributions. This cost function
is a straightforward use of a generalized modularity type cost function. It is worthwhile
to generalize I-AManPG to solve the role extraction problem.

3. We will investigate more effective and efficient recursive I-AManPG algorithms.

The recursive I-AManPG algorithm in Chapter 7 is the initial version of the recursive algo-
rithm to adapt the number of communities. The results are good, but it is worth to investigate
much more effective and efficient recursive algorithms. Of particular interest are, the termina-
tion criterion, partitioning with a small number greater than 2 at each step perhaps adapted
for each division, and the influence of the particular cost function used such as resolution
limits.

4. Riemannain proximal gradient algorithms other than AManPG, I-AManPG, and recursive I-
AManPG have been developed and continue as the subject of intense research. Of particular
interest for our future work is the previously mentioned IRPG algorithm [54]. Its design is
more concerned with its mathematical properties and less with computational efficiency. The
lessons learned in this dissertation leading to the efficient recursive I-AManPG and any library
versions developed subsequently will be combined with the theoretical insights of IRPG to
create a more efficient and effective family of Riemannian proximal gradient methods for a
wide range of problems.
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APPENDIX A

BASIC CONCEPTS OF RIEMANNIAN
OPTIMIZATION

To understand the Riemannian Optimization better, this section reviews some important concepts

and definitions of Riemannian manifolds that are related to this dissertation. More details of these

concepts and algorithms can be found in [48], [87], [66], [1], [7], [91] and [50].

A.1 The Problem of Optimization on Manifolds

The goal of the optimization on manifolds is to find an (global, or more reasonably local)

optimum of a real-valued function f defined over a manifold, i.e.,

Problem A.1.1 (Optimization on Manifolds).

Given: a manifoldM and a smooth function f :M→ R.

Sought: an element x∗ of M such that there is a neighborhood V of x∗ in M with f(x∗) ≤ f(x)

for all x ∈ V (“minimizer") or such that there is a neighborhood V of x∗ in M with f(x∗) ≥ f(x)

for all x ∈ V (“maximizer").

Roughly speaking, a manifold is a set endowed with a collection of coordinate patches that

overlap smoothly, that is, a manifold is a set of points that is locally Euclidean. More precisely,

each point of a d-dimensional manifold has a neighborhood that is homeomorphic to the Euclidean

space of dimension d. A smooth manifold (also differentiable manifold) is a type of manifold that

is locally similar enough to a linear space to allow one to do calculus. In formal terms, a smooth

manifold is a topological manifold with a globally defined differential structure. Any topological

manifold can be given a differential structure locally by using the homeomorphisms in its atlas and

the standard differential structure on a linear space. A Riemannian manifold or Riemannian space

(M, g) is a real, smooth manifold M equipped with a positive-definite inner product gx on the

tangent space TxM at each point x.

An optimization problem generally requires taking derivatives and gradients of a function, so

we need a smooth structure on a manifoldM that allows us to do the calculation. A Riemannian
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manifold is a good choice. So we consider the optimization on Riemannian manifolds in this

dissertation.

Typically, Riemannian optimization is considered as unconstrained optimization on a con-

strained space and ideas from unconstrained optimization algorithms on a Euclidean space have

been adapted to optimization on manifolds. However, to use these ideas, we must reconsider many

basic definitions, constructs and algorithmic techniques, since extending them from the Euclidean

space to the manifold is not trivial. For example, the addition and subtraction of two points in the

Euclidean space is well-defined but does not extend, in general, to two points on a manifold.

Therefore, we review some ingredients of Riemannian manifolds and associated basic computa-

tions and some key Riemannian optimization algorithms in the following sections.

A.2 Tangent Space and Tangent Vector

In order to apply line search algorithms, we must consider the direction of motion on a manifold.

Let γ(t) : R → M : t 7→ γ(t) be a smooth mapping on M satisfying γ(0) = x, i.e., γ is a curve

through x at t = 0. To define the direction at x along γ, let us consider a smooth real-valued

function f on M, then the function f ◦ γ : t 7→ f(γ(t)) is a smooth function from R to R with

a well-defined classical derivative. If Fx(M) denotes the set of smooth functions defined on a

neighborhood of x, then we can define γ̇(0) as a mapping from Fx(M) to R

γ̇(0) = (f ◦ γ)′(0)

= lim
h→0

f(γ(h))− f(γ(0))
h

. (A.1)

This mapping is the direction at x along the curve γ and it is also called a tangent vector to

the curve γ at t = 0. The formal definition of tangent vectors is as follows.

Definition A.2.1 (Tangent Vector). A tangent vector ξx to a manifoldM at a point x is a mapping

from Fx(M) to R such that there exists a curve γ onM with γ(0) = x, satisfying

ξxf = γ̇(0)f := d(f(γ(t)))
dt

|t=0, (A.2)

for all f ∈ F(M). The curve γ is said to realize the tangent vector ξx. The point x is called the

root of the tangent vector ξx.
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The set of all tangent vectors at x is the tangent space toM at x, denoted by TxM. The tangent

space TxM is a vector space, i.e., closed under linear combination and has the same dimension as

the manifoldM. So line searches are performed on the tangent space rather than on the manifold.

Then we need to get back to the manifold by using an operation called retraction which will be

discussed later.

The union of all tangent spaces is called the tangent bundle of the manifold, denoted by TM.

A vector field is also an important concept, and it is a smooth mapping from M to the tangent

bundle, ξ : M→ TM : x 7→ ξx ∈ TxM. It assigns to each point a tangent vector. The set of all

smooth vector fields onM is denoted by χ(M) and is endowed with the operations of addition of

two vector fields and multiplication of a vector field by a function f ∈ Fx(M), i.e., for all x ∈M,

(ξ + ζ)x = ξx + ζx,

(fξ)x = f(x)ξx.

A.3 Riemannian Metric

The tangent space at a point on the manifold provides us with a vector space that approximates

the manifold locally. Endowing the tangent space with an inner product allows us to compute angles

and lengths of tangent vectors.

A Riemannian metric g defined on the tangent spaces of x is a smoothly varying inner product

gx : TxM× TxM→ R, and denoted as

gx(ξ, η) =< ξ, η >x, (A.3)

where ξ, η ∈ TxM.

We define ξ[ as a function from TxM to R such that ξ[η = gx(ξ, η) for all η ∈ TxM, where

the notation, flat [, relates tangent vectors to the Riemannian metric. A Riemannian manifold or

Riemannian space is the manifold M equipped with the inner product gx on the tangent space

TxM at each point x.

Then we can define a distance metric on M by using the norm induced by the inner product

on the tangent space as follows:

d(x, y) = inf
γ
{
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt} = inf

γ
{
∫ 1

0
||γ̇(t)||gγ(t)dt}, (A.4)
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where γ is a curve onM with γ(0) = x and γ(1) = y.

Once we are equipped with the definition of distance on the manifold, then we can define

neighborhoods on the manifold. The open ball of radius δ around x, denoted by Bδ(x):

Bδ(x) = {y ∈M : d(x, y) < δ}. (A.5)

Therefore, we can define local minimizers for a function on a manifold. Given a function f :M→ R,

a point x∗ is a strict local minimizer if there exists some δ > 0 such that

f(x∗) < f(y), for all y ∈ Bδ(x∗).

A.4 Affine Connection, Geodesics, Exponential Mapping and
Parallel Translation

Given a curve γ(t) on a Riemannian manifold, γ̇(t) shows the direction along the curve, and the

length of γ̇(t) shows the speed of change on the curve. To define the acceleration on manifolds, we

need the concept of affine connection, which provides the idea of differentiating tangent vectors.

Definition A.4.1 (Affine Connection). Let Fx(M) denote the set of all smooth functions on a

neighborhood of x, and χ(M) denote the set of smooth vector fields onM. An affine connection ∇

on a manifoldM is a mapping

∇ : χ(M)× χ(M)→ χ(M) : (ξ, η) 7→ ∇ξη (A.6)

that satisfies the following properties: for all f, g ∈ FxM, a, b ∈ R and ξ, η, ζ ∈ χ(M):

(i) Fx(M)-linearity in the first argument: ∇fη+gζξ = f∇ηξ + g∇ζξ;

(ii) R-linearity in the second argument: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ;

(iii) Product rule (Leibniz’s Law): ∇η(fξ) = (ηf)ξ + f∇ηξ.

The resulting vector field ∇ηξ is called the covariant derivative of ξ with respect to η for the

affine conncetion ∇.

There are infinitely many affine connections for any manifold M. However, there are certain

affine connections that may be preferred due to particular properties. On a Riemannian manifold

(M, g), a preferred affine connection, called the Riemannian connection or Levi-Civita connection,

satisfies the following two additional conditions:
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(i) Symmetry: (∇ηξ −∇ξη)f = η(ξf)− ξ(ηf);

(ii) Compatibility with Riemannian metric: ζg(η, ξ) = g(∇ζη, ξ) + g(η,∇ζξ).

A curve γ on a Riemannian manifold (M, g) endowed with an affine connection ∇ is a geodesic if

it has zero acceleration:

∇γ̇(t)γ̇(t) := D2

dt2
γ(t) := D

dt
γ̇(t) = 0, (A.7)

for all t. With the Riemannian connection, one of the geodesics linking two points on the manifold

is also a minimal length curve. In this dissertation, we only consider the Riemannian connection.

Given a point x ∈ M and a tangent vector η ∈ TxM, there exists a unique geodesic γ(t;x, η)

satisfying γ(0) = x and γ̇(0) = η. In addition, the geodesic has the homogeneity property,

γ(t;x, aη) = γ(at;x, η). The mapping

Expx : TxM→M : η 7→ Expxη = γ(1;x, η), (A.8)

is called the exponential mapping at x. A manifold (M, g) is called geodesically complete if and

only if Expx is defined for all x ∈ M and all η ∈ TxM. That is, every geodesic of a geodesically

complete manifold can be extended indefinitely. When performing line search algorithms, expo-

nential mapping allows us to move in the direction of a tangent vector in the tangent space, and

then map the tangent vector to a point on the manifold.

We may need to compare or combine tangent vectors in different tangent spaces in many situ-

ations. Since the affine connection provides the idea of differentiating tangent vectors in different

tangent spaces, we can use it to define the vector transport moving a tangent vector from one

tangent space to another. In a Euclidean space the simplest such motion is parallel translation

that is simply moving the root of the given vector to any other point in the space to yield a parallel

vector field. For a Riemannian manifold parallel translation produces a suitably generalized notion

of a parallel vector field along a single curve. A vector field ξ on a curve γ satisfying D
dtξ = ∇γ̇ξ = 0

is called parallel. Given a ∈ R in the domain of γ and ξγ(a) ∈ Tγ(a)M, there is a unique parallel

vector field ξ on γ such that ξ(a) = ξγ(a). The operator P b←aγ sending ξ(a) to ξ(b) is called parallel

translation along γ. In other words, we have

D

dt
(P t←aγ ξ(a)) = 0. (A.9)

If ∇ is the Riemannian connection, the resulting parallel translation is an isometry.
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A.5 Riemannian Gradient and Riemannian Hessian

Gradient-based optimization requires the notion of a gradient as the direction of steepest ascent

of an objective function. Second-order optimization algorithms, such as Newton’s method, may

require the Hessian. In the setting of manifolds, these concepts can be defined as follows.

Definition A.5.1 (Riemannian Gradient). Let f be a function defined on a Riemannian manifold

(M, g). The Riemannian gradient of f at x, denoted as gradf(x), is the unique tangent vector in

TxM satisfying

< gradf(x), ξ >x= Df(x)[ξ], ∀ ξ ∈ TxM, (A.10)

where the directional derivative is denoted by Df and the definition of a tangent vector identifies

Df(x)[ξ] = ξf .

Definition A.5.2 (Riemannian Hessian). Given a real-valued function f on a Riemannian man-

ifold (M, g), the Riemannian Hessian of f at a point x in the direction of η ∈ TxM, denoted by

Hessf(x)[η], is the unique linear mapping

Hessf(x) : TxM→ TxM

that satisfies

Hessf(x)[η] = ∇ηgradf(x), (A.11)

for all η ∈ TxM, where ∇ is the Riemannian connection chosen forM.

From the symmetry of the Riemannian connection, we know the Hessian is a self-adjoint operator

in terms of Riemannian metric, i.e.,

< Hessf(x)[η], ξ >x=< η,Hessf(x)[ξ] >,

for all η, ξ ∈ TxM.

A.6 Retraction and Vector Transport

Generally speaking, we perform line search or build a local model on the tangent space and

find a tangent vector, and then we need a mapping to get the chosen tangent vector back to the

manifold in order to obtain the next iterate. Such a mapping is called a retraction. A retraction
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Figure A.1: Retraction

allows us to move in the direction of a tangent vector while staying on the manifold. We can refer

to Figure A.1 for an illustration of the definition of a retraction.

The formal definition of a retraction is as follows.

Definition A.6.1 (Retraction). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties. Let Rx denote the restriction of R to

TxM.

(i) R(0x) = x for all x ∈M, where 0x denote the origin of TxM.

(ii) With the canonical identification T0xTxM' TxM, Rx satisfies

DRx(0x) = idTxM, (A.12)

where idTxM denotes the identity mapping on TxM.

In Section A.4, we defined the exponential mapping which is a special retraction. When we

use the exponential mapping, we actually move along the geodesic defined by the tangent vector.

Besides mapping elements of TxM into points of M, a retraction Rx can transform cost func-

tions defined in a neighborhood of x ∈ M into cost functions defined on the vector space TxM.

Specifically, given a real-valued function f on a manifoldM equipped with a retraction R, we let

f̂ = f ◦R denote the pullback of f through R. For x ∈M,

f̂x = f ◦Rx (A.13)

is the restriction of f̂ to TxM.
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Roughly speaking, a vector transport T on a manifold is a mapping that transport a tangent

vector ξ from a point x ∈ M to a point Rx(η) ∈ M, and it is built upon the retraction. We can

refer to Figure A.2 as an illustration of the concept of a vector transport.

Figure A.2: Vector Transport

A vector transport is a more general notion closely related to the classical concept of parallel

translation along geodesics. Like the exponential mapping, the parallel translation can be compu-

tationally demanding or cumbersome in numerical algorithms. Another vector transport provides

an alternative to parallel translation and may reduce the the computational effort while retaining

the convergence properties of the algorithm. A vector transport is defined formally as follows.

Definition A.6.2 (Vector Transport). A vector transport on a manifoldM is a smooth mapping

T : TM⊕ TM→ TM, (ηx, ξx) 7→ Tηxξx

satisfying the following properties for all x ∈M, where the operation ⊕ is called the Whitney sum:

(i) (Associated Retraction) There exists a retraction R, called the retraction associated with T ,
such that the following diagram in Figure A.3 commutes

Figure A.3: Associated Retraction Diagram

where π(Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).
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(ii) (Consistency) T0xξx = ξx for all ξx ∈ TxM.

(iii) (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

Given a retraction R on a manifoldM, the vector transport based on differentiated retraction

is an important approach to produce the vector transport, which is given by

Tηx(ξx) = DRx(ηx)[ξx]

= d

dt
Rx(ηx + tξx) |t=0 . (A.14)

The choice of retraction and vector transport is an important step in the design of efficient

Riemannian optimization algorithms.
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APPENDIX B

AN OVERVIEW OF PROJECTED PROXIMAL
GRADIENT METHOD ON EUCLIDEAN SPACE

In this dissertation, we use projected gradient, proximal gradient method and the fast proximal

gradient method (FISTA) on Riemannian space. They can be generated from Euclidean space. In

this section, let us briefly review the projected gradient method, the projected subgradient method,

the proximal gradient method, and the fast proximal gradient method (FISTA) in the Euclidean

space. For more details, we refer the reader to [11] and [8]. We generalize the methods from

Euclidean Space to Riemannian Space, see Chapter 3 and Chapter 4.

B.1 The Projected Gradient Method

Gradient descent is a standard way to solve unconstrained optimization problem. For con-

strained optimization problem, the projected gradient descent method is proposed by introducing

a projection operator.

We mainly consider the following model

min{f(x) : x ∈ C}, (B.1)

where f : E(i.e., Euclidean Space) → (−∞,∞] is proper closed, convex and continuously differen-

tiable, C ⊆ E is nonempty closed and convex.

To solve this constrained optimization problem (B.1), we can generalize the gradient descent

method to the following projected gradient descent method as shown in Algorithm 19.

Algorithm 19 Projected Gradient Method on Euclidean Space
Initialization: pick x0 ∈ C arbitrarily.

General Step: for any k = 0, 1, 2, ... execute the following steps:

1: pick a stepsize tk > 0 and the descent direction as −∇f(xk);
2: set xk+1 = PC(xk − tk∇f(xk)).
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Each iteration of the projected gradient method consists of a step taken toward the negative of

gradient and an orthogonal projection onto the underlying set C.

Remark B.1.1 (Reformulation of the update step 2 in Algorithm 19). To understand the role of

the Euclidean norm in the definition of the projected gradient method, we consider the following

reformulation of the update step 2:

xk+1 = argmin
x∈C

{f(xk)+ < ∇f(xk), x− xk > + 1
2tk
||x− xk||2}. (B.2)

We can get the equivalence between the two forms, Step 2 and (B.6), in the Euclidean case by using

the following identity:

f(xk)+ < ∇f(xk), x− xk > + 1
2tk
||x− xk||2 = 1

2tk
||x− (xk − tk∇f(xk))||2 +D,

where D is a constant (D does not depend on x).

The reformulation form (B.2) indicates that xk+1 is constructed by minimizing a linearization

of the objective function plus a quadratic proximity term. This form is convenient to be used to

generalize the projected gradient method to non-Euclidean setting.

B.2 The Projected Subgradient Method

If f is not differentiable, then scheme in Algorithm 19 is not well defined. Under our convexity

assumption, a natural generalization to the nonsmooth case will consist in replacing the gradient

by a subgradient (assuming that it exists).

We mainly consider the following model

min{f(x) : x ∈ C}, (B.3)

where f : E→ (−∞,∞] is proper closed, convex and not differentiable, C ⊆ E is nonempty closed

and convex, C ⊆ int(dom(f)), and the optimal set of (B.3) is nonempty and denoted by X∗, the

optimal value of the problem is denoted by fopt.

Definition B.2.1 (Subgradient). Let f : E(i.e., Euclidean space)→ (−∞,∞] be a proper function

and let x ∈ dom(f). A vector g ∈ E∗(i.e., the dula space of Euclidean space) is called a subgradient

of f at x if

f(y) ≥ f(x)+ < g, y − x > for all y ∈ E. (B.4)
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Definition B.2.2 (Subdifferential). The set of all subgradients of f at x is called the subdifferential

of f at x and is denoted by ∂f(x):

∂f(x) := {g ∈ E∗ : f(y) ≥ f(x)+ < g, y − x > for all y ∈ E.} (B.5)

Definition B.2.3 (Subdifferentiability). A proper function f : E→ (−∞,∞] is called subdifferen-

tiable at x ∈ dom(f) if ∂f(x) 6= ∅.

The collection of points of subdifferentiability is denoted by dom(∂f):

dom(∂f) = {x ∈ E : ∂f(x) 6= ∅}.

Theorem B.2.4 (Nonemptiness and boundedness of the subdifferential set at interior points of

the domain). Let f : E→ (−∞,∞] be a proper convex function, and assume that x̃ ∈ int(dom(f)).

then ∂f(x̃) is nonempty and bounded.

Remark B.2.5 (Subdifferentiability of f and closedness of X∗). Since f is convex and C ⊆∫
(dom(f)) in problem (B.3), it follows by Theorem B.2.4 that f is subdifferentiable over C. Also,

since f is closed,

X∗ = C ∩ Lev(f, fopt)

is closed. This means in particular that for any x /∈ X∗ the distance dX∗(x) is positive.

Equipped with the above observations, we can speculate the projected subgradient method as

follows in Algorithm 20. Each iteration of the projected subgradient method consists of a step taken

Algorithm 20 Projected Subgradient Method on Euclidean Space
Initialization: pick x0 ∈ C arbitrarily.

General Step: for any k = 0, 1, 2, ... execute the following steps:

1: pick a stepsize tk > 0 and a subgradient f ′(xk) ∈ ∂f(xk);
2: set xk+1 = PC(xk − tkf ′(xk)).

toward the negative of the chosen subgradient and an orthogonal projection onto the underlying

set C.

Remark B.2.6 (Reformulation of the update step 2 in Algorithm 20). Similarly as in projected

gradient method, we can get the following reformulation of the update step 2:

xk+1 = argmin
x∈C

{f(xk)+ < f ′(xk), x− xk > + 1
2tk
||x− xk||2}. (B.6)
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B.3 The Proximal Gradient Method

In this section, we focus on the composite model

min
x∈E
{F (x) := f(x) + g(x)}, (B.7)

where g : E → (−∞,∞] is proper closed and convex, f : E → (−∞,∞] is proper and closed,

dom(f) is convex, dom(g) ⊆ int(dom(f)), and f is Lf -smooth over int(dom(f)).

To understand the idea behind the method for solving (B.7), we start with the projected gradient

method for solving (B.7) in the case where g = δC with C being a nonempty closed and convex set.

In this case, the problem changes to

min f(x) : x ∈ C. (B.8)

The general update step of the projected gradient method for solving (B.8) is

xk+1 = PC(xk − tk∇f(xk)),

where tk is the stepsize at iteration k. It is easy to be written as (see Remark B.1.1)

xk+1 = argmin
x∈C

{f(xk)+ < ∇f(xk), x− xk > + 1
2tk
||x− xk||2}. (B.9)

Back to the more general problem (B.7), it is natural to generalize the above idea and to define

the next iteration as the minimizer of the sum of linearization of f around xk, the nonsmooth

function g, and a quadratic proximal term:

xk+1 = argmin
x∈E

{f(xk)+ < ∇f(xk), x− xk > +g(x) + 1
2tk
||x− xk||2}. (B.10)

Once we do some simple algebraic manipulation and cancellation of constant terms, we can rewrite

(B.10) as

xk+1 = argmin
x∈E

{tkg(x) + 1
2 ||x− (xk − tk∇f(xk))||2}. (B.11)

By the definition of the proximal operator [89], (B.11) is the same as

xk+1 = proxtkg(xk − tk∇f(xk)). (B.12)

So the proximal gradient method can be described as in Algorithm 21.
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Algorithm 21 Proximal Gradient Method on Euclidean Space
Initialization: pick x0 ∈ int(dom(f)).

General Step: for any k = 0, 1, 2, ... execute the following steps:

1: pick a stepsize tk > 0;
2: set xk+1 = proxtkg(xk − tk∇f(xk)).

B.4 The Accelerated Proximal Gradient Method (FISTA)

For the problem (B.7), the proximal gradient method achieves an O(1/k) rate of convergence in

function values to the optimal value under the assumptions that f is convex, Lipschitz-continuously

differentiable, g is convex, and F is coercive [8]. Beck and Teboulle [9] devised an accelerated

proximal gradient method, the fast iterative shrinkage-thresholding algorithm (FISTA) based on

the Nesterov momentum technique. Under the same conditions as in the convergence analysis of

the proximal gradient method, FISTA can obtain a rate of convergence of order O(1/k2).

FISTA can be described as in the following Algorithm 22.

Algorithm 22 FISTA on Euclidean Space
Input: (f, g, x0), where f is convex, Lipschitz-continuously differentiable, g is convex, and

x0 ∈ E.

Initialization: set y0 = x0 and t0 = 1.

General Step: for any k = 0, 1, 2, ... execute the following steps:

1: pick a stepsize Lk > 0;
2: set xk+1 = prox 1

Lk
g(yk −

1
Lk
∇f(yk));

3: set tk+1 = 1+
√

1+4t2
k

2 ;
4: Compute yk+1 = xk+1 + ( tk−1

tk+1
)(xk+1 − xk).
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APPENDIX C

REVIEW OF BASIC ELEMENTS OF GRAPH
THEORY

We consider network theory and applications in this dissertation. So we pay attention to some

fundamentals of graph theory that are used throughout of this dissertation. Firstly, we define some

graph notations and review some fundamental concepts used to characterize graph properties.

Then, we describe some specific structural properties of graphs. In addition, we represent the

notion of random graphs which are useful to model typical properties of networks or to quantify

how similar a given network is from what one can observe on average in networks with similar

properties. We refer the reader to [45], [115], [78], [19], [30], and [56] for additional resources on

the graph theory.

C.1 Fundamental Concepts

A graph G = (V,E) is a mathematical structure consisting of a finite set V = {1, 2, ..., n} and

a finite set E = {(i, j) | i, j ∈ V }. The elements of V are called vertices (or nodes), while the

elements of E are called edges (or links). The cardinality of the set E i.e., the number of edges

in the graph, is denoted by | E |= m. Each edge has a set of one or two vertices associated to it,

which are called its endpoints. A vertex joined by an edge to a vertex i is said to be the neighbors

of i. A pair (i, j) belongs to E, if there is connection between vertex i and vertex j. An edge (i, j)

is called incident to both the vertices i and j which are neighbors. A self-loop is an edge that join

a vertex i to itself. A multi-edge is a collection of two or more edges having identical endpoints. A

simple graph is a graph which has neither self-loops nor multi-edges.

For a simple graph with vertex set V , the adjacency matrix A is a square V ×V matrix A such

that its element Aij is one when there is an edge from vertex i to vertex j, and zero when there is

no edge. That is,

Aij =
{

1, if (i, j) ∈ E,
0, otherwise.
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The matrix representation of a graph is very useful because it allows us apply the graph using matrix

theory and linear algebra. A graph G(V,E) associated with the adjacency matrix A is denoted by

GA(V,E). This is for the graphs with only non-negative edges. However, there exist graphs with

negative edges, which are called signed graphs [124], [107], and [108]. A signed adjacency matrix is

defined as

Aij =


−1, if (i, j) ∈ E−,
1, if (i, j) ∈ E+,
0, otherwise,

where E− is the collection of the negative edges, E+ is the collection of the positive edges, and

E− ∩E+ = ∅. A signed graph G(V,E−, E+) associated with the adjacency matrix A is denoted by

GA(V,E−, E+).

A graph is called undirected if the edges have no direction, i.e., each pair (i, j) ∈ E is considered

unordered and (i, j) = (j, i), such as in friendship networks (where each relationship is considered

reciprocal). The adjacency matrix associated to an undirected graph is symmetric, A = AT . If the

direction of the edges matters, the graph is called directed and an edge (i, j) has a source i and

a destination j. Telecommunication networks are a good example of directed network where one

makes a distinction between the caller and the callee. In directed graphs, a neighbor j of a node i

is called a child when (i, j) ∈ E and a parent when (j, i) ∈ E.

The number of neighbors of a node i is called the degree, denoted by ki. In directed networks, it

is natural to distinguish between the in-degree kini and the out-degree kouti as the number of parents

and the number of children, respectively. Using the adjacency matrix A, the vectors of in and

out-degrees can be computed as

kin = AT1, kout = A1,

where 1 is the vector of all 1’s of length | V |.

Besides the direction, one can associate a weight to each edge representing the intensity of

the interaction between the incident vertices, i.e., (i, j, wij), and the graph is then called weighted.

Weighted graphs can be represented by their weighted adjacency matrix W ∈ Rn×n such that

Wi,j 6= 0 if and only if Aij = 1. We define the strength siof node i as the sum of the weights of its

incident edges, similarly to the degree. If the graph is also directed, we make a distinction between

the in-strength and the out-strength as the sum of the weights of the incoming and outgoing edges,
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respectively. The vectors of in and out-strengths can be represented using the weighted adjacency

matrix W as

sin = W T1, sout = W1.

The density of a graph is defined as the ratio between the actual number of edges in the graph

and the maximal number of possible edges, i.e., m
n2 for a directed graph with self-loops. A graph

is called sparse if its density is low, which implies that its adjacency matrix is also sparse. The

maximum number of edges being quadratic in the number of nodes in the graph, it is generally

assumed that the number of edges in sparse graphs should grow linearly with the number of nodes,

m = O(n).

C.1.1 Graph Structures

We define some structural properties of graphs in this section.

A complete graph is a simple undirected graph in which every pair of distinct vertices is joined

by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is

connected by a pair of unique edges (one in each direction).

A subgraph H(VH , EH) of a graph G(V,E) is a graph whose vertices are a subset of the vertices

of G, VH ⊂ V and whose edges are a subset of the edges of G incident only to nodes in VH ,

EH ⊂ {(i, j) | i, j ∈ VH , (i, j) ∈ E}. A subgraph is called induced if the edge set EH contains edges

that have both endpoints in VH . A spanning graph is a subgraph that has the same node set as

the original graph, i.e., VH = V .

We call an undirected graph as connected, if there exists a path between any pair of nodes. If

a graph is disconnected, then we can divide it into multiple induced subgraphs Hi(VHi , EHi) such

that every subgraph is connected and all the edges of the original graph are contained in one of the

subgraphs, i.e., there is no edge between any of the induced subgraphs. Each induced subgraphs

Hi is called a connected component of the original graph G. If the graph is directed, there are

two different types of connected components. The first type is a strongly connected component

(SCC) that is a maximal set of vertices such that there exists a directed path between every pair of

vertices. Strongly connected components are simply connected components in an undirected graph.

The second type is a weakly connected component (WCC) that is a maximal set of vertices such

that there exists a path between every pair of vertices in the associated undirected induced graph.
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A clique is a subset of vertices of an undirected graph such that its induced subgraph is complete.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that

is, a clique which does not exist exclusively within the vertex set of a larger clique. One of classical

methods to detect overlapping communities, called the clique percolation method [88], builds up

the communities from k-cliques.

The last notion we would like to mention is the complement of a graph G(V,E), which is a

graph G⊥(V,E⊥) defined over the same set of nodes but such that E⊥ contains all the edges not

existing in G, i.e., E⊥ = {(i, j) | (i, j) /∈ E}.

C.1.2 Random Graphs

To assess the quality of algorithms an measures, we extensively use random graphs in this

dissertation. A graph is called random, if either its vertex set, its edge set or both are generated

using a random process. Random graphs are very useful to model typical properties of networks or

to quantify how similar or dissimilar is a given network from what one would observe on average in

networks having similar properties. Erdos and Renyi model [36] and configuration null model [83]

are two common random graphs models.

C.1.3 Erdos and Renyi (ER) Model

Erdos and Renyi model is the most common and simplest random graph model. To build

such a random graph, one begins with a fixed set of vertices and no edges. Then, one adds

the n(n − 1) possible edges (excluding self-loops) independently with a constant probability p ∈

[0, 1]. Independence means that the probability that a pair of vertices is connected by an edge is

independent from the presence or absence of edges among other pairs. Each pair of vertices can be

regarded as a random binary variable, taking the value 1 (edge present) or 0 (edge absent). The

random graph is equivalent to a series of independent random binary variables because each vertex

pair is assigned an edge with the same probability and independent of all other pairs. Such a series

is called a Bernoulli process and for this reason the model is also known as the Bernoulli random

graph model [30].

The expected number of edges in an undirected Erdos-Renyi graph is 〈m〉 =
(n

2
)
p, where

(n
2
)

is the binomial coefficient, that is, the number of possible ways to select 2 nodes out of a set of n

nodes. The expected number of edges is simply multiplied by 2 for directed Erdos-Renyi graphs.
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The degree distribution of a network is the probability distribution of the degree of the vertices

in the network. More precisely, the degree distribution P (k) is the probability that a vertex taken

at random has a degree k and is given by the expected proportion of vertices of degree k in a

random network

P (k) = 〈| {i | ki = k} |〉
n

.

In Erdos-Renyi graphs, the degree distribution is binomial

P (k) =
(
n− 1
k

)
pk(1− p)n−1−k. (C.1)

For large n and small p, the degree distribution (C.1) can be well approximated by a Poisson

distribution

P (k) ≈ (np)ke−np

k! . (C.2)

The random null model is often used as a term of comparison, to verify whether the original

graph in question displays some structural features. We want that p is chosen such that the original

graph and the null model have on average the same number of edges. So m = p
(n

2
)
, hence we set

p = m

(n2)
, where m is the number of edges and n is the number of nodes.

The Erdos-Renyi null model has been widely used to create random graphs, since it is easy to

be constructed. However, it is not straightforward to extend the model to weighted graphs. While

p = m
n2 gives the probability to connect any pair of nodes such that the expected number of edges

in the ER null model is m, defining the weight of such edges would require additional and specific

knowledge about the network [19].

In addition, the degree distribution of Erdos-Renyi random graph follows a Poisson distribution.

In contrast, most real-world graphs exhibit heavy-tailed power degree distributions [96]. This

indicates that the number of edges might not be the best feature to match in the original graph.

We can improve this aspect by using the same degree distribution as the original network [71] [77],

which is called the configuration model.

C.1.4 Configuration Null (CNM) Model

The configuration null model uses the same degree distribution as the original network to match

the original graph [71] [77]. Configuration null model takes the degree ki =
∑
j Aij of a vertex into
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account, which is constructed with the same degree distribution as the original network, where A

is the adjacency matrix of the original network.

Let us first consider an unweighted undirected network and explain how to build a random graph

using the configuration model. We can cut all links in half, so that each node i has ki "stubs", and

connect all the stubs randomly. The central mathematical property of the configuration model is

the probability pij that two vertices i, j are connected. Under a random matching on the edge stubs,

for a particular stub attached to vertex i, there are kj possible stubs out of 2m− 1 (excluding the

stub on i under consideration), attached to j to which it could connect. And there are ki chances

that this could happen. So we can get pij = kikj
2m−1 '

kikj
2m , where the second form holds in the limit

of large m.

One can observe that the configuration null model matches , on average, both the number of

edges in the original network and the degree sequence.

We can make a straightforward extension to weighted directed graphs based on the creation

for an unweighted undirected network using the outgoing and incoming strengths instead of the

degrees for the null model. The probability pw,dij that two vertices i, j are connected for a weighted

directed graph is

pw,dij =
souti sinj
mw

, (C.3)

where the strength souti of vertex i is defined as the sum of weights of the outgoing edges connected

to it, and the strength sini of vertex i is defined as the sum of weights of the incoming edges

connected to it, and mw is the total weights of the original network.

C.2 Communites in Network

Community structure [84] is the division of network nodes into groups within which the network

connections are dense, but between which are sparser. These groups are called communities, or

modules. A figurative sketch of a network with such a community structure is shown in Figure C.1.
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Figure C.1: A small network with 3 communities, which have dense internal links but between
which there is only a lower density of external links.

C.3 Quality Functions for Community Detection Problem
C.3.1 GN modularity

In real life, the algorithms normally are used on networks for which the communities are not

known ahead of time. How do we know when the communities found by the algorithms are good

ones? To answer these questions, Newman and Girvan [84] define a measure of the quality of a

particular division of a network, which is called the modularity.

To define the modularity, they consider a particular division of a network into k communities.

Then they define a k × k symmetric matrix e whose element ecd is the fraction of links that link

nodes in community c to community d. Here we always consider all edges in the original network

even after we remove edges later. The trace of this matrix Tr e =
∑
c ecc gives the fraction of edges

in the network that connect vertices in the same community. Clearly a good division should have

a high value of this trace, but the trace itself is not a good measure of the quality of the division,

since Tr e get the maximal value 1 when we place all vertices in a single community, which gives

us no information about the community structure at all.

So Newman and Girvan further define the row sums ac =
∑
d ecd, which represent the fraction

of edges that connect to vertices in community c. And they define the modularity as follows, which

measures the fraction of the edges in the network that connect vertices of the same type (i.e.,

within-community edges) minus the expected value of the same quantity in a network with the
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same community divisions but random connections between the vertices.

Q =
∑
c

ecc − a2
c , with ac =

∑
d

ecd. (C.4)

Clauset et al. [27] give an equivalent formula with formula (C.4) for GN modularity, which is

Q = 1
2m

∑
i,j

(Aij −
kikj
2m )δ(σi, σj) (C.5)

= 1
2m

∑
c

∑
i,j

(Aij −
kikj
2m )δ(σi, c)δ(σj , c) (C.6)

= 1
2m

∑
c

[2Σin −
(Σtot)2

2m ] (C.7)

=
∑
c

[Σin

m
− (Σtot

2m )2], (C.8)

where i and j are two vertices, Aij is an element of the adjacency matrix with Aij = 1 if there is

an edge (i, j) and zero otherwise; where ki =
∑
j Aij is the degree of vertex i and m is the total

number of edges in the network, δ(σi, σj) is the Kronecker delta symbol so that δ(σi, σj) = 1 if

σi = σj both i and j are in the same community, and σi is the label of the community to which

vertex i is assigned. This is called the classical modularity. In equation(C.8), Σin is the sum of the

numbers of the links inside community c, and Σtot is the sum of the numbers of the links incident to

nodes in c. From this, we can see that the modularity is the fraction of edges within communities

minus the expected fraction of such edges, which is corresponding to formula(C.4).

C.3.2 A General Framework of Quality Functions

From the definition of communities, we know that communities are groups of densely intercon-

nected nodes that are only sparsely connected with the rest of the network. From this, Reichardt

and Bornholdt [94] find four requirements of the quality function: it should

1. reward aij to existing edges in the same group

2. penalize bij to missing edges in the same group

3. penalize cij to existing edges between different groups

4. reward dij to missing edges between different groups.
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This leads to the following function which is closely related to the modularity from a more general

framework:

H (σ) =−
∑
i,j

[aijAij − bij(1−Aij)]δ(σi, σj) (C.9)

+ [−cijAij + dij(1−Aij)](1− δ(σi, σj)),

where i and j are two vertices, Aij is an element of the adjacency matrix with Aij = 1 if there is

an edge (i, j) and zero otherwise, δ(σi, σj) is the Kronecker delta symbol so that δ(σi, σj) = 1 if

σi = σj both i and j are in the same community, and σi is the label of the community to which

vertex i is assigned.

The negative sign is only a matter of convention, so we want to minimize this function. So the

optimization problem [106] is

minσ H (σ) (C.10)

over all possible partitions.

So H (σ) is the cost of a partition, and the optimal partition has the minimal cost.

We can simplify the function H (σ) as follows if we suppose the edges within communities are

equally rewarded (or punished) as edges between communities, i.e., aij = cij and bij = dij , and

remove factors which do not depend on σ.

H (σ) = −
∑
i,j

(aijAij − bij(1−Aij))δ(σi, σj). (C.11)

The weights aij , bij are non-negative, and remain to be specified.

Reichardt and Bornholdt Model. Reichardt and Bornholdt [94] compared the original

network to a random network, a random null model. The null model is a graph which matches one

specific graph in some of its structural features, but which is otherwise taken to be an instance of

a random graph. The null model is used as a term of comparison, to verify whether the graph in

question displays some feature, such as community structure. We assume the random null model

does not have the community structure.

Assume pij is the probability for the (i, j) link, which be specified later. If we take aij =

wij − γRBpij , bij = γRBpij , where wij is the weight of the (i, j) link, γRB is used to weight the

importance of the random network, then we can get the Reichardt and Bornholdt cost function

HRB = −
∑
i,j

(wijAij − γRBpij)δ(σi, σj) (C.12)
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If we assume the graph is unweighted and undirected, so wij = 1. We can rewrite the RB cost

function as

Hrb = −
∑
i,j

(Aij − γRBpij)δ(σi, σj) (C.13)

= −
∑
c

∑
i,j

(Aij − γRBpij)δ(σi, c)δ(σj , c) (C.14)

= −
∑
c

[
∑
i,j

Aijδ(σi, c)δ(σj , c)− γRBpijδ(σi, c)δ(σj , c)] (C.15)

:= −
∑
c

[ec − γRB〈ec〉pij ] (C.16)

where ec =
∑
i,j Aijδ(σi, c)δ(σj , c) is the number of edges in community c; 〈ec〉 =

∑
i,j pijδ(σi, c)δ(σj , c)

is the expected number of edges in community c.

Remark C.3.1 (Extension to weighted undirected networks). For the weighted undirected net-

works, ewc =
∑
i,j wijAijδ(σi, c)δ(σj , c) is the sum of weights of edges inside the community c;

〈ewc 〉 =
∑
i,j p

w
ijδ(σi, c)δ(σj , c) is the expected sum of weights of edges in community c. For sim-

plicity, we consider the unweighted undirected networks firstly, then we extend them to weighted

networks later.

The specific form of cost function depends on the null models we choose. Various random null

models can be chosen, that is, various pij can be chosen. The null model should match the original

graph for some of its structural features, but is essentially random.

• RB model with Erdos-Renyi null model:

For ER null model, we choose p as a constant, and we want that p is chosen such that the
original graph and the null model have on average the same number of edges. So m = p

(n
2
)
,

hence we set pij = p = m

(n2)
, where m is the number of edges and n is the number of nodes.

Then the expected number of edges within a community is pn2
c , where nc is the the number

of nodes of community c. So the RB model with Erdos-Renyi null model is

Hrb = −
∑
c

(ec − γRBpn2
c) (C.17)

where ec =
∑
i,j Aijδ(σi, c)δ(σj , c) is the number of edges in community c for unweighted

undirected networks.

The Erdos-Renyi null model has been widely used to create random graphs, since it is easy to
be constructed. However, it is not straightforward to extend the model to weighted graphs.
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While pij = p = m
n2 gives the probability to connect any pair of nodes such that the expected

number of edges in the ER null model is m, defining the weight of such edges would require
additional and specific knowledge about the network [19]. But if we can define the weights
properly, then the RB model with Erdos-Renyi null model for weighted netwoks is

HRB = −
∑
c

(ewc − γRBpn2
c) (C.18)

where ewc =
∑
i,j wijAijδ(σi, c)δ(σj , c) is the sum of weights of edges inside the community c.

In addition, the degree distribution of ER random graph can be showed that it follows a
Poisson distribution. In contrast, most real-world graphs exhibit heavy-tailed degree distri-
butions. We can improve this aspect of our random null graph model by using the following
configuration model G(n,

−→
k ), where

−→
k = {ki} is a degree sequence and ki is the degree of

vertex i.

• RB model with configuration null model:

The precise mathematical properties for a configuration random model depend on the degree
sequence. Configuration null model takes the degree ki =

∑
j Aij of a node into account,

which is constructed with the same degree distribution as the original network. We cut all
links in half, so that each node i has ki "stubs", and connect all the stubs randomly. The
central mathematical property of the configuration model (and indeed, all random graph
models) is the probability pij that two vertices i, j are connected.

Under a random matching on the edge stubs, for a particular stub attached to vertex i, there
are kj possible stubs out of 2m − 1 (excluding the stub on i under consideration), attached
to j to which it could connect. And there are ki chances that this could happen. So we can
get pij = kikj

2m−1 '
kikj
2m , where the second form holds in the limit of large m.

Hrb = −
∑
i,j

(Aij − γRB
kikj
2m )δ(σi, σj) (C.19)

= −
∑
c

[ec − γRB
K2
c

2m ], (C.20)

where ec =
∑
i,j Aijδ(σi, c)δ(σj , c) is the number of edges in community c; Kc =

∑
i kiδ(σi, c)

is the sum of degrees of the nodes in community c.

If we take γRB = 1, we can get the relation between RB model with configuration null
model and the classical modularity Q, which is Q = − 1

2mHrb. So maximizing the modularity
of a community structure is equivalent to minimizing the cost function of RB model with
configuration null model.

The configuration null model is straightforward to extend to weighted networks: we use
strengths of nodes instead of degrees of nodes for weighted undirected networks. In weighted
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networks, the strength si of node i is defined as the sum of weights of the edges connected
to it. So ewc =

∑
i,j wijAijδ(σi, c)δ(σj , c) and 〈ewc 〉 = S2

c
2S , where Sc =

∑
i siδ(σi, c) is the sum

of strengths of the nodes in community c, S =
∑n
i=1 si is the total strength of the network.

Therefore,

HRB = −
∑
c

(ewc − γRB〈ewc 〉) (C.21)

= −
∑
c

[ewc − γRB
S2
c

2S ]. (C.22)

Null Model. The classical modularity (RB model in general) actually has a problem, which

is the resolution limit. Fortunato et.al find that modularity contains an intrinsic scale of order
√
m,

which constraints the number and the size of the modules, where m is the total number of links

[41]. Modules that are smaller than this scale might bot be resolved. Due to the resolution limit,

some small communities in large graphs may not be detected, and we can see the problem from the

following Figure [109].

Figure C.2: Resolution Limit Problem of the classical modularity, see [109].

In Figure C.2, we can see the ring of cliques which are connected through single links. So

each clique should represent a community, but modularity may merge them. The RB model does

have the resolution limit problem. The RB model with a configuration null model for example

merges two neighboring cliques in this ring network of cliques when γRB < q
nc(nc−1)+2 , where q is

the number of cliques and nc is the number of nodes of a clique. Since the number of cliques q is

a global variable, it shows modularity might be "hiding" some smaller communities within larger

communities, depending on the size of the network.
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To avoid the resolution limit problem, some no null models are developed. Here, we just consider

Ronhovde and Nussinov (RN) model [97] and Constant Potts Model (CPM) model [109].

• RN model:

For the general modularity equation (C.11), if we take aij = wij , bij = γRN , then we can get
the RN model [97]. The cost function of RN model is

HRN (σ) = −
∑
i,j

(Aij(wij + γRN )− γRN )δ(σi, σj). (C.23)

We can see that this model has no null model. The RN model only join two cliques when
γRN < 1

n2
c−1 [97], which does not depend on the number of cliques q, and depends only on

the local variable nc, so is argued not to suffer from any resolution limit.

• Constant Potts Model:

We can get the CPM model [109], if we take aij = wij − bij , bij = γCPM in the general
modularity equation (C.11). The cost function of CPM model is

HCPM (σ) = −
∑
i,j

(Aijwij − γCPM )δ(σi, σj). (C.24)

We can find that this model only compares the original network to a constant parameter, not
a random network, so this model has no null model. CPM merges two neighboring cliques in
this ring network of cliques when γRB < 1

n2
c
[109], which also does not depend on the number

of cliques q and can hence also avoid the resolution limit problem.
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