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ABSTRACT

This dissertation considers optimization problems on a Riemannian matrix manifold M ⊆ Rm×n

with an additional rank inequality constraint. A novel technique for building new rank-related

geometric objects from known Riemannian objects is developed and used as the basis for new

approach to adjusting matrix rank during the optimization process.

The new algorithms combine the dynamic update of matrix rank with state-of-the-art rapidly

converging and well-understood Riemannian optimization algorithms. A rigorous convergence anal-

ysis for the new methods addresses the tradeoffs involved in achieving computationally efficient and

effective optimization. Conditions that ensure the ranks of all iterates become fixed eventually are

given. This guarantees the desirable consequence that the new dynamic-rank algorithms maintain

the convergence behavior of the fixed rank Riemannian optimzation algorithm used as the main

computational primitive.

The weighted low-rank matrix approximation problem and the low-rank approximation ap-

proach to the problem of quantifying the similarity of two graphs are used to empirically evaluate

and compare the performance of the new algorithms with that of existing methods. The experi-

mental results demonstrate the significant advantages of the new algorithms and, in particular, the

importance of the new rank-related geometric objects in efficiently determining a suitable rank for

the minimizer.

xii



CHAPTER 1

INTRODUCTION

In recent years, substantial progress has been made on the theory, design and efficient imple-

mentation of effective algorithms to solve optimization problems with constraints that specify a

Riemannian manifold. Such problems are found in a wide variety of areas, but of particular in-

terest in this dissertation are those involving matrix manifolds, e.g., the Grassmann manifold, the

compact Stiefel manifold, symmetric positive definite matrices, symmetric positive semidefinite

matrices with fixed rank, along with associated products and quotient manifolds. There are many

important matrix-based optimization problems that have an additional constraint related to the

rank of the optimal solutions [Mar11]. These problems have been solved, for the most part, in an

ad hoc manner. This dissertation investigates optimization problems that involve a rank inequality

constraint on a union of Riemannian manifolds. New algorithms are proposed, the theoretical prop-

erties that influence their convergence are analyzed and the efficiency and effectiveness of careful

implementations on selected problems are demonstrated.

This chapter is organized as follows. In Section 1.1, an overview of optimization problems with

rank constraints and a brief history of research on methods for solving rank-constrained optimiza-

tion are given. Rank-constrained matrix approximation in two common constrained optimization

problems is presented in Section 1.2. The chapter closes in Section 1.3 with an overview of the

remainder of the dissertation.

1.1 The Problem of Rank-constrained Optimization

Euclidean rank-constrained matrix optimization problems have the form

min f(X) subject to X ∈M≤k, (1.1)

where f : Rm×n → R is a smooth objective function and M≤k = {X ∈ Rm×n|rank(X) ≤ k},
i.e., the set of matrices of rank at most k, In general, (1.1) is an NP-hard problem [VB94]. There

are special cases, though, where an exact solution can be found, e.g., using the singular value

1



decomposition (SVD) [HJ90]. However, for many applications where the dimensions m and n are

large or where there are significant time constraints, e.g., real-time or near real-time problems,

calculating the SVD is impractical. Hence, a number of algorithms have focused on approaches

that are faster than the SVD-based algorithm and require less memory, making them more suitable

for such applications, see [DM05, DV06, DKM06, AM07].

Recently, optimization on manifolds has attracted significant attention as a general approach

to reduce the dimension of optimization problems compared with solving the original problem in

their ambient Euclidean space. Attempts have been made to understand (1.1) by considering a

related but simpler problem

min
X∈Mk

f(X). (1.2)

whereMk = {X ∈ Rm×n|rank(X) = k}, [Ye05, ABG07, MMBS13, JBAS10b, LKLS13]. SinceMk

is a submanifold of Rm×n of dimension (m + n − k)k, (1.2) can be solved using techniques from

Riemannian optimization applied to matrix manifolds [AMS08].

However, a disadvantage of (1.2) is that the manifold Mk is not closed in Rm×n, which com-

plicates considerably the convergence analysis and performance of an iteration. The solution may

be on the boundary of Mk, e.g., a singular matrix; or a convergent sequence {Xn} generated by

some optimization algorithm may include a singular matrix. Furthermore, simply approaching the

boundary causes the smallest singular values become very small, leading to numerically undefined

Hessian matrices precluding the use of some algorithms with superlinear or quadratic convergence,

e.g., RTR-Newton algorithm [ABG07, Bak08].

Fortunately, the difficulty of (1.2) disappears when we consider the optimization problem (1.1)

since the set M≤k is the closure of the set Mk. However, M≤k is not a manifold, the gradient is

not defined at singular points with rank(X) < k since the set M≤k is no longer smooth at those

points. Hence, algorithms for smooth manifolds are not applicable on M≤k directly.

To overcome this problem, alternating between fixed-rank optimization and a simple update to

the rank has been employed in many papers [JBAS10a, MS13, MV14]. The optimization scheme

is most often started with a rank-1 problem and after solving the associated local optimization on

the fixed-rank manifold, a new problem is considered on a fixed-rank manifold with rank, typically,

incremented by 1. However, this scheme is usually not efficient. Solving the optimization on each

fixed-rank manifold is often computationally demanding if simple manifold algorithms are used
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and finding an optimal point on the current fixed-rank manifold may not be required or useful if

the optimal for the problem is considerably distant from that point. A combined perspective on

applying a state-of-the-art Riemannian optimization algorithm to sufficiently reduce the local cost

function and altering rank appropriately and rigorously is needed.

A family of random multistart-type algorithms, called Alternating Projections with Backtrack-

ing and Randomization, has been developed to solve the structured low-rank approximation prob-

lems arising in computational statistics [GZ13, GZ14]. This method can be viewed as a global

random search extension of the alternating projection method. However, it has some shortcom-

ings. First, it targets specifically the structured low-rank approximation problems. Second, there

is no rigorous understanding of how to choose the values of parameters p (backtracking) and q

(randomization) in the algorithm. Third, it does not increase the rank.

Very recently, a more global view of a simple basic line-search method on M≤k along with

a convergence analysis has developed independently in [SU14]. The analysis generalizes ideas

from the Euclidean projected gradient algorithm combined with an idea inspired by retraction on

Riemannian manifolds in a manner similar to the discussion later in this dissertation. It is shown

that the tangent cone ofM≤k at the problematic singular points has a useful characterization, that

supports the definition of line-search schemes using gradient-related search directions on tangent

cones to achieve linear or sublinear convergence. Based on the explicit characterization of tangent

cones, they extend the Riemannian optimization techniques from the smooth manifold of fixed rank

to its closure. In [UV14], a rank-adaptive optimization strategy where local optimal solutions of

some smaller rank are used as a starting point for an improved approximation with a larger rank

is proposed. However, the rank increment is still a small fixed number each time, i.e. the rank is

increased by 1 or 2 each time, which is not efficient and a convergence analysis is not given.

This dissertation addresses combining rank inequality constraints with a matrix manifold con-

straint in a problem of the form

min
X∈M≤k

f(X) (1.3)

where M≤k = {X ∈ M|rank(X) ≤ k} and M is a submanifold of Rm×n. Typical choices for M
are the entire set Rm×n, a sphere, symmetric matrices, elliptopes, as well as spectrahedrons. The

approach developed provides a more sophisticated use of higher order information, the geometry of
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the manifolds involved, and extensions to recent advances in Riemannian optimization algorithms

[Hua13].

1.2 Motivation and Applications

The rank-constrained optimization problems in the form of (1.1) have numerous applications

and arise in diverse areas such as signal and image processing [MK97, JHSX11], system identification

[FHB04, Mes98], computational finance [Wu02, ZW03], low dimensional embedding [LLR95]. Brief

introductions to two common constrained optimization problems are given in the following sections.

1.2.1 Weighted Low-rank Approximation

Approximating a given data matrix with a matrix of acceptably low-rank is an important

problem in data analysis. It is widely used for mathematical modeling and data compression. The

rank constraint is related to a constraint on the complexity of a model that fits the data. In some

cases, the deviation between the observed matrix and the low-rank approximation is measured

relative to a weighted norm. Zero weights can be taken into account when some entries of the data

matrix are missing or unknown. More generally, weights may be introduced in response to some

external estimate of the noise variance associated with each measurement. For a 2-D filter design

problem [LPW97], the matrix to be approximated is obtained via a sampling procedure and the

number of samples and/or the expected variance vary among the entries. Setting the weights can

discriminate between the important and unimportant elements of the data.

Finding a low-rank matrix which is an approximation to the given matrix with respect to a

certain weighted norm is an optimization problem called weighted low-rank approximation and is

formulated as: given a real matrix R ∈ Rm×n, a positive definite symmetric weighting matrix

W ∈ Rmn×mn and a positive integer k < min(m,n), find an m−by−n matrix X∗ with rank at most

k that approximates R as closely as possible

X∗ = argmin
X∈Rm×n,rank(X)≤k

‖R−X‖2W , (1.4)

where the weighted norm of an m−by−n matrix A is defined as ‖A‖2W = vec{A}TWvec{A} and

vec{A} stands for the vectorized form of A, i.e., a vector constructed by stacking the consecutive

columns of matrix A in one vector. If the weight matrix W is an identity matrix, then the problem
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(1.4) reduces to the well-known unweighted low-rank approximation problem. In practice, X∗ is

not always required. It is often the case that a matrix X̃ that approximates R well-enough with

rank even lower than that of X∗ is taken as the solution to the problem. The methods discussed

in this dissertation are motivated, in part, by this practical consideration.

Unlike the unweighted low-rank approximation problem, the weighted low-rank approximation

problem has received less attention in the literature. The few reasonable algorithms available at

present are the alternating projection algorithm of [LPW97], gradient-based optimization methods

developed in [MMH03] and a method due to Brace and Manton [BM06] that was presented as

a heuristic but that is derived and analyzed rigorously in this dissertation using recent advances

from [Hua13]. There are some algorithms for specific weighting matrices. For example, EW-TLS

[PR02b] and GTLS [VV89] are used to solve weighted low-rank approximation problem when the

weighting matrix W has a specific block diagonal structure.

1.2.2 Graph Similarity

When studying graphs and their structures, a common requirement is the ability to compare two

graphs and quantitatively assess their similarity, i.e., given two graphs, answer the questions“How

similar is each vertex in the first graph to each vertex in the second graph?” and “What is the best

match for each vertex in the first graph to a vertex in the second graph?”. One solution to these

problems is the computation of a similarity matrix S. Graph similarity has applications in diverse

fields such as image processing, biological networks, social networks and chemical compounds.

Certainly, the meaning of “similarity” is particular to the application. Many kinds of similarities

have been considered, see [PDGM10] for more details about classification of similarity metrics. A

large class of similarity algorithms take a very local perspective on similarity; namely, two nodes

of two different graphs are considered “similar” if their neighboring nodes are “similar”. This is a

cyclic definition, and very naturally leads to iterative updates by which similarity scores between

graph elements propagate to neighboring elements on each iteration. Blondel et al. in [BGH+04]

give such an iterative method to define a similarity matrix. However, when the graphs are large,

their algorithm becomes computationally expensive.

The use of low-rank approximation to estimate the similarity matrix has been considered.

Ideally, the problem would be formulated as: given adjacency matrices A ∈ Rm×m and B ∈ Rn×n
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of two graphs GA and GB with m and n nodes respectively, find an m−by−n matrix S∗ with rank

at most k that approximates the real similarity matrix SBlondel as closely as possible

S∗ = argmin
S∈Rm×n,‖S‖F=1,rank(S)≤k

‖S − SBlondel‖F (1.5)

where ‖A‖F =
√∑m

i=1

∑n
j=1 |aij |2 denotes the Frobenius norm of a matrix A ∈ Rm×n. However,

the similarity matrix SBlondel is not known and this formulation is not possible. Therefore, alternate

definitions that in some sense are consistent with the similarity matrix SBlondel are proposed and

associated algorithms derived. In [FND08], Fraikin et al. approach the similarity matrix defined

by Blondel et al. by a rank−k matrix with k identical singular values. Cason et al. in [CAD13]

consider two kinds of low-rank approximations of the similarity matrix by using truncated SVD

with either k nonzero identical singular values or at most k nonzero, not necessarily identical,

singular values. More detail on these approaches is given in Chapter 5.

1.3 Research Overview and Thesis Statement

The main goal of this dissertation is the development, analysis and evaluation of a novel ap-

proach to optimization problems with rank inequality constraints combined with matrix manifold

constraints, i.e., with constraint set M≤k. This approach exploits the fact that M≤k is the union

of fixed-rank manifolds, i.e.,

M≤k = {X ∈M|rank ≤ k} =
⋃

0≤r≤k
Mr, (1.6)

where Mr = {X ∈ M|rank(X) = r} is assumed to be a manifold, and so each major step of the

approach can exploit state-of-the-art rapidly converging Riemannian optimization algorithms on

Mr and a dynamic update of the rank r using a line search.

This dissertation asserts the following thesis:

1. The geometric structure of the set M≤k supports the

• identification of specific relevant geometric objects on each fixed-rank manifold Mr;

• development of a novel rank-related vector that defines a search direction on tangent

cones;

• definition of a novel rank-related retraction that facilitates the change from one fixed-

rank manifold to another one.
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2. These objects, direction and retraction can be used to develop a novel approach to solve

optimization problems with rank inequality constraints.

3. The approach can exploit existing Riemannian optimization algorithms and the associated

superlinear convergence and efficiency.

4. A systematic convergence theory for this approach can be developed that relates the behavior

of the algorithms with respect to rank and cost function value, the parameter choices, con-

vergence rate for solving the exact optimization problem, and convergence rate for solving an

associated approximate optimization problem.

5. The efficiency and effectiveness of the approach can be demonstrated using two key applica-

tions of rank-inequality constrained optimization.

The remainder of this dissertation is organized as follows. Chapter 2 reviews important concepts

for Riemannian manifolds and key optimization algorithms. In Chapter 3, a new approach to

solve optimization problems with rank constraints is proposed and theoretical support is given.

Chapter 4 discusses the application of the algorithms based on the new approach to weighted

low-rank approximation problems of the form (1.4). In Chapter 5, the application of low-rank

approximation of graph similarity matrix is discussed. Finally, Chapter 6 formulates the conclusions

of this dissertation, summarizes the main contributions and indicates avenues for future research.
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CHAPTER 2

REVIEW OF RIEMANNIAN OPTIMIZATION

BASICS

This chapter reviews some important definitions and concepts of Riemanian manifolds that are

extensively used in the dissertation. Additionally, the Riemannian optimization algorithms of

interest are identified and characterized briefly.

2.1 Riemannian Geometry

Optimization on Riemannian manifolds (also called Riemannian optimization) concerns finding

an optimum (global, or more reasonably, local) of a real-valued function f defined over a (smooth)

manifold, and appears in a wide variety of computational problems in science and engineering.

Roughly speaking, a manifold is a set endowed with coordinate patches that overlap smoothly.

Optimization on manifolds is usefully thought of as unconstrained optimization on a constrained

space. The ideas of algorithms for unconstrained optimization on a Euclidean space have been

adapted for optimization on manifolds. This required the careful reconsideration of many basic

definitions, constructs and algorithmic techniques that cannot be extended simply from Euclidean

space to a manifold. For example, addition of two points in Euclidean space is well-defined but

does not extend to two points on manifold, in general.

A manifold is a topological space that resembles Euclidean space near each point. More pre-

cisely, each point of an d-dimensional manifold has a neighborhood that is homeomorphic to the

Euclidean space of dimension d. In Riemannian geometry, a smooth manifold of dimension d is

defined as a set M that locally looks like a d-dimensional Euclidean space but can be very differ-

ent globally. Since optimization generally requires taking derivatives and gradients of a function,

calculus on M must be performed. Therefore, a smooth structure on M that allows us to do the

calculation is required. A Riemannian manifold is a real smooth manifold equipped with an inner

product on the tangent space at each point that varies smoothly from point to point.
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In this chapter, some ingredients of Riemannian manifolds and associated basic computations

are reviewed followed by a summary of key Riemannian optimization algorithms. More detail can

be found in [AMS08] and [Hua13].

2.1.1 Tangent Space and Tangent Vector

For a smooth manifold M, the most intuitive way to define tangent vectors, i.e., directions of

motion, is to use curves. Let γ(t)

γ : R→M : t 7→ γ(t).

be a smooth curve on M. Given a smooth function f on M, the function f ◦ γ : t 7→ f(γ(t)) is

a smooth function from R to R with a well-defined classical derivative. This approach, combining

curves and smooth functions on differentiable manifolds, allows the definition of a tangent vector.

Let Fx(M) be the set of smooth functions defined on a neighborhood of x ∈ M, a tangent vector

is defined as follows.

Definition 1. ( Tangent vector). A tangent vector ξx to a manifold M at a point x is a mapping

from Fx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

.

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx. The point x is called

the foot of the tangent vector ξx.

The tangent space to M at x, denoted by TxM, is the set of all tangent vectors to M at x. It

is a linear space, i.e., closed under linear combination, with the same dimension as the manifold.

The tangent bundle TM is defined as the union of the tangent spaces at all elements of M:

TM :=
⋃
x∈M

TxM.

A smooth vector field is a smooth mapping ξ :M→ TM that assigns to each point x ∈ M a

tangent vector ξx ∈ TxM, i.e.,

ξ :M→ TM, x 7→ ξx ∈ TxM.

The set of all smooth vector fields on M is denoted by χ(M).
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2.1.2 Riemannian Metric

The tangent space can be viewed as a vector space that approximates the manifold locally. A

Riemannian metric defines angles and vector length in any tangent space of M.

A Riemannian metric g is a correspondence between each point x ∈ M and an inner product

gx : TxM× TxM→ R. The following equivalent notation is used throughout this dissertation

gx(ξ, ζ) = g(ξ, ζ) = 〈ξ, ζ〉x = 〈ξ, ζ〉

to denote the inner product of two elements ξ, ζ of TxM and the subscript x is dropped when

context makes it clear. The notation, flat [, is also used in the later sections. ξ[ denotes a function

from TxM to R that is ξ[η = g(ξ, η) for all η ∈ TxM. This inner product, defined at each point

on the manifold, turns each tangent space into an abstract Euclidean space capable of supporting

a wide variety of algorithms. A Riemannian manifold is the combination (M, g).

Since a Riemannian metric provides an inner product on the tangent space, the norm induced

by this inner product can be used to define a distance metric on M as follows:

d(x, y) = inf
γ

{∫ 1

0

√
gγ(t) (γ̇(t), γ̇(t))dt

}
= inf

γ

{∫ 1

0
‖γ̇(t)‖gγ(t)dt

}
where γ is a curve on M with γ(0) = x and γ(1) = y. This definition of distance on the manifold

allows a definition of neighborhoods on the manifold. The open ball of radius δ around x, denoted

Bδ(x), is:

Bδ(x) = {y ∈M : d(x, y) < δ}.

Finally, the idea of a neighborhood is used to define local minimizers for a function on a manifold.

Given a function f :M→ R, a point x∗ is a strict local minimizer if there exists some δ > 0 such

that

f(x∗) < f(y) for all y ∈ Bδ(x∗).

2.1.3 Affine Connection, Geodesics, Exponential Mapping and Parallel
Translation

Many algorithms in optimization require second-order information. In general, this second-

order information is obtained by taking the derivative of one vector field with respect to another.

In a Euclidean space, taking the derivative of one vector field along another one, i.e.,

Dη(x)[ξx] = lim
t→0

η(x+ tξx)− η(x)

t
. (2.1)
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always returns a vector field. On a general Riemannian manifoldM, however, for vector fields ξ, η

on M, (2.1) need not be a vector field on M even if all the operations in the expression of the

limit are well-defined. Therefore, the principle of taking derivatives of vector fields on manifold is

generalized to the so-called affine connection.

Definition 2. ( Affine Connection). Let Fx(M) be the set of all smooth functions in x ∈ M,

χ(M) be the set of all smooth vector fields onM. Then the affine connection is a smooth mapping,

denoted by

∇ : χ(M)× χ(M)→ χ(M) : (ξ, η) 7→ ∇ξη

that satisfies the following properties: for all f, g ∈ Fx(M), a, b ∈ R and η, ξ, ζ ∈ χx(M),

1. ∇fη+gζξ = f∇ηξ + g∇ζξ : F(M)-linearity in the first argument η;

2. ∇η(aξ + bζ) = a∇ηξ + b∇ηζ : R-linearity in the second argument ξ;

3. ∇η(fξ) = (ηf)ξ + f∇ηξ : Product rule/Leibniz’s law.

Note that ηf denotes the application of the vector field η to the function f . For any smooth

manifoldM, there are an infinite number of affine connections. For a Riemannian manifold (M, g),

there exists a unique affine connection that satisfies two additional conditions:

1. symmetry: (∇ηξ −∇ξη)f = η(ξf)− ξ(ηf);

2. compatibility with Riemannian metric: ζg(η, ξ) = g(∇ζη, ξ) + g(η,∇ζξ),

for all η, ξ, ζ ∈ χx(M). This affine connection ∇, called the Riemannian connection or Levi-Civita

connection of M.

A straight line in Euclidean space can now be generalized to a geodesic on a manifold. Let

(M, g) be a Riemannian manifold with connection ∇. The parameterized curve γ : (a, b) →M is

called geodesic if and only if it is a curve with zero acceleration:

∇γ̇(t)γ̇(t) :=
D2

dt2
γ(t) = 0

for all t in the domain of γ. Note that different affine connections produce different geodesics.

When the affine connection is the Riemannian connection, by virtue of its compatibility with the

metric g, one of geodesics is also a length minimizing curve. This is consistent with the straight

line in Euclidean space. In this dissertation, we only consider the Riemannian connection.
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Given a point x ∈ M and a tangent vector η ∈ TxM, there is a unique geodesic γ(t;x, η)

satisfying γ(0) = x and γ̇(0) = ξ. In addition, the geodesic also satisfies the homogeneity property

γ(t;x, aη) = γ(at;x, η). This unique curve defines the mapping

Expx : TxM→M : η 7→ Expxη = γ(1;x, η)

called the exponential mapping at x. If the domain of Expx is all of TxM for all x ∈ M, the

manifold M (endowed with the affine connection ∇) is termed geodesically complete. Exponential

mapping gives a method to relate tangent vectors of x to elements in the neighborhood of x. For

optimization algorithms, that may move around in the tangent space TxM in order to select its

next point in M, the Exponential mapping is one way to map the chosen tangent vector back to

manifold.

In many situations, e.g., for some Riemannian optimization algorithms, it is necessary to com-

pare or combine tangent vectors in different tangent spaces. Since the affine connection provides

the idea of differentiating tangent vectors in different tangent spaces, it can also be used to define

moving a tangent vector from one tangent space to another. In a Euclidean space the simplest

such motion is parallel translation that is simply moving the root of the given vector to any other

point in the space to yield a parallel vector field. For a Riemannian manifold parallel translation

produces a suitably generalized notion of a parallel vector field along a single curve. A vector field

ξ on a curve γ satisfying D
dtξ = ∇γ̇ξ = 0 is called parallel. Given a ∈ R in the domain of γ and

ξγ(a) ∈ Tγ(a)M, there is a unique parallel vector field ξ on γ such that ξ(a) = ξγ(a). The operator

P b←aγ sending ξ(a) to ξ(b) is called parallel translation along γ. In other words, we have

D

dt
(P t←aγ ξ(a)) = 0.

If ∇ is the Riemannian connection, the resulting parallel translation is an isometry.

2.1.4 Riemannian Gradient and Riemannian Hessian

Gradient-based optimization requires the notion of a gradient as the direction of steepest ascent

of an objective function. Newton’s method, requires additionally second-order information, the

Hessian. In case of manifolds, these concepts have been generalized to the Riemannian setting as

follows.
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Definition 3. ( Riemannian gradient). Let f be a function defined on a Riemannian manifold

(M, g). The Riemannian gradient of f at x, denoted as gradf(x), is the unique tangent vector in

TxM satisfying

〈gradf(x), ξ〉x = Df(x)[ξ], ∀ξ ∈ TxM, (2.2)

where the directional derivative is denoted Df and the definition of a tangent vector identifies

Df(x)[ξ] = ξf .

Definition 4. ( Riemannian Hessian). Given a real-valued function f on a Riemannian manifold

(M, g), the Riemannian Hessian of f at a point x in the direction of η ∈ TxM, denoted Hessf(x)[η],

is the unique linear mapping

Hessf(x) : TxM→ TxM

that satisfies

Hessf(x)[η] = ∇ηgradf(x), (2.3)

for all η ∈ TxM, where ∇ is the Riemannian connection chosen for M.

From the symmetric property of Riemannian connection, we know Hessian is a self-adjoint

operator with respect to the Riemannian metric, i.e.,

〈Hessf(x)[η], ξ〉x = 〈η,Hessf(x)[ξ]〉x,

for all ξ, η ∈ TxM.

2.1.5 Retraction and Vector Transport

Computationally efficient Riemannian optimization algorithms have been derived, analyzed and

implemented in recent years by generalizing the notions of the Exponential mapping and parallel

translation to retraction and vector transport respectively. The idea of retraction used here and in

the analysis of the Riemannian optimization algorithms of interest is due to Shub [Shu86] (see also

[ADM+02]).

Definition 5. ( Retraction). A smooth mapping R : TM→M is said to be a retraction on M if,

for every x ∈M, let Rx denote the restriction of R to TxM with the following properties.

1. Rx(0x) = x, where 0x denotes the zero element of TxM.
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2. With the canonical identification T0xTxM ' TxM, Rx satisfies DRx(0x) = idTxM, where

idTxM denotes the identity mapping on TxM.

Retraction provides a potentially more efficient way to map a tangent vector in TxM to an

element in a neighborhood of x than the more constrained special case of the Exponential mapping.

By creating a correspondence between the manifold and the tangent plane, a retraction also can

be used to ”lift” a function f defined on a manifold to the tangent plane as follows:

f̂x : TxM→ R : η 7→ f(Rx(η)).

A vector transport is a map from one tangent space to another tangent space that is potentially

more efficient than parallel translation.

Definition 6. ( Vector Transport). Vector transport on a manifold M is a smooth mapping

TM⊕ TM→ TM : (ηx, ξx) 7→ Tη§(ξx) ∈ TM

satisfying the following properties for all x ∈M.

1. (Associated retraction) There exists a retraction R, called the retraction associated with T ,

such that the following diagram commutes

(ηx, ξx)

η

Tηx(ξx)

π(Tηx(ξx))

T

R

π

where π(Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM.

3. (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

Vector transport is called isometric if it also satisfies

gR(ηx)(Tηxξx, Tηxζx) = gx(ξx, ζx).
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An important class of vector transports is vector transport by differentiated retraction which is

a vector transport given by

Tηxξx = DRx(ηx)[ξx];

i.e.,

Tηxξx =
d

dt
Rx(ηx + tξx)

∣∣∣∣
t=0

,

where R is a retraction.

2.2 Riemannian Optimization Algorithms

The concept of optimization on manifolds can be traced back to the work of Luenberger [Lue72,

Lue73] in the early 1970s and earlier where he views equality constraints as defining a surface in

Rn and describes an idealized line search along geodesics on the surface. However, this approach

is not computationally feasible, in general, and was not pursued largely for that reason. More

importantly however, as has been shown recently in great detail, for many optimization algorithms

on manifolds, an approximation of the geodesics is enough to guarantee the desired convergence

properties.

The idea of carefully considering efficient computation has been investigated in several spe-

cific contexts. Gabay [Gab82] proposed a Newton method on embedded submanifold of Rn in

1982. He uses projective methods to compute a gradient vector tangent to the submanifold,

computes a minimum in Rn along this direction, then projects the minimum point back onto

the submanifold. Smith [Smi93] analyzed the optimization of differentiable functions on general

Riemannian manifolds in 1993, generalized three algorithms (steepest descent, Newton’s method

and conjugate gradient method) onto Riemannian manifolds and proves their convergence. Many

other efforts have also attempted to keep the computation required at acceptable levels, see

[DPM02, EAS98, MM02, OW00, Man02, HT04].

While Riemannian Newton-like algorithms are able to achieve superlinear and quadratic con-

vergence, there are some disadvantages: first, the Newton iteration requires the exact solution of a

linear system at each step, which increases the computational cost. Second, there is no guarantee

that the algorithm will converge to a local minimum. Without appropriate checks, it will converge

to the closest critical point, which might be a local maximum, local minimum, or a saddle point.
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Finally, the method may not even converge to stationary points, unless it satisfies some strong

conditions, like the convexity of the cost function.

In 2008, the dissertation of C. Baker tames Riemannian Newton-like methods by developing a

complete convergence theory, implementing a numerical library and analyzing the performance of

a Riemannian trust-region family of methods (RTR-Newton) [Bak08] and [ABG07]. Riemannian

trust-region methods construct a quadratic model of the objective function f around the current

iterate and produce a candidate new iterate by (approximately) minimizing the model within a

region where it is ”trusted”.

Baker’s approach follows the ”lift-solve-retract” procedure to solve the constrained problem.

First, a retraction R is chosen on the Riemannian manifoldM and used to ”lift” the cost function

f on M to a cost function f̂x = f ◦ Rx on the tangent space TxM for any point x ∈ M. Since

TxM is an Euclidean space, a quadratic model (trust-region subproblem) is then defined on TxM
and a minimizer of the subproblem (or at least a point that sufficiently reduces the cost function)

is computed by the ”inverse-free” truncated conjugate-gradient method [Ste83]. This minimizer

is then retracted back from TxM to M using Rx. This point is a candidate for the new iterate,

which will be accepted or rejected depending on the quality of the agreement between the lifted

cost function f̂ and the function f itself. The approach requires the exact second-order term,

i.e., the Hessian of f , or more usefully the action of the Hessian on a tangent vector (or a very

good approximation) which may not be acceptable in terms of computational cost. Huang’s work

described below provides a solution to this computational cost difficulty.

The book by Absil et al. [AMS08] provides an excellent introduction to the area including

a computationally-oriented description of the geometry of manifolds through the dissertation of

Baker.

More recent efforts have concentrated on considering generalizing methods based on line-search-

based Euclidean algorithms that achieve superlinear and quadratic convergence to a Riemannian

setting in a systematic manner. For example, besides the Newton methods, quasi-Newton methods

are extensively used on optimization problems in Euclidean spaces. They achieve superlinear con-

vergence without computing the Hessian or a good approximation of the linear system defined by

the Hessian. One of the most successful of these is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method and the associated restricted Broyden Family of methods.
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In 2011, C.-H. Qi proposed and analyzed an approach to generalize BFGS method on Rieman-

nian manifolds and developed the convergence analysis in her dissertation [Qi11]. The Riemannian

generalization of the BFGS method combines the retraction-based ideas above with vector trans-

port, which is used to connect different tangent spaces. The basic step is the following: given a

smooth cost function on a Riemannian manifold M with Riemannian metric g, the Riemannian

BFGS (RBFGS) defined the search direction pk ∈ TxkM at iteration k as the solution to the

equation Bkpk = −gradf(xk), where Bk is a linear operator that approximates the action of the

Hessian in an appropriate direction and that is updated on each iteration. (As with Euclidean

BFGS a version that propagates the inverse of Bk is also developed.) The new iterate point xk+1

is generated by an appropriate line search method with step size αk, i.e., xk+1 = Rxk(αkpk).

The most important aspect of the Riemannian BFGS algorithm is the manner in which Bk
is updated since the classical update formulas used in Euclidean spaces have no meaning in a

Riemannian manifold setting. Qi proposes the following update formula for Bk based on the vector

transport T with associated retraction R to define a linear operator Bk+1 : Txk+1
M→ Txk+1

M,

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)[

(B̃∗ksk)[sk
+
yky

[
k

y[ksk
,

where a[ denotes the flat of a and A∗ denotes the adjoint operator of A, sk = Tαkpk(αkpk), yk =

gradf(xk+1)−Tαkpk(gradf(xk)) and B̃k = Tαkpk ◦Bk ◦ T −1
αkpk

. The update formula for, Hk = B−1
k is

Hk+1 = H̃k −
(H̃∗kyk)[sk
y[ksk

− s[k(H̃kyk)
s[kyk

+
sky

[
k(H̃∗kyk)s[k
(y[ksk)

2
+
s[ksk

s[kyk
,

where H̃k = Tαkpk ◦Hk ◦ T −1
αkpk

. This approach offers the advantage that it is not necessary to solve

a system of equations. Qi’s dissertation includes a generalization of the Dennis and Moré condition

to the Riemannian setting. However, Qi’s convergence analysis is restricted the approach of BFGS

on Riemannian manifold based on exponential mapping and parallel transport.

Ring and Wirth [RW12] improved on Qi’s work with an approach to generalize BFGS to a

Riemannian manifold in 2012. They consider an infinite dimensional manifold and prove superlinear

convergence under some specific assumptions [RW12, Corollary13]. While not requiring exponential

mapping and parallel vector transport, the analysis requires the use of a differentiated retraction

as the vector transport which is usually computationally expensive.
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Most recently, W. Huang’s dissertation [Hua13] takes a very large step forward in the un-

derstanding and design of Riemannian quasi-Newton methods and computational efficiency for

both line-search based algorithms and trust-region-based algorithms. Huang proposes a systematic

generalization of three well-known unconstrained optimization approaches from Euclidean spaces

to Riemannian manifolds: the Broyden family of methods, the symmetric rank-one trust region

method and the gradient sampling method for both continuous and partly smooth cost functions.

The dissertation includes a complete convergence theory, a comprehensive implementation strat-

egy for library design (demonstrated by an implementation to support the empirical studies of the

dissertation) and strategies for large scale problems for an appropriate subset of the methods.

As in the Euclidean case, the Riemannian Broyden family is defined by taking a linear com-

bination of the Riemannian Davidon-Fletcher-Powell (DFP) and the Riemannian BFGS methods

based on a parameter φk. Huang gives the formula of the important updates step as follows

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)[

(B̃∗ksk)[sk
+
yky

[
k

y[ksk
+ φkg(sk, B̃ksk)vkv[k,

where vk = yk
g(yk,sk) −

B̃ksk
g(sk,B̃ksk)

and B̃k = TSαkpk ◦ Bk ◦ T
−1
Sαkpk

, TS is an isometric vector transport.

When φk = 0, the Riemannian Broyden family of methods reduce to Riemannian BFGS methods.

The restricted Riemannian Broyden Family is defined by convex combination and the update

preserves the positive definiteness of the Hessian approximation when suitable restrictions are

placed on the step size and vector transport. When the combination is not convex the family

becomes the entire Riemannian Broyden Family. In the latter case, convergence behavior and the

choice of φk is more involved as in the Euclidean case. The well-posedness of the Broyden Family

(restricted and not restricted) and the convergence rate as a function of φk are analyzed.

The convergence theory includes several novel extensions. Riemannian Dennis and Moré condi-

tions are developed that subsume that of Qi and characterizes the required correspondence between

the action of Bk and the true Hessian to ensure superlinear convergence for optimization problems

and the related, more general, problem of finding zeros of Riemannian vector fields. The theory also

introduces a key result that allows superlinear convergence of the restricted Riemannian Broyden

Family while avoiding the unacceptably large computational load of the differentiated retraction

required by Ring and Wirth. This is the notion of the locking condition that specifies the rela-

tionship between the vector transport used to the differentiated associated retraction. The locking
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condition and Riemannian Wolfe conditions are key to guaranteeing both superlinear convergence

and well-posedness of the Riemannian Broyden Family. In general, the theory weakens the re-

quirements on retraction and vector transport, thus subsumes the earlier Riemannian BFGS work

of [Qi11] and [RW12], and extends significantly the understanding of Riemannian quasi-Newton

methods.

In Euclidean spaces, the symmetric rank-1 (SR1) method is a member of the Broyden Family

defined by a nonconvex combination. The update in SR1 method does not preserve the positive

definiteness and was for a long time considered to be an ineffective method. However, the SR1,

in fact, has a key difference from the Broyden Family updates: it provides better approximation

of the action of the Hessian on the entire space, i.e. not just in the single search direction of

Broyden’s methods. As a result, SR1 underwent a revival for Euclidean optimization. Huang’s

dissertation generalizes this to the Riemannian setting and proposes combining Riemannian SR1

with a Riemannian trust-region method that makes use of all the directional information of Hessian

approximation. The Riemannian symmetric rank-one trust region methods (RTR-SR1) is an effi-

cient way to solve the problems. Its convergence analysis in the Riemannian setting when restricted

to the Euclidean setting actually extends the Euclidean results in the literature. It also provides a

way to avoid requiring the locking condition since a line-search approach is not taken.

For large scale problems, saving storage is required for a practical algorithm. Huang develops,

analyzes and empirically evaluates limited-memory versions of RTR-SR1 and RBFGS, that only

store a few vectors that implicitly represent the update Bk. The exploitation of these methods for

large problems are crucial when considering the problems in this dissertation.

Finally, to solve the optimization of partly smooth functions, Huang also generalized the gra-

dient sampling methods from Euclidean spaces to Riemannian manifolds. We do not review this

method here since the functions considered in this dissertation and the approaches taken do not

require considering nonsmooth situations. However, as noted below, methods for partly smooth

cost functions may be useful when attempting to exploit higher order information in ways different

than those pursued in this dissertation.

The exploitation of these state-of-the-art optimization algorithms in the solution of rank-

inequality constrained problems of the form (1.1) introduced in Chapter 1 on the fixed-rank mani-

folds is a main motivation for this dissertation.
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CHAPTER 3

RANK INEQUALITY CONSTRAINED

OPTIMIZATION METHODS

The main approach to solving optimization problems with rank inequality constraints and its

analysis are presented in this chapter.

3.1 Problem Statement and the Tangent Cone

Combining rank inequality constraints with a matrix manifold constraint results in a problem

of the form

min
X∈M≤k

f(X) (3.1)

where M≤k = {X ∈ M|rank(X) ≤ k}. M is a submanifold in Rm×n. The problem (3.1) does not

require the cost function defined on M, however, it is assumed throughout that it is since many

applications give such a cost function [MMH03, CAD13].

The Euclidean metric

gE(A,B) = 〈A,B〉F := tr(ATB), for all A,B ∈ Rm×n, (3.2)

where “tr” denotes the trace of a matrix, is the simplest metric for Rm×n. The metric on M is

taken to be endowed from gE(A,B) to turn the manifold M into a Riemannian manifold (M, g).

The set M≤k usually does not have a manifold structure. Generally speaking, any X ∈ M≤k
with rank less than k does not have a tangent space (see Section 4.3). However, for every point

in M≤k, a tangent cone, an extension of the tangent space, always exists. The tangent cone TxZ

of a set Z ⊂ Rd at a point x ∈ Z consists of all rays that originate from x that can be written as

the limit of a sequence of secants defined using a sequence of points xi ∈ Z \ {x} that converges to

x. Specifically, a sequence of points xi ∈ Z \ {x} that converges to x defines a sequence of secants

ri originating at x and passing through xi. The limit rays of the sequence of secants are elements

of the tangent cone at x. Note that for a given sequence of secants there may be more than one

limit ray. These objects, which are generalizations of tangent spaces to smooth submanifolds, were
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first used by Whitney [Whi92] to study the singularities of real analytic varieties, and also play a

fundamental role in geometric measure theory. Here they are used to study the set M≤k.
According to [OW04], the tangent cone to M≤k at a point X ∈ M≤k is equal to the set of all

smooth admissible directions for M≤k at X, i.e.

TXM≤k :=

 γ̇(0) : γ is an smooth curve on M≤k with γ(0) = X,

and γ(t) ∈M≤k, for all t ≥ 0

 .

Given an inner product inM, the normal cone can be defined. Under the inner product 〈·, ·〉F ,

the set

NXM≤k := {ζ ∈ TXM : 〈ζ, ξ〉F ≤ 0, ∀ ξ ∈ TXM≤k},

is the normal cone to M≤k at a point X ∈M≤k.

Remark 7. The tangent cone of M≤k, k < min{m,n} is not a convex set and it is not closed

under the operation of vector addition, see examples in Chapter 4.

Since a tangent cone at a point in the set M≤k is not necessarily closed under addition, the

properties of a manifold clearly break down. These points of M≤k at which there a tangent space

does not exist are those matrices with rank r < k. Note that these matrices are elements of the

manifold Mr = {X ∈ M|rank(X) = r} and the tangent space TXMr is a subset of the tangent

cone TXM≤k. Therefore, general Riemannian optimization algorithms cannot be reliably applied

directly to M≤k.
The set M≤k is equivalent to

⋃
r≤kMr. If M = Rm×n, then Mr is a manifold (see e.g.,

[AAM14]). In order to avoid abusing the notation, Rm×nr denotesMr whenM is Rm×n. In general,

it is unclear whetherMr is a manifold or not. In this dissertation, the following is assumed for the

manifold M.

Assumption 1. The Riemannian manifold M ⊆ Rm×n with Riemannian metric 〈·, ·〉F satisfies

the following properties:

(A.1) Mr = {X ∈M|rank(X) = r} is a manifold;

(A.2) the closure of Mr is a subset of or equal to M≤r;
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(A.1) of Assumption 1, of course, must be checked for any particular problem. It is true for

all of the problems considered in this dissertation. Note that Mr is the intersection of M and

Rm×nr . A sufficient condition for Mr to be a manifold is that the pair M and Rm×nr intersect

transversally [GP10, Chapter 1]. (A.2) of Assumption 1 is not a strong assumption. For example,

one frequently encountered situation is that M is a closed subset of Rm×n. (A.2) of Assumption

1 is true since the closure of Mr is a subset of or equal to the intersection of two closed sets,

Rm×n≤r = {X ∈ Rm×n|rank(X) ≤ r} and M [Mun00].

3.2 A Tangent Cone Descent Algorithm

The literature on optimization on manifolds is large and growing, see Section 2.2 in Chapter 2.

Since we assume each fixed-rank Mr is a manifold, those algorithms can be applied directly for a

specific choice of r. The remaining issue is how to change from one fixed-rank manifold to another

fixed-rank manifold. Line-search methods (or steepest descent methods) on a fixed-rank manifold

Mr ⊆M are based on the update formula

Xn+1 = RXn(tnPTXnMr(ηn)), (3.3)

where tn ≥ 0 is a step-size, ηn ∈ TXnM, PTXnMr : TXnM → TXnMr is a projector. Therefore,

PTXnMr(ηn) is a search direction on the tangent space TXnMr. R is a retraction of Mr, which

takes vectors from the tangent space back to manifold [AMS08].

For any point X ∈ M≤k with rank less than k, the tangent space does not exist but a tan-

gent cone always does. Although the definition of tangent cone to a closed set at a point looks

complicated, it has a simple explicit characterization for some particular M≤k, see [SU14] (where

M = Rm×n) and [CAD13] (where M is a sphere). Let X ∈ M≤k have rank r ≤ k. The tangent

cone TXM≤k contains the tangent space TXMr. What is more, if r < k, it also contains the

curves approaching X by points of rank greater than r, but not beyond k. Therefore, from the

orthogonal decomposition and semi-continuity of matrix rank, we have

TXM≤k = TXMr + {ηk−r ∈ NXMr ∩ TXM|rank(ηk−r) ≤ k − r}. (3.4)

Given this structure of tangent cone at points with rank r < k, the projection of a tangent vector

η ∈ TXM onto it can be calculated. We consider a general line-search method on M≤k ⊆M,

Xn+1 = RXn(tnPTXnM≤k(ηn)), (3.5)

22



where ηn ∈ TXnM, PTXnM≤k : TXnM → TXnM≤k is a projector. Therefore, PTXnM≤k(ηn)

provides a search direction in the tangent cone TXnM≤k at Xn that allows us to move to another

fixed-rank manifold. That is, for an iteration Xn ∈ M≤k has rank r < k, any search direction

PTXnM≤k(ηn) of the form (3.4) will increase, maintain or decrease the rank for the next iterate by

rank(ηk−r) ≤ k − r. Rank decrease only happens at intersection points of a curve on the Mr and

the boundary of Mr, say Mr−1. Therefore, a choice to lower rank results from a decision made in

the selection of the step size for line search methods or trust region methods.

A retraction that takes vectors from tangent cone TXM≤k back to M≤k can be defined in a

manner that is rank-related (see Section 3.4). Given an iterate Xn ∈M≤k with rank r < k, a rank-

increasing step is taken by determining a rank-related direction vector (see Section 3.4) ηXn,r̃ with

r < r̃ ≤ k based on the projection, and given, e.g., the step size that satisfies appropriate conditions.

The next iterate Xn+1 ∈Mr̃ ⊆M≤k is computed by applying the rank-related retraction.

In [SU14], Schneider and Uschmajew, independently of this dissertation, defined a gradient-

related line search method for problem (1.1). The idea is similar to the approach described above

when M = Rm×n. They use search directions in the tangent cone at points with rank less than

k and a generalized retraction [SU14, Definition 2.4] to get the next iteration in M≤k. They use

a practical retraction defined as the best approximation by a matrix of rank at most k in the

Frobenius norm, i.e.

Xn+1 = RXn(ξ) ∈ argmin
Y ∈M≤k

‖Y − (Xn + ξ)‖F .

This is significantly simpler than the retractions discussed in Section 3.4.

Schneider and Uschmajew prove the convergence of their gradient-related projection methods

on M≤k based on  Lojasiewicz inequality [SU14, Theorem 3.9]. However, the convergence result

relies on the assumption, often satisfied in practice, that the limit points have rank k. Under this

assumption, a line-search method on Rm×n≤k is ultimately the same as a line-search method on Rm×nk .

Linear convergence is nearly always observed in their numerical experiments, but the rates in their

theorem are not explicit, i.e., it is between sublinear and linear. What is more, they do not provide

an efficient way to update the rank. So essentially their algorithm is a steepest descent approach

on Mk that ignores rank decreases and does not carefully handle rank increases.
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3.3 Motivation for a New Approach

In practice, it is not easy to give a best choice of the constraint k. If k is taken too small,

the resulting minimizer of the optimization problem may not be an acceptable solution to the

associated application problem, e.g., the matrix may not be approximated well enough. Therefore,

there is pressure to choose a sufficiently large k based on application-related knowledge or intuition.

However, large k may increase unacceptably the computational cost since there is a tendency to

use all of the degrees of freedom available to reduce the value of the cost function, e.g., larger

rank approximations of a matrix tend to be better. This can happen even if the minimizer of the

optimization problem has a rank significantly lower than the constraint k due to finite precision

effects on rank estimation.

The first key factor of the efficiency of any algorithm for these optimization problems is therefore

to be able to assess when increasing rank does not suitably increase the quality of the approximation

and similarly to know when decreasing rank does not introduce unacceptable approximation error.

A rigorous rank adaptation strategy must allow both of these considerations to be assessed efficiently

and thereby to solve an associated approximate optimization problem.

The second key factor of the efficiency of any algorithm is a superlinear convergence rate that

is, preferably, provable. Specifically, the analysis should identify aspects of the problems (exact

or approximate) and algorithms that prevent or support the exploitation of recent algorithmic

and theoretical advances in high-performance Riemannian optimization algorithms. Section 3.4

describes a fairly straightforward algorithmic approach that addresses all of these issues.

3.4 A Modified Riemannian Optimization Algorithm

As mentioned above, the basic approach has two components per major step. The first is, given

a current point X with rank r, apply one of the efficient superlinearly convergent Riemannian

optimization algorithms briefly reviewed in Chapter 2 using the necessary Riemannian geometric

objects (tangent space, Riemannian gradient, retraction, Riemannian Hessian etc.) on the fixed-

rank manifold Mr to produce a sequence of rank r matrices.

Due to (A.2) of Assumption 1, the matrices in the sequence onMr might indicate convergence

to a lower rank matrix, i.e., on a different submanifold. Therefore, the nearness to a lower rank

matrix is monitored while producing the sequence. If a matrix is close enough to matrices of lower
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rank, the iteration onMr is stopped and a rank adjustment is considered. Otherwise, the sequence

continues until an approximate optimal solution X∗r onMr is found, or a matrix at which the cost

function has been reduced sufficiently from its value at X. A rank adjustment is then considered in

the second component of the step. Note that the rank adjustment procedure is the same for both

of these cases.

A rank adjustment decision considers the following two functions, one is the extension of (3.1)

on M, the other is the restriction of (3.1) on a fixed-rank manifold Mr.

fF :M→ R : X 7→ fF(X), (3.6)

so that f = fF

∣∣
M≤k

(we assume the extension is well-defined) and

fr :Mr → R : X 7→ fr(X), (3.7)

so that fr = f |Mr . Not all functions can be arbitrarily extended, but the extension and restriction

of (3.1) are well-defined in all applications discussed in this dissertation.

Incrementing the rank is based on the angle between the gradient of fF, denoted by gradfF(X),

at the approximate optimal point X∗r on the manifold M and the gradient of fr, denoted by

gradfr(X), at the approximate optimal point X∗r on the specific rank manifold Mr. The angle

between them is θ = ∠(gradfF(X∗r ), gradfr(X
∗
r )) = arccos 〈gradfF(X∗r ),gradfr(X∗r )〉

‖gradfF(X∗r )‖‖gradfr(X∗r )‖ , which is shown

in Figure 3.1. If the angle is greater than some given angle θ0 (ε1 = tan(θ0)) and the difference

between ‖gradfF(X∗r )‖ and ‖gradfr(X
∗
r )‖ is larger than a threshold ε2, the rank is increased but,

of course, not beyond the boundary value of k.

Note the two parameters, ε1 and ε2, only provide information about increasing rank. The

strategies of rank reduction will be discussed later since in the neighborhood of a point, there exists

only points with rank equal to or greater than the rank of current point. Therefore, the local

information cannot be used to reduce the rank.
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Figure 3.1: The plot of full gradient of a point on M, gradfF(X), and the local gradient of a
point on a fixed-rank manifold Mr, gradfr(X). θ is the angle between the two gradients and
gradfF(X)− gradfr(X) represents the difference between ‖gradfF(X)‖ and ‖gradfr(X)‖.

The two parameters ε1, ε2 are important for finding the exact/approximate solutions and con-

trolling the computational efficiency of the method. A smaller ε1 value makes it easier to increase

rank per iteration. The smaller ε2 is, the stricter the accuracy of the approximate local minimizer

required. In particular, convergence to critical points of (3.1) is obtained if ε2 is set to be zero.

Furthermore, there is a relationship between the two parameters. ε1 can be seen as ε2 scaled

by the norm of local gradient. Therefore, when ε2 approaches zero, ε1 is not necessary approaching

zeros since the norm of local gradient might be also small. Therefore, in real applications, ε2 can

be chosen small when ε1 is not.

When the rank is increased, a rank-related retraction R̃ is required to determine the next point

in the iteration.

Definition 8 (Rank-related retraction). Let X ∈ Mr. A mapping R̃X : TXM → M is a rank-

related retraction if, ∀ηX ∈ TXM, (i) R̃X(0) = X, (ii) ∃δ > 0 such that [0, δ) 3 t 7→ R̃X(tηX) is

smooth and R̃X(tηX) ∈Mr̃ for all t ∈ [0, δ), where r̃ is the integer such that r ≤ r̃, ηX ∈ TXM≤r̃,
and ηX /∈ TXMr̃−1, (iii) d

dtR̃X(tηX)|t=0 = ηX .
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Note R̃X is not necessarily a retraction onM since it may not be smooth on the tangent bundle

TM :=
⋃
X∈MTXM. The following lemma is used to show a rank-related retraction always exists.

Lemma 9. Let X ∈ M be a matrix of rank r. For any r̃ that satisfies r < r̃ ≤ k, ηX ∈ TXM≤r̃
but ηX /∈ TXM≤r̃−1, there exists a smooth curve γ(t), t ∈ [0, δ), δ > 0 satisfying

1. γ(0) = X;

2. d
dtγ(0) = ηX ;

3. the rank of γ(t) is equal to r̃ for all t ∈ (0, δ).

Proof. For any point X ∈ Mr, assuming there is a matrix ∆X such that rank(X + ∆X) = r̃ and

X + ∆X ∈Mr̃, consider the differential equation on the manifold Mr̃ ⊂M{
d
dtγ(t) = PTγ(t)Mr̃ηX
γ(0) = X + ∆X.

(3.8)

where PTγ(t)Mr̃ : Tγ(t)M≤r̃ → Tγ(t)Mr̃ is a projector. By the analysis in [Hai01], there exists a

unique solution γ(t) ∈ Mr̃ ⊂ M to equation (3.8) for a given initial value γ(0) = X + ∆X and

rank(γ(t)) = r̃.

Next, we need to show such a ∆X exists. Note that by definition of ηX , a curve γ̃(t) ∈ M≤r̃
exists such that γ̃(0) = X, ddt γ̃(0) = ηX and ηX ∈ TXM≤r̃, ηX /∈ TXM≤r̃−1. Therefore, there

exists a δ > 0, such that for t ∈ (0, δ), rank(γ̃(t)) ≮ r̃ and there must exist a sequence {ti}, ti → 0

such that rank(γ̃(ti)) = r̃. Obviously, limti→0 γ̃(ti) = γ̃(0) = X. Set ∆Xi = γ̃(ti)−X, to define a

sequence ∆Xi → 0 such that rank(X + ∆Xi) = r̃.

On the other hand, considering ∆X = 0, on the full manifold M the equation{
d
dtγ(t) = PTγ(t)Mr̃ηX
γ(0) = X.

(3.9)

has a unique solution γ0(t) ∈M.

Based on [Hai11, Theorem 3.3 (dependence on initial value)] and the construction above, we

have a sequence γi(t) ∈ M, where γi(t) is the solution of the equation d
dtγ(t) = PTγ(t)Mr̃ηX ,

rank(γi(t)) = r̃ such that γ(t)→ γ0(t) for each t ∈ (0, δ), which implies rank(γ0(t)) ≤ r̃, ∀t ∈ (0, δ).

Finally, to see the rank of γ0(t) can only be equal to r̃, assume first that there exists a sequence

{ti} ⊂ (0, δ), ti → 0, rank(γ0(ti)) = r̃ and consider the following equation on Mr̃ ⊂M{
d
dtγ(t) = PTγ(t)Mr̃ηx
γ(ti) = γ0(ti).

(3.10)
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Based on [Hai01], there is a unique solution γ(t) ∈Mr̃ ⊂M, t ∈ [ti, δ) for each ti and rank(γ(t)) =

r̃. As ti → 0, the rank is fixed, i.e., rank(γ(t)) = r̃,∀t ∈ (0, δ), which is the desired result.

If the sequence {ti} above does not exist, there must exsit a δ̃ such that for t ∈ (0, δ̃),

rank(γ(t)) < r̃. It must be the case that

d

dt
γ(t) ∈ TXM≤r̃−1

and this implies
d

dt
γ(0) = ηX ∈ TXM≤r̃−1

that contradicts the assumption ηX /∈ TXM≤r̃−1. Therefore, there must exist a curve γ(t) ∈ M
with constant rank r̃ for all t ∈ (0, δ).

Remark 10. In fact, care must be taken because the rank of γ(t) can be any number as long as it is

greater than or equal to the constant r̃ = r+ ∆r (assuming r̃ is less than min(m,n)). For example,

if M = Rm×n, given X = UrDrV
T
r ∈ Mr, ηX =

[
Ur Ur⊥

] [A B
C E

] [
V T
r

V T
r⊥

]
, where rank(E) = ∆r,

obviously, ηX ∈ TXM≤r̃ but ηX /∈ TXM≤r̃−1. The function γ(t) can be written as follows and its

rank is greater than r̃:

γ(t) =
[
Ur U∆r Ur̃⊥

]
Dr 0 0

0 0 0
0 0 0

+ t

Ḋr 0 0

0 Ḋ∆r 0
0 0 0

+ t2Im×n


V T

r

V T
∆r

V T
r̃⊥

 .
The existence of such curves with rank r̃ + ∆r means that when building the desired retraction it

is necessary to make sure that the minimum rank is used to avoid excessive rank increase. While

using the minimum rank increase is convenient, but not crucial, to proving convergence, it is very

important for the computational efficiency of the resulting algorithms.

In general, for any ηX ∈ TXM, there exists r̃ such that ηX ∈ TXM≤r̃ but ηX /∈ TXM≤r̃−1

since ∅ ⊆ TXM≤1 ⊆ · · · ⊆ TXM≤min{m,n} = TXM. We call such a vector a rank-r̃-related vector

and denote it by ηX,r̃. The choice of r̃ is important since we want neither the rank increased

too conservatively, i.e., only increased by a small amount, nor too aggressively, i.e., increased to

the upper bound k directly. A reasonable r̃ can be obtained such that the angle between the full

gradient, gradfF(X), and the rank-r̃-related vector, ηX,r̃, is less than a certain value θ̂. Assume

ε4 = tan(θ̂), it is related to parameter ε1, i.e., it cannot go beyond ε1. By adjusting the value of ε4,

we are able to control the rank increment. The larger r̃ we want, the smaller ε4 is set.
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Since for any point X ∈M≤k, the tangent cone always exists, the projection of the full gradient

onto it is well-defined. This motivates one way to obtain a rank≤ r̃-related vector.

Definition 11. Let X ∈ M be a matrix with rank r ≤ r̃. ηX,r̃ is a rank - ≤ r̃-related vector at X

if ηX,r̃ ∈ TXM≤r̃. Moreover, if ηX,r̃ /∈ TXM≤r̃−1, then it is a rank-r̃-related vector at X.

Given ξ ∈ TXM, one practical way to obtain a rank-≤ r̃-related vector ηX,r̃ is

ηX,r̃ ∈ PTXM≤r̃(ξ) = argmin
η∈TXM≤r̃

‖ξ − η‖F , (3.11)

where PTXM≤r̃ : TXM→ TXM≤r̃ is a projector.

Schneider and Uschmajew define a general retraction from the tangent cone to the set M≤k
[SU14, Definition 2.4]. They claim for every tangent vector ηX ∈ TXM, there exists an analytic

arc γ : [0, ε)→M such that ηX = γ̇(0). However, as stated in Remark 10, the arc γ is not unique.

If M = Rm×n, the arc γ is chosen with rank r̃ and ηX satisfying Lemma 9, then their definition is

similar to Definition 8. Furthermore, if M = Rm×n and r̃ = k, Definition 11 is equivalent to the

definition in [SU14, Corollary 3.3]. However, as noted earlier for efficiency and numerical flexibility

the rank-related retraction and vectors are preferred, especially when k is large.

Figure 3.2 shows the idea of rank-r̃-related vector and rank-r̃-related retraction. Given a tangent

vector ξ ∈ TXM, ηX,r̃ ∈ TXMr̃ is a rank-r̃-related vector satisfies Definition 11. RX(ηX,r̃) is a

rank-r̃-related retraction.

Given a rank-related vector and retraction, the next point in the iteration is taken to be Xnew =

R̃X(t∗ηX,r̃), where ηX,r̃ is a rank≤ r̃-related direction vector and t∗ is the step size chosen using

the well-known Riemannian form of Armijo’s back-tracking procedure.

Definition 12. (Armijo Point [AMS08]) Given a cost function f on a Riemannian manifold M
with retraction R, a point X ∈ M, a tangent vector η ∈ TXM, and a scalar ᾱ > 0, β, σ ∈ (0, 1),

the Armijo point is ηA = tAη = βmᾱη, where m is the smallest nonnegative integer such that

f(X)− f(RX(βmᾱη)) ≥ −σ〈gradf(X), βmᾱη〉X .

The real tA is the Armijo step size.

When the sequence of matrices produces by the iteration on Mr indicates by the rank and

singular values of the matrices in the sequence that r should be decreased, a direction vector ηX,r̃ is
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x

M

MrMr̃

−gradfF(x) ∈ TxM

ηx,r̃

Rx(ηx,r̃)

Figure 3.2: The plot of rank-related vector and rank-related retraction. M is a submanifold of
Rm×n, Mr,Mr̃ are rank-r and rank-r̃ manifolds respectively. X ∈ Mr, gradfF(X) ∈ TXM, ηX,r̃
is a rank-r̃-related vector and RX(ηX,r̃) ∈Mr̃ is a rank-r̃-related retraction.

not required. The following two ways are considered for rank reduction, depending on whether the

rank has been increased or not in any of the previous iteration. If the rank has not been increased in

any previous iteration, given a new rank r̂ < r, the next iterate Xnew is constructed by a projection

of X defined by

Xnew ∈ argmin
X̂∈M≤r̂

‖X − X̂‖F . (3.12)

One practical way to find r̂ is by examining the numerical ∆-rank of thin SVD of X defined in

Algorithm 1 below.

We point out that each iterate is represented by three factors (see Chapter 4). Thus, the

computation of SVD is avoided, which makes the realization of Algorithm 1 more efficient. If the

rank has been increased before, for example, assume the latest rank increment was from Xi to

Xi+1, then the next iterate Xnew satisfies f(Xnew) − f(Xi) ≤ c(f(Xi+1) − f(Xi)), and the new

rank r̂ = rank(Xnew). In this case, the iteration is updated based on the earlier information, i.e.,

the difference of the function values when the rank increased, which is more efficient than the simple

truncation.
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Algorithm 1 Determine the ∆n numerical rank r

Require: An matrix X ∈ Rm×n and a threshold ∆n.

Ensure: Rank r.

1: Find the singular values σ1 ≥ σ2 ≥ · · ·σmin{m,n} ≥ 0 of matrix X;

2: r = 1;

3: for i = 2, · · · ,min(m,n) do

4: if σi/σ1 > ∆n then

5: r ← r + 1;

6: end if

7: end for

The modified Riemannian optimization approach is given by Algorithm 2.

For each application problem, the associated cost functions, the particular manifolds and, most

importantly, the representations chosen are vital considerations in making this approach compu-

tationally efficient. For example, there is no need to repeatedly compute the SVD of a series of

matrices. These crucial aspects of the success of the proposed approach are considered in the

discussions of the application problems.

3.5 Convergence Analysis

The convergence properties of the Riemannian optimization algorithms used on each manifold

Mr are understood and well-developed elsewhere [AMS08, Bak08, Hua13, Qi11]. However, given

the added complexity of the rank changing discretely, the task of proving that the superlinear

convergence is maintained for the rank inequality constrained problem requires additional theory.

This section presents the analysis of the convergence properties of Algorithm 2.

3.5.1 Convergence Analysis for Exact Solution

For the convergence analysis, the concepts of a stationary point on M≤k and a radially L-C1

function are required.

Definition 13. ([CAD13, SU14]) A point X ∈M≤k is a stationary point of the cost function f if

the gradient gradfF(X) belongs to NXM≤k, the normal cone to M≤k at X, i.e.,

gradfF(X) ∈ NXM≤k := {ζ ∈ TXM : 〈ζ, ξ〉F ≤ 0,∀ ξ ∈ TXM≤k}. (3.13)
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Algorithm 2 Modified Riemannian Optimization Algorithm

Require: A real-valued fuction f defined onM≤k; A retraction R on a fixed-rank manifold and a

rank-related retraction R̃, initial iterate X̃0 ∈M≤k, ε1 > 0, ε2,∈ [0, 1), ε3, ε4,∆0 ∈ (0, 1);

Ensure: Sequence of iterates {Xn}.
1: Find the rank r by Algorithm 1 with input X̃0 and ∆0;

2: Set X0 to be one of the solutions of argminX∈Mr
‖X − X̃0‖2.

3: for n = 0,1, 2,. . . do

4: Apply a Riemannian algorithm (e.g. one of GenRTR [ABG07], RBFGS [RW12, Hua13],

RTR-SR1 [Hua13]) for cost function fr overMr with initial point Xn and stop at X̃n ∈Mr,

where either ‖gradfr(X̃n)‖ < ε3 (flag← 1) or X̃n is close to M≤r−1 (flag← 0);

5: if flag = 1 then

6: if ‖gradfF(X̃n)− gradfr(X̃n)‖ > max{ε1‖gradfr(X̃n)‖, ε2} then

7: Set r̃ and η∗ to be r and gradfr(X̃n) respectively;

8: while ‖gradfF(X̃n)− η∗‖ > ε4‖η∗‖ do

9: Set r̃ to be r̃ + 1 and η∗ to be a rank-r̃-related vector of gradfF(X̃n) at X̃n;

10: end while

11: Obtain Xn+1 by applying an Armijo-type line search algorithm along η∗ using a rank-

related retraction;

12: else

13: If ε3 is small enough, stop. Otherwise, ε3 ← τε3, where τ ∈ (0, 1);

14: end if

15: else {flag = 0}
16: If the rank has not been increased on any previous iteration, reduce the rank of X̃n based

on (3.12) while keeping the function value decrease, update r, obtain next iterate Xn+1;

17: Else reduce the rank of X̃n such that the next iterate Xn+1 satisfies f(Xn+1) − f(Xi) ≤
c(f(Xi+1) − f(Xi)), where i is such that the latest rank increase was from Xi to Xi+1,

0 < c < 1. Set r to be the rank of Xn+1;

18: end if

19: end for
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Given a sequence {Xi}i=0,1,... ∈ M, we say that X is an accumulation point or a limit point

of the sequence if there exists a subsequence {Xji}i=0,1,... ∈ M that converges to X. The set of

accumulation points of a sequence is called the limit set of the sequence.

Definition 14. ([AMS08]) Let f̂ be defined as the pullback of f through a retraction R, i.e.,

f̂ : TM→ R : ξ 7→ f ◦R(ξ).

The function f̂ is radially Lipschitz continuously differentiable ( radially L-C1 function) if there

exist real βRL > 0 and δRL > 0 such that, for all X ∈ M, for all ξ ∈ TM with ‖ξ‖ = 1, and for

all t < δRL, it holds that ∣∣∣∣ ddτ f̂X(τξ)|τ=t −
d

dτ
f̂X(τξ)|τ=0

∣∣∣∣ < βRLt. (3.14)

To support the flexibility to choose from different Riemannian optimization algorithms on the

fixed-rank manifold (see Step 4 in Algorithm 2), it is assumed that all of the conditions in the

relevant convergence analyses that ensure that iterates on the fixed-rank manifold converge globally

are met.

Assumption 2. The algorithm chosen in Step 4 has the property of global convergence. In other

words, let {Zn} denote the sequence generated by the algorithm and f be a nonincreasing func-

tion on {Xn}. If the limit points of {Zn} are not rank deficient, i.e., ranks stay at r, then

lim infn→∞ ‖gradfr(Zn)‖ = 0.

Additionally, when considering an increase in rank, the analysis is on the manifold M. There-

fore, it is assumed the lifted function on TM satisfies the following property.

Assumption 3. Let f be a continuously differentiable function bounded below in D = {X ∈
M≤k|f(X) ≤ f(X0)}, D is compact. f̂ : TM→ R : ξ 7→ fF ◦R(ξ) is a radially L-C1 function with

sufficient large δRL defined in Definition 14 such that for any X,Y ∈ D, ‖R−1
X (Y )‖ < δRL.

Lemmas 15, 16 and 17 are used to show the convergence properties of Algorithm 2 in Theorems

18 and 19.

33



Lemma 15. Let X∗ be a matrix with rank r. Let Rm×n≤(r−1) be the set of all matrices with rank less

than r. Then,

Edist(X∗,Rm×n≤(r−1)) = min
X∈Rm×n≤(r−1)

‖X∗ −X‖F > 0, (3.15)

where Edist(X∗,Rm×n≤(r−1)) denotes the distance between X∗ and Rm×n≤(r−1) in Euclidean space.

Proof. It is obvious that Rm×n≤(r−1) is a closed set. Since the rank of X∗ is r, X∗ /∈ Rm×n≤(r−1). Thus,

Edist(X∗,Rm×n≤(r−1)) = min
X∈Rm×n≤(r−1)

‖X∗ −X‖F > 0, (3.16)

where Edist(X∗,Rm×n≤(r−1)) denotes the distance between X∗ and Rm×n≤(r−1) in Euclidean space.

Lemma 16. Let X ∈M≤k be a matrix with rank k, then TXMk = TXM≤k, i.e., on the boundary

the tangent cone is a tangent space.

Proof. Since X ∈ M≤k with rank k is an interior point of the set M≤k, it implies TXMk =

TXM≤k.

Lemma 17. Let X ∈M be a matrix with rank r and gradfF(X) be the gradient of a cost function

fF at X on M. If ηX,r̃ is a rank≤ r̃-related vector of gradfF(X) at X with r̃ > r then

〈ηX,r̃, gradfF(X)〉 = ‖ηX,r̃‖2F

holds.

Proof. Assume ηX,r̃ is a rank≤ r̃-related vector of gradfF(X) at X, it follows from Definition 11

that ηX,r̃ ∈ TXM≤r̃.
Since the tangent cone is closed under multipliction by positive reals, tηX,r̃ ∈ TXM≤r̃,∀t > 0

holds. Furthermore, by Definition 11, ηX,r̃ ∈ argminη∈TXM≤r̃ ‖gradfF(X)− η‖F and therefore

d

dt
‖gradfF(X)− tηX,r̃‖2F |t=1 = 0,

which implies

〈ηX,r̃, gradfF(X)〉 = 〈ηX,r̃, ηX,r̃〉 = ‖ηX,r̃‖2F .
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The global convergence of Algorithm 2 is given in the following theorem. It is well-known that

an occasional steepest descent step is sufficient to guarantee global convergence in a Euclidean

setting [NW06, p41]. This idea is adapted to the Riemannian situation.

Theorem 18. Let {Xn} be an infinite sequence of iterates generated by Algorithm 2. Suppose ε2 = 0

is chosen in Algorithm 2 and Assumptions 2 and 3 hold. Then lim infn→∞ ‖PTXnM≤k(gradfF(Xn))‖ =

0.

Proof. Assume {rn} is the rank sequence associated with {Xn}. If there exists a K > 0 such that

{rn}n=K,K+1,... is a constant sequence, then the iterates remain on a manifold of matrices with

fixed rank, denoted it by r∗. If r∗ is less than k, then the full gradient, gradfF(Xn), on M must

converge as gradfF(Xn)→ 0. If this were not true, Algorithm 2 would increase the rank since this

would cause descent in the cost function, contrary to {rn}n=K,K+1,... is a constant sequence. The

conclusion holds.

If r∗ reaches k, Algorithm 2 stays on the fixed-rank manifold Mk and since by Lemma 16,

TX∗M≤k = TX∗Mk, i.e., the tangent cone is a tangent space and, based on convergence properties

of any of the Riemannian optimization algorithms on the fixed-rank manifold, it follows that

lim inf
n→∞

‖gradfk(Xn)‖ = lim inf
n→∞

‖PTXnMk
gradfF(Xn)‖

= lim inf
n→∞

‖PTXnM≤kgradfF(Xn)‖ = 0.

Now assume {rn}n=K,K+1,... is not a constant sequence for any K > 0 and let the subsequence

{Xnj}nj∈K denote the iterates that increase the rank, i.e., rank(Xnj+1) > rank(Xnj ). According

to Assumptions 2, the latest rank reduce iteration Xm satisfies fF(Xnj ) − fF(Xm) ≤ fF(Xnj ) −
fF(Xnj+1). From Step 17 of Algorithm 2, the following holds

c(fF(Xnj )− fF(Xnj+1)) ≤ fF(Xnj )− fF(Xm) ≤ fF(Xnj )− fF(Xnj+1), (3.17)

where c ∈ (0, 1) is the coefficient defined in Step 17 of Algorithm 2. Therefore, {fF(Xnj )} is

nonincreasing when the rank reduces and the function is bounded below. Thus, the sequence of

differences fF(Xnj )− fF(Xnj+1) must go to zero. What is more, from (3.17), fF(Xnj )− fF(Xnj+1)

must go to zero as well.

By definition of Algorithm 2 (Step 11),

fF(Xnj )− fF(Xnj+1) ≥ −c1σαnj 〈gradfF(Xnj ), η
∗
nj 〉Xnj .
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where σ ∈ (0, 1), {η∗nj} is an infinite subsequence produced in Step 11 of Algorithm 2.

Contradiction is used to show 〈gradfF(Xnj ), η
∗
nj 〉Xnj → 0. Suppose that 〈gradfF(Xnj ), η

∗
nj 〉Xnj 9

0, then it must be that {αnj}nj∈K̃ → 0, where K̃ is a subsequence of K. The αnj ’s are determined

from the Armijo rule, and it follows that for all nj greater than some n̄, αnj = βmnj ᾱ, where mnj is

an integer greater than zero, ᾱ > 0 is a scalar. This means that the update
αnj
β η∗nj did not satisfy

the Armijo condition, hence

fF(Xnj )− fF(R̃Xnj (
αnj
β
η∗nj )) < −σ

αnj
β
〈gradfF(Xnj ), η

∗
nj 〉Xnj , ∀nj ∈ K̃, nj ≥ n̄.

Denoting

η̃nj =
η∗nj
‖η∗nj‖

and α̃nj =
αnj‖η∗nj‖

β
,

the rank-related retraction R̃ is defined in Definition 8, the inequality above reads

f̃η̃nj (0)− f̃η̃nj (α̃nj )
α̃nj

< −σ〈gradfF(Xnj ), η̃nj 〉Xnj , ∀nj ∈ K̃, nj ≥ n̄,

where f̃η(t) = fF (R̃X(tη)) denotes a scalar function of t, for all η ∈ TXM. The mean value theorem

ensures that there exists tnj ∈ [0, α̃nj ] such that

− d

dt
f̃η̃nj (t)|t=tnj < −σ〈gradfF(Xnj ), η̃nj 〉Xnj , ∀nj ∈ K̃, nj ≥ n̄, (3.18)

where the differential is taken with respect to the Euclidean structure on TXnj
M. Since fF ∈ C1

is compact in D and ‖η∗nj‖ ≤ ‖gradF f(Xnj )‖, η∗nj is upper bounded. Also, since {αnj}nj∈K̃ → 0,

the convergence {α̃nj}nj∈K̃ → 0 follows. Because fF ∈ C1, the gradient satisfies d
dt f̃η̃nj (t)|t=0 =

〈gradfF(Xnj ), η̃nj 〉Xnj . From (3.18), the inequality

〈gradfF(Xnj ), η̃nj 〉Xnj −
d

dt
f̃η̃nj (t)|t=tnj < (1− σ)〈gradfF(Xnj ), η̃nj 〉Xnj (3.19)

holds. Based on the assumption of the contradiction proof, there exists a constant µ > 0 such that

〈gradfF(Xnj ), η̃nj 〉Xnj < −µ. Since f̂ is radially L-C1, there exists a constant C > 0 such that∣∣∣∣ ddτ f̃η̃nj (τ)|τ=tnj
− d

dτ
f̃η̃nj (τ)|τ=0

∣∣∣∣ = ‖〈gradfF(Xnj ), η̃nj 〉Xnj −
d

dt
f̃η̃nj (t)|t=tnj ‖ ≤ Ctnj .

By (3.19), it follows that

−Ctnj < −(1− σ)µ.
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However, limnj→∞ tnj = 0 since tnj ∈ [0, α̃nj ] and α̃nj → 0, which implies µ < 0 and the desired

contradiction. Therefore, the convergence

〈gradfF(Xnj ), η
∗
nj 〉Xn → 0

follows. Based on Lemma 17, the convergence of 〈gradfF(Xnj ), η
∗
nj 〉Xn → 0 gives η∗nj → 0, which

means lim infn→∞ ‖PTXnM≤k(gradfF(Xn))‖ = 0.

The rank of matrices in the convergent sequence must satisfy certain properties. Intuitively,

a convergent sequence of matrices cannot have a limit point with rank higher than the ranks of

all Xn beyond a certain point, i.e., it is not convergent if there is such a jump, this was shown

rigorously in Lemma 15. A sequence of matrices may have a limit point with lower rank, e.g., the

limit point as n→∞ of {Xn} =

(
1 0
0 1

2n

)
is

(
1 0
0 0

)
. However, note that in this case the rank

never drops to r∗ for any Xn beyond some point in the sequence. Therefore, it is not expected that

the ranks of the Xn must eventually achieve the desired rank r∗. Thus, a local or asymptotic rank

property must hold. Such a local rank property of the convergent sequence of Algorithm 2 to an

isolated local minima is given in Theorem 19.

Theorem 19. Suppose fF is a C2 function, X∗ is a nondegenerate minimizer of fF on M, i.e.,

gradfF(X∗) = 0 and HessfF(X∗) is positive definite. Furthermore, it is an isolated minimizer of

f on M≤k. Let the rank of X∗ be r∗ ≤ k and denote the singular values of X∗ by σ1 ≥ σ2 ≥
· · · ≥ σr∗ > 0. The value ε2 = 0 is used in Algorithm 2 to compute the sequence {Xn}. There

exists a neighborhood UX∗ ∈ M such that if {Xnj} ⊂ {Xn} is a subsequence with rank increasing,

i.e., rank(Xnj+1) > rank(Xnj ), and {Xnj} stay in UX∗, then if {Xnj} is a finite subsequence,

lim infn→∞ ‖gradfF(Xn)‖ = 0, else limj→∞ ‖gradfF(Xnj )‖ = 0.

In addition, there exists K > 0 such that ∀n > K, rank(Xn) ≥ r∗.

Proof. If {Xnj} is finite, according to Assumption 2 and following the proof of Theorem 18, the

results can be obtained immediately.

Since fF is a C2 function on M, gradfF(X) is a C1 vector field on the Riemannian manifold

M. From [GQA12, Lemma 14.5], there exists a neighborhood ÛX∗ of X∗ and C0, C1 > 0 such that

for all X ∈ UX∗ ,
C0dist(X∗, X) ≤ ‖gradfF(X)‖ ≤ C1dist(X∗, X). (3.20)
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By Theorem 18, the sequence {Xnj} satisfies that lim infnj→∞ ‖PTXnM≤kgradfF(Xnj )‖ = 0.

Since X∗ is an isolated minimizer of f on M≤k, there exists a neighborhood ŨX∗ such that if

Xnj ∈ ŨX∗ ,
lim
j→∞

dist(X∗, Xnj ) = 0. (3.21)

Thus, taking UX∗ = ÛX∗ ∩ ŨX∗ , from (3.20), we can obtain if Xnj ∈ UX∗ ,

lim
nj→∞

‖gradfF(Xnj )‖ = 0. (3.22)

Furthermore, sinceX∗ is an isolated local minimizer with rank r∗, taking 0 < δ < Edist(X∗,Rm×n≤r∗−1),

where Edist(X∗,Rm×n≤(r∗−1)) is defined in Lemma 15, there exists a neighborhood of X∗,

Bδ(X∗) = {X|‖X −X∗‖F < δ},

such that Xn ∈ Bδ(X∗). If rank(Xn) < r∗, based on Lemma 15, then it must be that ‖Xn−X∗‖F >
Edist(X∗,Rm×n≤r∗−1). However, Xn ∈ Bδ(X∗), which means ‖Xn −X∗‖F < δ < Edist(X∗,Rm×n≤r∗−1), a

contradiction. Thus, there exists K > 0 such that ∀n > K, rank(Xn) ≥ r∗.

Theorems 18 and 19 show the global and local convergence analyses for Algorithm 2 when

ε2 = 0. Note that for these theorems because ε2 = 0, it is unlikely to stop updating rank. This is

the consequence when we try to obtain the exact solution. The basic result about the rank of the

matrices in a convergent sequence is generic. If the entire sequence is converging, i.e., not just a

subsequence, then eventually the rank of the matrices Xn must remain at or above the rank of X∗.

The best case, of course, is when rank(Xn) = rank(X∗) for n > n0. In this case, the rate of

convergence is inherited from the Riemannian optimization algorithm for the fixed rank manifold

and can therefore be superlinear. When the ultimate convergent subsequence does not have rank

equal to that of X∗, the iteration does not necessarily inherit the convergence rate of the Riemannian

optimization algorithm for the fixed rank manifold.

Figure 3.3 gives an intuitive illustration of why the rank might increase while converging. No

matter how close the iterates are to the stationary point X∗ the angle between gradfF(Xi) and

gradfr(Xi) is not approaching zero. In other words, only using angle is not enough to guarantee

fixed rank ultimately. In this case, the full gradient gradfF(Xi) is pushing a rank increase based

on locally sound information but clearly globally, i.e., second order, ultimately misleading. Note

that eventually, after possibly repeatedly increasing the rank, gradfF(Xi) points toward X∗ and a
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decrease in rank (possibly only in the limit) must take place. This indicates the clear danger, from

a complexity point of view, in using exact solution reasoning and only first order information. As

mentioned earlier, some sort of second order information could help address the problem. In fact,

if the angle threshold is set correctly relative to the spectrum of the Hessian at X∗, assuming a C2

cost function, the problem with rank increase can be avoided. However, generically, at present the

complexity of the Hessian of fF is unacceptable and one adapted appropriately to a tangent cone

remains undeveloped and the subject of future work.

In the following convergence analysis, the approach of approximate optimization, as is done in

practice for virtually all numerical optimization, is shown to restore the expected result that the

iteration for the rank inequality constrained problem maintains the convergence rate of the fixed

rank manifold algorithm.

X∗

M

Mr

gradfF (Xn)

gradfr(Xn)

Figure 3.3: The plot of gradient of points on M, gradfF, and the gradient of points on a fixed-
rank manifold Mr, gradfr. The black dot line represents gradfF and the red dot line represents
gradfr, the curve represents a fixed rank manifold Mr, the circles represent the level sets of fF,
X∗ represents a stationary point.

3.5.2 Convergence Analysis for Approximate Solution

In practice, the important behavior of the iteration is how quickly and reliably the size of the

gradient can be reduced. In this section, the behavior of the iteration when reducing the size of

the full gradient projected to the tangent cone, PTXnM≤k(gradfF(Xn)), is analyzed and shown to
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consistent with the behavior of the Riemannian optimization algorithm on the fixed rank manifold.

This allows the iteration to keep the rank of the approximate solution as small as possible even when

the true rank of the minimizer is larger and deals with the inevitable numerical noise affecting local

rank. The result is given in Theorem 20. This can be used in concert with knowledge of the cost

functions for problems discussed later to show that the value of the cost function at the approximate

solution is also acceptably close to the value at the minimizer.

Theorem 20. Let {Xn} be an infinite sequence of iterates generated by Algorithm 2. If ε2 ≥ 0 is

used in Algorithm 2 and Assumptions 2 and 3 hold then

lim inf
n→∞

‖PTXnM≤k(gradfF(Xn))‖ ≤
(√

1 +
1

ε21

)
ε2.

Proof. If there exists an infinite subsequence {Xnj} from Algorithm 2 where the requirement on

Step 6 does not hold, due to ‖gradfF(X̃nj )−gradfr(X̃nj )‖ > ε1‖gradfr(X̃nj )‖ and ‖gradfF(X̃nj )−
gradfr(X̃nj )‖ ≤ ε2, then

‖gradfF(X̃nj )− gradfr(X̃nj )‖ = sin(θ)‖gradfF(X̃nj )‖ ≤ ε2,

where θ is the angle between gradfF(X̃nj ) and gradfr(X̃nj ) and tan(θ) ≥ ε1. Therefore,

‖gradfF(Xnj )‖ ≤
1

sin(θ)
ε2 =

(√
1 +

1

tan2(θ)

)
ε2 ≤

(√
1 +

1

ε21

)
ε2.

If the subsequence is finite, then there exists a K such that the sequence {Xn}, n > K does not use

ε2 and, therefore, by considering XK to be the initial point of the iteration of interest the result

follows by Theorem 18.

In addition to relating the parameters of Algorithm 2 to the size of the projected gradient, it is

also important to understand the effect of their values on the rank of the matrices in the sequence

produced by the algorithm.

Theorem 21. Suppose f ∈ C2 and let X∗ ∈ M≤k be an isolated local minimizer with rank r∗

and the Riemannian Hessian of fF at X∗, HessfF(X∗), is positive-definite with minimal eigenvalue
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λmin > 0. Then for any ν > 0, there exists a neighborhood Uν of X∗ such that for any X ∈ Uν , the

full gradient is bounded below by

‖gradfF(X)‖F ≥ (λmin − ν)‖η‖F , (3.23)

where η = Exp−1
X∗
X and Exp denotes the exponential mapping of M.

In addition, if there exists a ν̃ < λmin such that ε2 in Algorithm 2 satisfies ε2 <
ε1√
1+ε21

(λmin −
ν̃)Edist(X∗,Nr) for some r ≤ r∗ and the sequence {Xn} generated by Algorithm 2 stays in Uν̃ for

all n > N , where N is an integer, then the rank of Xn eventually remains at least r.

Proof. From [AMS08, Lemma 7.4.7], there exists a neighborhood U of X∗, ∀X ∈ U ,

P0←1
γ gradfF(X) = HessfF(X∗)[η] +

∫ 1

0
(P0←τ

γ HessfF(γ(τ))[γ′(τ)]−HessfF[X∗][η])dτ, (3.24)

where P0←τ
γ is the parallel translation, γ is the unique minimizing geodesic satisfying γ(0) = X∗

and γ(1) = X, η = Exp−1
X∗
X = γ′(0). Furthermore, according to [AMS08, Lemma 7.4.8 ],

‖
∫ 1

0
(P0←τ

γ HessfF(γ(τ))[γ′(τ)]−HessfF[X∗][η])dτ‖F

= ‖
∫ 1

0
(P0←τ

γ ◦HessfF(γ(τ)) ◦ P0←τ
γ −HessfF[X∗][η])dτ‖F

≤ ε(dist(X,X∗))dist(X,X∗),

(3.25)

where limdist(X,X∗)→0 ε(dist(X,X∗)) = 0, dist(X,X∗) represents the distance between X and X∗ on

M. Based on the definition of exponential mapping, dist(X,X∗) = ‖Exp−1
X∗

(X)‖F = ‖η‖F holds

and

‖
∫ 1

0
(P0←τ

γ HessfF(γ(τ))[γ′(τ)]−HessfF[X∗][η])dτ‖F ≤ ε(‖η‖F )‖η‖F , (3.26)

where lim‖η‖F→0 ε(‖η‖F ) = 0. Therefore, for any ν > 0, there exists an εν > 0 such that η ∈ Uν :=

{Y |dist(X∗, Y ) < εν} implies ε(‖η‖F ) < ν. Since the parallel translation is an isometry, (3.24)

implies

‖gradfF(X)‖F ≥ ‖HessfF(X∗)[η]‖F − ‖
∫ 1

0
(P0←τ

γ HessfF(γ(τ))[γ′(τ)]−HessfF[X∗][η])dτ‖F

≥ λmin‖η‖F − ε(‖η‖F )‖η‖F .
(3.27)

Thus, the following bound holds for any X ∈ Uν :

‖gradfF(X)‖F ≥ (λmin − ν)‖η‖F . (3.28)
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Next, we prove the rank of {Xn} remains at least r eventually. Assuming for any ν, the rank

of Xn is less than r for all n > N , where N is an integer, Lemma 15 implies

dist(Xn, X∗) ≥ ‖Xn −X∗‖F > Edist(X∗,Rm×n≤(r−1)), (3.29)

where dist(Xn, X∗) denotes the distance betweenXn andX∗ onM. Since dist(Xn, X∗) = ‖Exp−1
X∗

(Xn)‖F =

‖ηn‖F , (3.29) implies

‖ηn‖F > Edist(X∗,Rm×n≤(r−1)). (3.30)

Let rank(Xn) = r̂. By assumption, r̂ < r. Assume the angle between gradfr̂(Xn) and

gradfF(Xn) is θ, then

‖gradfF(Xn)− gradfr̂(Xn)‖F = sin(θ)‖gradfF(Xn)‖F ≥
ε1√

1 + ε21
(λmin − ν)Edist(X∗,Rm×n≤(r−1)).

(3.31)

The rank is increased on Step 6 in Algorithm 2 if

‖gradfF(Xn)− gradfr̂(Xn)‖F > max{ε1‖gradfr̂(Xn)‖F , ε2}.

Thus, there exists a ν̃ ∈ (0, λmin) such that if Xn ∈ Uν̃ , ε2 in Algorithm 2 satisfies ε2 <
ε1√
1+ε21

(λmin−
ν̃)Edist(X∗,Rm×n≤(r−1)), then the rank of Xn will be increased to at least r for all n > N .

Theorem 22 shows that when started close enough to X∗, a nondegenerate minimizer of fF, the

matrices in a sequence generated by Algorithm 2 with ε2 > 0 remain in a neighborhood of X∗ and

eventually have fixed rank (not necessarily the rank of the X∗).

Theorem 22. Let fF be a C2 function and X∗ be a nondegenerate minimizer of fF on M with

rank r∗(r∗ ≤ k), i.e., gradfF(X∗) = 0 and HessfF(X∗) is positive definite. Furthermore, it is an

isolated minimizer of f on M≤k. Suppose ε2 > 0 and Assumption 2 holds. Denote the sequence of

iterates generated by Algorithm 2 by {Xn}.
There exists a neighborhood of X∗, UX∗ , such that if D = {X ∈ M|f(X) ≤ f(X0)} ⊂ UX∗;

D is compact; f̂ : TM → R : ξ 7→ fF ◦ R(ξ) is a radially L-C1 function with sufficient large δRL

defined in Definition 14 such that for any X,Y ∈ D, ‖R−1
X (Y )‖ < δRL, then there exists N > 0

such that

∀nj > N rank(Xnj ) = r and Xnj ∈ UX∗ .

42



Proof. Assume {Xnj} ⊂ {Xn} is a subsequence with rank increasing, i.e., rank(Xnj+1) > rank(Xnj )

and {Xnj} stay in UX∗ .
If {Xnj} is a finite sequence, according to Assumption 2, we can obtain the results directly.

If {Xnj} is not a finite sequence, following the proofs in Theorem 19: there exists a neighborhood

UX∗ of X∗ such that for Xnj ∈ UX∗ ,

lim
j→∞

‖gradfF(Xnj )‖ = 0.

Therefore, there exists a N > 0 such that for all Xnj , nj > N ,

‖gradfF(Xnj )‖ ≤
(√

1 +
1

ε21

)
ε2.

Note by Step 6 in Algorithm 2, the ranks of {Xnj} are not increasing for nj > N . Combined with

Theorem 21 yields the result.

So by choosing an approximate solution approach with ε2 > 0, r ≤ r∗, computational advantages

are gained. (Note r∗ can be smaller or larger than k, the constraint on rank in the optimization

problem.) This is summarized in the the following corollary.

Corollary 23. (Convergence Rate). If all assumptions in Theorem 20 hold and there exists a K

such that all assumptions in Theorem 22 hold for {Xn}, with n > K then

• The sequence {Xn} enters a neighborhood UX∗ and remains in that neighborhood so it is

known that dist(Xn, X∗) and |f(X∗)− f(X̃)| are bounded based ε1, ε2 and HessfF(X∗).

• ‖PTXnM≤k(gradfF(Xn))‖ ≤ δ where δ is based on ε1 and ε2.

• The sequence converges on Mr, where r ≤ r∗, i.e., Xn → X̃ at the rate of the local Rieman-

nian optimization algorithm.

3.6 Summary of Algorithmic and Analysis Results

This chapter has defined and analyzed strategies for optimizing a function with a manifold and

rank inequality constraints. The main results are as follows.

1. The structure of the tangent cone and a related descent-based method have been described

and critiqued from the point of view of convergence rate and practical performance.
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2. The differences in the methods by which rank is increased and decreased in descent-based

methods has been characterized.

3. Objects have been defined that are used to carefully update the rank, i.e., rank-related vector

and rank-related retraction; Rank-related vector and rank-related retraction support increas-

ing the rank appropriately and avoid excessive increase of rank in order to save computations.

4. An algorithmic approach for optimizing a cost function with rank inequality constraint has

been developed. Algorithm 2 provides strategy to update the rank carefully. Parameter ε2 is

crucial in the sense that it provides a trade-off between the accuracy of solution and efficiency

of an algorithm. Setting ε2 = 0 results in an algorithm to find a minimizer to the optimization

problem; setting ε2 > 0 results in an algorithm to find an approximate solution, i.e., one that

has a small gradient, is near a local minimizer, and has a cost function value that is close to

that at the local minimizer, most likely with a lower rank than the nearby local minimizer.

5. A convergence analysis for exact solutions has been completed that shows the following results.

({Xn} denotes a sequence of iterates generated by Algorithm 2.)

• The global convergence analysis shows the infimum limit of ‖PTXnM≤k(gradfF(Xn))‖
goes to zero as n goes to ∞;

• The local convergence analysis shows limj→∞ ‖gradfF(Xnj )‖ = 0 with r∗ ≤ k where X∗

is assumed to be the unique minimizer in the neighborhood of X∗ and r∗ = rank(X∗).

• The local rank property shows that the ranks of all Xn are eventually greater than or

equal to r∗.

6. A convergence analysis for approximate solutions has been completed that shows the following

results.

• The global convergence analysis shows the infimum limit of ‖PTXnM≤k(gradfF(Xn))‖
stays small based on given parameters ε1 and ε2. By assumption, the minimizer X∗

should be close to a matrix with low-rank. Therefore, it is desired to ignore small

singular values and consider approximate solution that has lower rank than X∗ but is

near X∗. It follows that ‖PTXnM≤k(gradfF(Xn))‖ is not expected to converge to zero

if such an approximate solution to the optimization problem is required. The global

convergence analysis shows that Algorithm 2 with ε2 > 0 has the desired property.

• The local convergence analysis shows that the ranks of {Xn} are fixed eventually. Pa-

rameter ε2 is used to determine whether the rank is increased. Theorem 21 shows that ε2

can be used to adjust the accuracy of the approximate solution. Theorem 22 proves that

the iterates in the sequence eventually have a fixed rank r. Therefore, the convergence
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rate is dependent on the local Riemannian algorithm. In addition, if r < r∗, then ex-

isting local convergence analyses of Riemannian optimization algorithms are applicable,

e.g., RTR-Newton, RBFGS, RTR-SR1.
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CHAPTER 4

WEIGHTED LOW-RANK APPROXIMATION

In this chapter, the modified Riemannian optimization method is adapted to the weighted low-rank

approximation problem and its performance evaluated. In Section 4.1, the specific formulation of

the weighted low-rank approximation problem of interest is given. Some relevant existing manifold

algorithms are reviewed in Section 4.2. Section 4.2.3 reviews some algorithms for the unweighted

and weighted problems that have structure. Section 4.3, the Riemannian geometry of the problem

is presented along with the geometric objects required by the proposed algorithm. Finally, the pro-

posed algorithm is empirically evaluated, including comparisons to competing manifold algorithms,

in Section 4.4.

4.1 Problem Formulation

The weighted low-rank approximation problem determines a matrix approximation X of a given

data matrix R that comes as close as possible with respect to a certain weighted norm:

argmin
X∈M≤k

‖R−X‖2W , f(X) = ‖R−X‖2W = vec{R−X}TWvec{R−X} (4.1)

where R ∈ Rm×n is given and W ∈ Rmn×mn is a positive definite symmetric weighting matrix and

vec{A} denotes the vectorized form of A, i.e., a vector constructed by stacking the consecutive

columns of A in one vector. The minimizing X in (4.1) is the best rank k, 0 < k < min(m,n), ap-

proximation of R under the norm ‖·‖W . Note that for this problemM = Rm×n not a submanifold.

Given the constraints, this is a nonconvex optimization problem. When the weighting matrix

has significant structure, there may be analytical insight into the form of the minimizer that can be

exploited algorithmically. For example, for the more common weighted norm ‖X‖M = tr{XTMX},
where tr{·} is the trace operator and M ∈ Rm×n is symmetric positive definite. In this case, the

matrix W is in fact a block diagonal matrix with blocks M . This has another common special

case when M = I. Such problems can often exploit approaches related to truncated factorizations.
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Examples of algorithms for such structured problems are briefly reviewed in Section 4.2.3 but are

not pursued further in this dissertation.

4.2 Related Work and Historical Context

In this section, two manifold-based optimization approaches for finding locally optimal solutions,

starting from a given initial approximation are reviewed.

4.2.1 Alternating Projections Method

Since any m-by-n matrix with rank at most k can be expressed as the product of two matrices

of dimension m-by-k and k-by-n, suppose X = UV T , U ∈ Rm×k, V ∈ Rn×k, then (4.1) turns into

the following parameter optimization problem

argmin
U∈Rm×k,V ∈Rn×k

‖R− UV T ‖2W , ‖R− UV T ‖2W = vec{R− UV T }TWvec{R− UV T }. (4.2)

A well-known possibility for iteratively solving the weighted low-rank approximation problem is

the alternating projections procedure [LPW97, WAK97]. It is started from an initial guess of one

of the parameters U or V . Fix a value for U and minimize over V , then fix V , minimize over U ,

repeat until the product UV T converges. It can be shown that, in general, X = UV T converges to

a local minimum of (4.1) [Kri06] and that the local convergence rate is linear. In practice, however,

the method can be rather slow.

4.2.2 Double Minimization Method

Manton et al. present in [MMH03] a novel reformulation of (4.1) and derived a general frame-

work for minimizing a cost function on a Grassmann manifold. They reformulate (4.1) as a double

minimization problem

min
N ∈ Rn×(n−k)

NTN = I

min
X ∈ Rm×n

XN = 0

‖R−X‖2W . (4.3)

They showed that if N and X are the minimizing arguments of the two minimizations in (4.3),

then X is the solution of (4.1); the restriction XN = 0 enforces the constraint rank(X) ≤ k since

every column of N must belong to the null space of X. Moreover, the inner minimization, call it

f(N),

f(N) = min
X ∈ Rm×n

XN = 0

‖R−X‖2W (4.4)
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has a closed form solution, given by

f(N) = vec{R}T (N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)Tvec{R}, (4.5)

where ⊗ is the Kronecker product. The cost function f(N) depends only on the range space (i.e.,

the column space) of N , rather than on the actual value of N . That is, f(NO) = f(N) for any

orthogonal matrix O ∈ R(n−k)×(n−k). The outer minimization can therefore be performed over

a smaller space than {N : NTN = I}. In fact it is sufficient to minimize f(N) as a function

on the Grassmann manifold (the collection of all subspaces of a certain dimension, [EAS98]). A

method that combines steepest descent and a Newton-type algorithm was derived in [MMH03]

for minimizing f(N). They show that given N that minimizes f(N), the solution to the original

problem (4.1) is the unique matrix X satisfying

vec{X} = vec{R} −W−1(N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)Tvec{R}. (4.6)

Later, Brace and Manton [BM06] used the same transformation of the problem and applied a heuris-

tic version of Riemannian BFGS that was motivated by maintaining low computational complexity

through the suppression of vector transport. An interesting relationship with the Riemannian

Broyden Family [Hua13] and these two methods is discussed later in Section 4.3.8.

The main problem with the reformulated weighted low-rank approximation is the complexity of

the form and computation of the cost function f(N) in (4.5) and recovering the final approximating

matrix X in (4.6).

4.2.3 Some Algorithms for Structured W

There are many methods that address matrix approximation problems where the matrix W has

significant structure. An important theoretical tool for some of these problems is the truncated

factorization. The (generalized) singular value decomposition, when truncated to the leading k

terms, provides an optimal approximation in terms of Frobenius norm and the matrix 2-norm.

This is referred to the Eckart-Young-Mirsky Theorem [EY36] (see for example the GTLS algorithm

of van Huffel and Vandewalle [VV89]). These methods have an advantage when the matrix is not

too large and most of the singular values / vectors are needed.

In [ZSJC12], the authors parameterize the approximation matrix X = LRT , with L an m × k
matrix, R an n × k matrix. An iterative algorithm based on least-squares estimation is proposed
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and has been successfully used for exploiting structure, such as Hankel and Toeplitz matrices, and

positive semidefiniteness. While this effectively lowers the dimension of the search space, it suffers

from linear convergence. Second-order methods like Newton’s methods cannot be applied easily.

This is essentially the method of Section 4.2.1 applied to a problem where W = I.

For W = I, a dynamical system low-rank approximation has been proposed by Koch and Lubich

[KL07]. This method consists of finding a low-rank matrix on the fixed-rank manifoldMk, for which

the authors derive differential equations for the factors that define the rank-k approximation. By

numerically integrating this set of differential equations, the rank can be dynamically reduced.

However, the large-scale systems involving PDEs are usually expensive to solve and they did not

provide a way to increase the rank.

The total least square problem with elementwise weighting (EW-TLS) [PR02a], is the weighted

low-rank approximation problem with the weighting matrix W has block diagonal structure

W =

W1

. . .

Wn


where Wi ∈ Rm×m and the approximation matrix X satisfies X

[
B
−In−k

]
= 0, where B ∈ Rk×(n−k).

This weighted low-rank approximation problem can be rewritten as follows:

min
B∈Rk×(n−k)

(
min

X∈Rm×n

n∑
i=1

(Ri −Xi)
TW−1

i (Ri −Xi)

)
, (4.7)

where Ri, Xi ∈ Rm are the i-th column of R and X, respectively, Wi is the i-th block in the

weighting matrix W . The problem (4.7) can be solved partially by minimizing analytically with

respect to X. In this way the following equivalent unconstrained optimization problem is derived

B∗ = argmin
B

g(B), (4.8)

where

g(B) =

n∑
i=1

RTi Z
T (ZWiZ

T )−1ZRi, Z =
[
BT −I

]
. (4.9)

Given an optimal solution B∗, X can be obtained using the expression:

X = R+ ∆X,
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where

∆XT = −

R
T
1 Z

T (ZW1Z
T )−1ZW1

...
RTnZ

T (ZWnZ
T )−1ZWn

 .
Premoli and Rastello proposed an iterative algorithm [PR02a] to solve this special case. The

algorithm is proven to be locally convergent with a super linear convergence rate [MRP+06]. How-

ever, it is not globally convergent and simulation results suggest that the region of convergence to

a minimum point can be rather small.

For many applications where the data matrix is large, calculating the SVD can be impractical

and other approximate methods must be considered. Baker et al.[BGV12] considered the problem of

restricting explicitly the amount of storage available to store an approximate factorization based on

a dominant space that is updated as new information becomes available. This can be applied in the

generic situation where new columns of the “matrix” correspond to observations of an environment

over time that are not stored or where an extremely large matrix is available on very slow, very

remote storage and the restricted storage is relatively small and associated with the computational

platform used to compute the approximation. The latter case is clearly relevant to the analysis

of large-scale data analysis and has the significant advantage of allowing multiple read-only passes

through the stored data.

An alternative to Baker et al. for large data is given by randomized or stochastic algorithms

that select a subset of the rows and/or columns of the large data matrix, possibly by taking

multiple passes through the data. The appropriate decomposition, e.g., eigenvalue or SVD, is used

to approximate that of the large data matrix, see the recent survey by Halko et al. [HMT11].

Baker et al., Halko et al. and related approaches are all motivated by very large data and

the resulting storage constraint. For this dissertation, it is assumed that, while possibly large, the

matrices involved are not large enough to restrict access to read-only.

The modified Riemannian optimization method provides another way to solve low-rank approx-

imation problem. The algorithm has the following potential advantages: first, the problem can be

solved without considering reformulation; second, the computation time required is often less than

other algorithms, especially when m and n are large, due to the exploitation of state-of-the-art

Riemannian optimization algorithms; third, even when the rank constraint k is chosen too large,

the algorithm allows an approximate solution of the optimization problem with a reasonable rank.
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4.3 Differential Geometry

In this section, the differential geometric objects used in the modified Riemannian optimization

method applied to the weighted low-rank approximation problem are considered. Specifically, the

tangent and normal spaces, the Riemannian metric, the orthogonal projections, retraction, rank-

related retraction and the Riemannian Hessian are characterized. These objects are the building

blocks of the modified Riemannian optimization methods described in Chapter 3.

Recall, the Riemannian manifold comprising m × n matrices is denoted M = Rm×n, the sub-

manifold of matrices with rank r is denoted Mr and M≤k =
⋃
r≤kMr is the set of manifolds

defined by the rank inequality constraint. Using the SVD, each fixed-rank manifold Mr has the

equivalent characterization

Mr = {UDV T : U ∈ St(m, r), V ∈ St(n, r), D = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0},

where St(m, k) = {X ∈ Rm×k|XTX = Ik} is the compact Stiefel manifold, Ik ∈ Rk×k is an identity

matrix and diag(σ1, . . . , σr) denotes a diagonal matrix with σ1, · · · , σr on the main diagonal.

The representationX = UDV T , X ∈Mr is not unique. The factorizationX = (UP )(P TDQ)(V Q)T ,

for any orthogonal matrices P,Q ∈ Rr×r where P TDQ is a real nonnegative diagonal matrix is also

an SVD. Therefore, the effect of the choice of U , V and D on the representation of the tangent

vector Ẋ and the determination of the factors U+, V+ and D+ for the next iteration X+ = RX(Ẋ)

must be considered. The benefit of representing X using the factor U , V and D and updating them

directly is avoiding the need to compute an SVD of the iterate X when moving on Mr.

4.3.1 The Tangent Cone

The tangent cone is characterized in Proposition 24 in a manner that is computationally advan-

tageous for the algorithms of interest in this dissertation. The tangent cone has been considered

when the embedding space is Rm×n independently in [SU14] and their characterization is the same

as the one used here. Cason et al. in [CAD13] considered the special case of the unit sphere defined

by the Frobenius norm in Rm×n.
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Proposition 24. Let X ∈M≤k with rank r ≤ k, the tangent cone to M≤k at a point X is

TXM≤k : =

 UrAV
T
r + UrBV

T
r⊥ + Ur⊥CV

T
r + Ur⊥EV

T
r⊥ :

A,B,C,E are arbitrary matrices, rank(E) ≤ k − r,

 .

=


[
Ur Ur⊥

] [A B
C E

] [
V T
r

V T
r⊥

]
:

A,B,C,E are arbitrary matrices, rank(E) ≤ k − r

 .

In general, the tangent cone is not closed under the operator of addition. For example, suppose

a matrix X = Uk−1ΣV T
k−1 has rank k − 1, then the tangent cone to M≤k at X has the following

structure [
Uk−1 Uk−1⊥

] [A B
C E

] [
V T
k−1

V T
k−1⊥

]
where A ∈ R(k−1)×(k−1), B ∈ R(k−1)×(n−k+1), C ∈ R(m−k+1)×(k−1), E ∈ R(m−k+1)×(n−k+1) and

rank(E) ≤ 1. Construct the following two matrices,

Z1 =
[
Uk−1 Uk−1⊥

] [A B
C diag(1, 0, . . . , 0)

] [
V T
k−1

V T
k−1⊥

]
,

Z2 =
[
Uk−1 Uk−1⊥

] [A B
C diag(0, . . . , 0, 1)

] [
V T
k−1

V T
k−1⊥

]
.

While both Z1 and Z2 are in the tangent cone TXM≤k, Z1 + Z2 is not.

It is not difficult to show that the normal cone to M≤k at a point X is

NXM≤k : =

 Ur⊥E⊥V
T
r⊥ :

E⊥ = 0 if r < k,E⊥ arbitrary if r = k.

 .

=


[
Ur Ur⊥

] [0 0
0 E⊥

] [
V T
r

V T
r⊥

]
:

E⊥ = 0 if r < k,E⊥ arbitrary if r = k.

 .

4.3.2 Gradients of Interest

Mr is a smooth fixed-rank manifold and the tangent space is ∀ X = UrDrV
T
r ∈Mr [Van13],

TXMr : =

UrAV
T
r + UrBV

T
r⊥ + Ur⊥CV

T
r :

A,B,C are arbitrary matrices,

 ,

=


[
Ur Ur⊥

] [A B
C 0

] [
V T
r

V T
r⊥

]
:

A,B,C are arbitrary matrices

 .
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and the normal space to Mr at the point X = UrDrV
T
r ∈Mr is

NXMr : =

 Ur⊥EV
T
r⊥ :

E is an arbitrary matrix,

 ,

=


[
Ur Ur⊥

] [0 0
0 E

] [
V T
r

V T
r⊥

]
:

E is an arbitrary matrix

 .

where Ur⊥ and Vr⊥ are any orthogonal complements of Ur and Vr respectively.

Mr becomes a Riemannian manifold with the choice of a Riemannian metric, in this case, the

metric is inherited from M and is

gX(ξ, η) := 〈ξ, η〉F = vec{ξ}Tvec{η} with X ∈Mr and ξ, η ∈ TXMr.

The resulting Riemannian gradient is the orthogonal projection onto the tangent space of the

gradient of f seen as a function on Rm×n.

The orthogonal projection onto the tangent space at X = UrDrV
T
r ∈Mr is

PX : Rm×n → TXMr

Z → PXZ = UrU
T
r ZVrV

T
r + UrU

T
r ZVr⊥V

T
r⊥ + Ur⊥U

T
r⊥ZVrV

T
r

= UrU
T
r Z + ZVrV

T
r − UrUTr ZVrV T

r

(4.10)

and the orthogonal projection onto the normal space at X = UrDrV
T
r ∈Mr is

P⊥X : Rm×n → NXMr

Z → P⊥XZ = (Im − UrUTr )Z(In − VrV T
r ). (4.11)

Note the simplification in notation in that the subscript X indicates the element of the manifold

that defines the tangent space.

Consider the following two function fF and fr:

fF :M→ R : X 7→ ‖R−X‖2W ,

fr :Mr → R : X 7→ ‖R−X‖2W .

The cost function for the rank inequality constrained problem is then f = fF |M≤k and fr =

fF|Mr = f |Mr .
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Since the Euclidean gradient of the cost function fF is 5fF = −2vec−1(Wvec{R − X}), the

projection of the gradient onto tangent space, i.e., the Riemannian gradient on fixed-rank manifold

Mr, is

gradfr := PX(−5 fF).

Note that Wvec{R − X} is a vector, and it must be reshaped as a matrix. The expression

vec−1(Wvec{R −X}) is used to represent this matrix formation, where the mapping vec(A) 7→ A

is dentoed by vec−1.

4.3.3 Retraction onto a Fixed-rank Manifold

Two kinds of retraction are required for the proposed Riemannian optimization algorithm:

retraction onto the fixed-rank manifolds and a rank-related retraction. In this section, retractions

on the fixed-rank manifold Mr and their relationship to the representation using the three factors

(U,D, V ) for X ∈Mr are discussed.

Given a specific triple (U,D, V ) for an X ∈ Mr, according to [KL07, Proposition 2.1], there

exists a unique representation (U̇ , Ḋ, V̇ ) of any Ẋ ∈ TXMr that can be computed efficiently and

satisfies

Ẋ = U̇DV T + UḊV T + UDV̇ T , (4.12)

UT U̇ = 0, V T V̇ = 0. (4.13)

A method for computing (U̇ , Ḋ, V̇ ) is discussed in Section 4.3.4.

Once the matrices U̇ , Ḋ, V̇ are known, a retraction can be applied to determine X+. There are

several retractions related to the compact Stiefel manifold and projections that can be considered

as a building block for a retraction on Mr based on the three-factor representation of X [AO13].

Three retractions on Mr are considered: the three-factor SVD-type retraction, the three-

factor QR-type retraction and the three-factor polar-type retraction.

The three-factor SVD-type retraction is a projective retraction defined as

RX(Ẋ) = argmin
Y ∈Mr

‖Y − (X + Ẋ)‖F ,

where ‖ · ‖F denotes the Frobenius norm [AM12]. Let σ1(A), · · · , σmin(m,n)(A) denote the singular

values of an m × n matrix A in decreasing order. By Proposition 6 of [AM12] whenever Ẋ is
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sufficiently small for ‖Ẋ‖ < σr(X)/2 to hold, RX(Ẋ) exists, is unique, and

RX(Ẋ) =

r∑
i=1

σiuivi, (4.14)

where X+Ẋ =
[
u1 · · · umin(m,n)

]
diag(σ1, · · · , σmin(m,n))

[
v1 · · · vmin(m,n)

]T
is the SVD. Van-

dereycken [Van13, Algorithm 6] shows that the SVD-type retraction can be computed efficiently as

follows:

RX(Ẋ) = U+D+V
T

+ (4.15)

where

U̇D = QuRu,

V̇ D = QvRv,

UsDsVs =

[
D + Ḋ RTv
Ru 0

]
,

U+ =
[
U Qu

]
Us(:, 1 : r),

D+ = Ds(1 : r, 1 : r),

V+ =
[
V Qv

]
Vs(:, 1 : r),

The algorithm requires the computation of two QR factorizations (one of an m × r matrix and

one of an n× r matrix) the SVD of a 2r-by-2r matrix and 4mr2 + 4nr2 operations in two matrix

multiplications yielding O((m + n)r2) + O(r3) operations where the coefficient of the first term

depends on the method used to determine the QR factors.

Since the decomposition of X = UDV T is not unique, ideally the result of retraction, i.e.,

U+D+V
T

+ = RX(Ẋ), should not depend on the particular (U,D, V ) triple used. The three-factor

SVD-type retraction is clearly invariant with respect to the choice of factors.

If the assumptions on D in the triple (U,D, V ) are relaxed to require only nonsingularity and

Ẋ is specified by the associated unique triple (U,D, V ) then a retraction that is independent of

the choice of (U,D, V ) can be defined in terms of the polar decomposition [AO13, MS13]. The

retraction is defined as

RX(Ẋ) = U+D+V
T

+ , U+ = uf(U + U̇), D+ = D + Ḋ, V+ = uf(V + V̇ )

where uf{·} denotes the orthonormal factor of the polar decomposition. This retraction requires

the computation of two QR factorizations (one of an m × r matrix and one of an n × r matrix)
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and SVD’s of two r× r matrices for O((m+n)r2) +O(r3) operations with coefficients smaller than

the three-factor SVD-type retraction. So there is some benefit with respect to computational cost,

however, this is only true on steps where estimates of the singular values of D+ are not needed for

rank adjustment, e.g., while the iteration remains on Mr.

If the matrices D and D+ are required to be nonnegative diagonal matrices the retraction must

be modified. If this can be done with an acceptable increase in computational complexity then

rank adjustment using Algorithm 1 can be done more often.

The three-factor Polar-decomposition-type retraction that imposes the diagonal require-

ment is defined

RX(Ẋ) = U+D+V
T

+ (4.16)

where

USDSV
T
S = D + Ḋ using SVD,

U+ = uf(U + U̇)US ,

D+ = DS ,

V+ = uf(V + V̇ )VS

and the symbol uf(·) denotes the orthogonal component of the polar decomposition. This retraction

requires the computation of two QR factorizations (one of an m × r matrix and one of an n × r
matrix) and SVD’s of three r×r matrices, and 2mr2+2nr2 operations in two matrix multiplications

yielding O((m+ n)r2) +O(r3) operations.

Three-factor retractions that require fewer computations but that are not guaranteed to be

invariant to the choice of (U,D, V ) are also possible. Empirical evidence presented later in this

dissertation demonstrates that this invariance is not necessary to achieve superlinear convergence

but sufficient conditions on a three-factor retraction for superlinear convergence are not yet known

and is the subject of future research.

The three-factor QR-type retraction I is defined as

RX(Ẋ) = U+D+V
T

+ . (4.17)
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where

USDSV
T
S = D + Ḋ using SVD,

U+ = qf(U + U̇)US ,

D+ = DS ,

V+ = qf(V + V̇ )VS ,

and the symbol qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

This saves SVD’s of two r × r matrices. Note that D and D+ are diagonal matrices.

A second three-factor QR-type retraction can be defined that avoids the SVD. The QR-type

retraction II is defined as

RX(Ẋ) = U+D+V
T

+ . (4.18)

where

U+ = qf(U + U̇),

D+ = D + Ḋ,

V+ = qf(V + V̇ ),

and the symbol qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

Note that this defines a retraction even if D and D+ are not diagonal matrices. If they are

constrained to be diagonal then Ḋ must then also be a diagonal matrix. This is discussed in

Section 4.3.4.

4.3.4 Computing (U̇ , Ḋ, V̇ )

Given the triple (U,D, V ), the triple (U̇ , Ḋ, V̇ ) that satisfies

Ẋ = U̇DV T + UḊV T + UDV̇ T ,

can be computed efficiently [KL07, Proposition 2.1] and, if necessary, can be constrained so that

Ḋ is a diagonal matrix.

Since U ∈ St(m, r), V ∈ St(n, r) and the form of the tangent space at a point S is

TSSt(n, r) = {SΩ + S⊥K : ΩT = −Ω,K ∈ R(n−r)×r},

it follows that

Ẋ = (UΩU + U⊥KU )DV T + UḊV T + UD(V ΩV + V⊥KV )T

= U(ΩUD + Ḋ +DΩT
V )V T + U⊥KUDV

T + UDKT
V V

T
⊥ ,

(4.19)
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where ΩT
U = −ΩU ,Ω

T
V = −ΩV , KU ∈ R(m−r)×r,KV ∈ R(n−r)×r are arbitrary matrices, and the

subscript ⊥ indicates a matrix with the maximum number of columns orthogonal to the matrix

argument.

In order to get explicit forms of U̇ and V̇ , the matrices ΩU , ΩV , KU , and KV are needed. By

equation (4.19), the following hold

ΩUD + Ḋ +DΩT
V = UT ẊV, (4.20)

KU = UT⊥ẊV D
−1, (4.21)

KT
V = D−1UT ẊV⊥. (4.22)

If U̇ = U⊥KU and V̇ = V⊥KV then Ḋ is unique but not necessarily diagonal [KL07]. This is

easily derived from (4.21) and (4.22) it follows that

U̇ = U⊥KU = U⊥U
T
⊥ẊV D

−1 = (I − UUT )ẊV D−1

V̇ = V⊥KV = V⊥V
T
⊥ Ẋ

TUD−1 = (I − V V T )ẊTUD−1

and from (4.20)

Ḋ = UT ẊV.

So given the m× n matrix Ẋ the triple (U̇ , Ḋ, V̇ ) is uniquely defined [KL07].

If D is assumed diagonal then D+ must be diagonal if Ḋ is required to be diagonal. This can be

achieved using nonzero ΩU and ΩV . Specifically, if D and Ḋ are diagonal then U̇ and V̇ are unique

and easily computed. In the following, we seek the expression of (U̇ , Ḋ, V̇ ) with Ḋ is a diagonal

matrix.

Since ΩU and ΩV are skew matrices their main diagonals are 0 and from (4.20) a diagonal Ḋ

follows

Ḋ = diag(UT ẊV ), (4.23)

and therefore

Z := ΩUD +DΩT
V = UT ẊV − Ḋ. (4.24)

Multiplying (4.24) on the right by D−1, yields

ΩU +DΩT
VD
−1 = ZD−1. (4.25)
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Adding (4.25) to its transpose, since ΩU + ΩT
U = 0 and ΩT

V = −ΩV , yields

−DΩVD
−1 +D−1ΩVD = D−1ZT + ZD−1.

Since D and D−1 are diagonal matrices, assuming diag(D) = {ai},diag(D−1) = {bj}, the element

in the i, j position of matrix DΩVD
−1 is [DΩVD

−1]ij = aibj(ΩV )ij . Using vD to represent the

vector comprising the diagonal elements of D, vD−1 to represent the vector comprising the diagonal

elements of D−1, then DΩVD
−1 = (vDv

T
D−1)◦ΩV and D−1ΩVD = (vD−1vTD)◦ΩV , where ◦ denotes

the Hadamard product of two matrices. It follows that

(vD−1vTD − vDvTD−1) ◦ ΩV = D−1ZT + ZD−1. (4.26)

and by similar analysis for ΩU

(vD−1vTD − vDvTD−1) ◦ ΩU = D−1Z + ZTD−1. (4.27)

Explicit expressions for ΩU and ΩV follow from these equations. Therefore, given Ẋ, solving (4.27)

and (4.26) gives ΩU and ΩV respectively and U̇ , Ḋ, V̇ , can be computed from (4.21), (4.22), (4.23).

These approaches to computing the triple (U̇ , Ḋ, V̇ ) assume Ẋ is computed explicitly. It is an

open question if the triple can be computed without forming Ẋ. This of course depends on the

definitions used by the various Riemannian optimization algorithms onMr for the direction vector

Ẋ.

4.3.5 Rank-related Retraction

In order to change the rank, a rank-related retraction that satisfies the properties in Definition

8 of Chapter 3 is required. This is discussed in this section by first, constructing a rank-r̃-related

vector and then using it to generalize the fixed-rank retractions.

Consider the manifoldM = Rm×n, the full gradient gradfF(x∗) of a point x∗ = UrDrV
T
r onM

can written as

gradfF(x∗) =
[
Ur Ur⊥

] [A B
C E

] [
V T
r

V T
r⊥

]
.

From the structure, the increased rank depends on the term E. Given r̃, according to Definition

11 in Chapter 3, the search direction is chosen to be

η∗ = argmin
η∈TM≤r̃

‖gradfF(x∗)− η‖2. (4.28)
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Note that η∗ is not unique.

An example of a choice that satisfies (4.28) can be defined by taking the SVD of E, finding the

largest ∆r terms, and writing η∗ as

η∗ =
[
Ur U∆r U(r+∆r)⊥

] A B1 B2

C1 E∆r 0
C2 0 0

 V T
r

V T
∆r

V T
(r+∆r)⊥


=
[
Ur̃ Ur̃⊥

] [A′ B2

C2 0

] [
V T
r̃

V T
r̃⊥

] (4.29)

where r̃ = r + ∆r ≤ k. Based on this construction, it is clear that gradfF (x∗) and η∗ are not

approximately orthogonal to each other. Furthermore, since η∗ have the structure shown in (4.29),

for X = UrDrV
T
r , it can be written

X =
[
Ur U∆r U(r+∆r)⊥

]  Dr 0r×∆r 0r×(n−r̃)

0∆r×r 0∆r×∆r 0∆r×(n−r̃)

0(m−r̃)×r 0(m−r̃)×∆r 0(m−r̃)×(n−r̃)

 V T
r

V T
∆r

V T
(r+∆r)⊥


=
[
Ur̃ Ur̃⊥

] [ Dr̃ 0r̃×(n−r̃)

0(m−r̃)×r̃ 0(m−r̃)×(n−r̃)

] [
V T
r̃

V T
r̃⊥

]
.

Therefore, givenX ∈Mr and η∗, the rank-related retractions versions of the three-factor retractions

discussed earlier can be constructed.

Since η∗ can be written

η∗ = U̇r̃Dr̃V
T
r̃ + Ur̃Ḋr̃V

T
r̃ + Ur̃Dr̃V̇r̃, (4.30)

UTr̃ U̇r̃ = 0, V T
r̃ V̇r̃ = 0. (4.31)

and the decomposition (4.30) is given by

U̇r̃ = Ur̃⊥U
T
r̃⊥η

∗Vr̃D
−1
r̃ = (Im − Ur̃UTr̃ )η∗Vr̃D

−1
r̃ ,

Ḋr̃ = UTr̃ η
∗Vr̃,

V̇r̃ = Vr̃⊥V
T
r̃⊥η

∗TUr̃D
−T
r̃ = (In − Vr̃V T

r̃ )η∗TUr̃D
−T
r̃ ,

(4.32)

the Polar-decomposition-type rank-related retraction is defined

R̃X(η∗) = Ũ+D̃+Ṽ+, (4.33)
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where

Ũ+ = uf(Ur̃ + U̇r̃)US ,

D̃+ = DS ,

Ṽ+ = uf(Vr̃ + V̇r̃)VS ,

Dr̃ + Ḋr̃ = USDSV
T
S ,

where the symbol uf(·) denotes the orthogonal component of the polar decomposition.

The SVD-type rank-related retraction is defined as

R̃X(η∗) =
r̃∑
i=1

σiuivi, (4.34)

where X + η∗ =
[
u1 · · · umin(m,n)

]
diag(σ1, · · · , σmin(m,n))

[
v1 · · · vmin(m,n)

]T
is the SVD with

singular values in decreasing order.

Defining Ũp = Ũ⊥D̃ and Ṽp = Ṽ⊥D̃ allows η∗ to be rewritten in the form

η∗ = ŨpV
T
r̃ + Ur̃Ḋr̃V

T
r̃ + Ur̃Ṽp, (4.35)

UTr̃ Ũp = 0, V T
r̃ Ṽp = 0 (4.36)

and the decomposition (4.35) rewritten as

Ũp = Ur̃⊥U
T
r̃⊥η

∗Vr̃ = (Im − Ur̃UTr̃ )η∗Vr̃,

Ḋr̃ = UTr̃ η
∗Vr̃,

Ṽp = Vr̃⊥V
T
r̃⊥η

∗TUr̃ = (In − Vr̃V T
r̃ )η∗TUr̃.

(4.37)

Therefore, the retraction (4.34) can be efficiently computed by

R̃X(η∗) = Ũ+D̃+Ṽ+, (4.38)

where

QuRu = Ũp,

QvRv = Ṽp,

UsDsVs =

[
Dr̃ + Ḋr̃ RTv
Ru 0

]
,

Ũ+ =
[
Ur̃ Qu

]
Us(:, 1 : r̃),

D̃+ = Ds(1 : r̃, 1 : r̃),

Ṽ+ =
[
Vr̃ Qv

]
Vs(:, 1 : r̃),
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and r̃ = r + ∆r, Ur̃ =
[
Ur U∆r

]
, Dr̃ =

[
Dr 0r×∆r

0∆r×r 0∆r×∆r

]
, Vr̃ =

[
Vr V∆r

]
.

Similarly, given η∗ in the form of (4.30), the QR-type rank-related retraction I is defined

as

R̃X(η∗) = Ũ+D̃+Ṽ+, (4.39)

where

Ũ+ = qf(Ur̃ + U̇r̃)US ,

D̃+ = DS ,

Ṽ+ = qf(Vr̃ + V̇r̃)VS ,

Dr̃ + Ḋr̃ = USDSV
T
S ,

where the symbol qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

If η∗ is given in the form of

η∗ = U̇r̃Dr̃V
T
r̃ + Ur̃Ḋr̃V

T
r̃ + Ur̃Dr̃V̇r̃, (4.40)

where Ḋr̃ is a diagonal matrix, then we have the the QR-type rank-related retraction II:

R̃X(η∗) = Ũ+D̃+Ṽ+, (4.41)

where

Ũ+ = qf(Ur̃ + U̇r̃),

D̃+ = Dr̃ + Ḋr̃,

Ṽ+ = qf(Vr̃ + V̇r̃),

where the symbol qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

The computation of U̇ , Ḋ, V̇ in (4.40) is the same as discussed in Section 4.3.3.

4.3.6 Vector Transport on Fixed-rank Manifold

Vector transport is critical to the success of Riemannian optimization algorithms such as Rie-

mannian quasi-Newton methods. It is used to compare tangent vectors in different tangent spaces

and to transport operators on one tangent space to another tangent space. Vector transport can

be represented by a matrix. Given two points X1 and X2 on a fixed-rank manifold Mr, the cor-

responding tangent spaces are TX1 ,TX2 . Huang in [Hua13] proposes some methods to construct
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isometric vector transports T from X1 to X2 as the direct rotation [DK70] from TX1Mr to TX2Mr,

restricted to act on TX1Mr. This section presents the application of those techniques to Mr.

Note that the tangent space on the fixed-rank manifold has the following structure,

TXMr :=

 UrAV
T
r + UrBV

T
r⊥ + Ur⊥CV

T
r :

A ∈ Rr×r, B ∈ Rr×(n−r), C ∈ R(m−r)×r.

 .

It is a (m+n− r)r-dimensional subspace of Rmn. An orthonormal basis of TXMr denoted by BX

is given by

{U(eie
T
j )V : i = 1, · · · , r, j = 1, · · · , r}

∪ {U(ej ẽ
T
i )V T

⊥ : i = 1, · · · , n− r, j = 1, · · · , r}

∪ {U⊥(êie
T
j )V T : i = 1 · · · ,m− r, j = 1, · · · , r}

where (e1, · · · , er) is the canonical basis of Rr, (ê1, · · · , êm−r) is the canonical basis of Rm−r and

(ẽ1, · · · , ẽn−r) is the canonical basis of Rn−r. The columns of BX are thus chosen as the ”vec” of

the basis elements.

Let BX1 and BX2 be orthonormal bases of TX1Mr and TX2Mr. The direct-rotation vector

transport from X1 to X2 is then given by

T = BX2U
T
b B

T
X1
, (4.42)

where BT
X1
BX2 = UbPb is the unique polar decomposition. The operator defined by (4.42) is called

a vector transport by direct-rotation based on tangent space.

If the codimension, (m− r)(n− r), is sufficiently smaller than the dimension, (m+ n− r)r, an

orthonormal basis for normal space NXMr can be efficiently constructed. The normal space on

the fixed-rank manifold Mr has the following structure,

NXMr =
{
Ur⊥E⊥V

T
r⊥ : E⊥ ∈ R(m−r)×(n−r)

}
.

Using NX to denote the orthonormal basis of NXMr, it is given by

{U⊥ẽiêjV T
⊥ : i = 1, · · · ,m− r, j = 1, · · · , n− r}.

The columns of NX are thus chosen as the ”vec” of the basis elements.
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Let NX1 , NX2 be orthonormal basis of NX1Mr and NX2Mr. The direct-rotation vector trans-

port from X1 to X2 is then given by

T = (Imn −QX1Q
T
X1

) +QX2U
T
q Q

T
X1
, (4.43)

where QTX1
QX2 = UqPq is the unique polar decomposition, QX1 , QX2 are orthonormal basis of

TX1Mr 	 (TX1Mr ∩ TX2Mr) and TX2Mr 	 (TX2Mr ∩ TX2Mr), which can be obtained by or-

thonormalizing (I − NX1N
T
X1

)NX2 and (I − NX2N
T
X2

)NX1 respectively. The operator defined by

(4.43) is called a vector transport by direct-rotation based on normal space.

For weighted low-rank approximation, it is often assumed k << min(m,n) and vector transport

by direct-rotation based on normal space is not computationally reasonable so direct-rotation by

tangent space is the preferred form in the remainder of the discussion.

Vector transport by the differentiated retraction of (4.16) and (4.18) can also be derived. Similar

to the idea in [MS13, Section 3.4], the following Proposition states the differentiated retraction of

(4.16).

Proposition 25. Let X = UDV T ∈ Mr, ξ, η ∈ TXMr. Assuming ξ and η have the following

structure

ξ = U̇1DV
T + UḊ1V

T + UDV̇ T
1 ,

η = U̇2DV
T + UḊ2V

T + UDV̇ T
2

then the vector transport by the differentiated retraction of (4.16) is

Tηξ = TU̇2
(U̇1)(D+Ḋ2)(uf(V +V̇2))T +uf(U+U̇2)Ḋ1uf(V +V̇2)T +uf(U+U̇2)(D+Ḋ2)(TV̇2(V̇1))T ,

(4.44)

where TU̇2
(U̇1) is a vector transport by differentiated retraction of (4.16) on the Stiefel manifold

[Hua13, Lemma 10.2.1] and uf(·) denotes the orthogonal factor of the polar decomposition.
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Proof. Based on the definition of the vector transport by differentiated retraction and the polar-

decomposition-type retraction (4.16), the following hold

Tηξ =
d

dt
RX(η + tξ)|t=0

=
d

dt
[uf(U + U̇2 + tU̇1)(D + Ḋ2 + tḊ1)uf(V + V̇2 + tV̇1)T ]|t=0

=
d

dt
[uf(U + U̇2 + tU̇1)](D + Ḋ2 + tḊ1)uf(V + V̇2 + tV̇1)T |t=0

+ uf(U + U̇2 + tU̇1)
d

dt
[(D + Ḋ2 + tḊ1)]uf(V + V̇2 + tV̇1)T |t=0

+ uf(U + U̇2 + tU̇1)(D + Ḋ2 + tḊ1)
d

dt
[uf(V + V̇2 + tV̇1)]T |t=0

(4.45)

Since U ∈ St(m, r), V ∈ St(n, r) according to the vector transport by differentiated retraction on

the Stiefel manifold [Hua13, Lemma 10.2.1], for U̇1, U̇2 ∈ TUSt(m, r), it follows that

d

dt
[uf(U + U̇2 + tU̇1)]|t=0 = TU̇2

(U̇1), (4.46)

and for V̇1, V̇2 ∈ TV St(n, r),

d

dt
[uf(V + V̇2 + tV̇1)]|t=0 = TV̇2(V̇1), (4.47)

where

TU̇2
(U̇1) = DRU (U̇2)[U̇1]

= Duf(U + U̇2)[U̇1]

= RU (U̇2)Ω + (I −RU (U̇2)(RU (U̇2))T )U̇1((RU (U̇2))T (U + U̇2))−1,

and R is (4.16), vec{Ω} = ((RU (U̇2))T (U + U̇2) ⊕ (RU (U̇2))T (U + U̇2))−1vec{(RU (U̇2))T U̇1 −
U̇T1 RU (U̇2)}, ⊕ is the Kronecker sum, i.e., A⊕B = A⊗ I + I ⊗B.

Substituting (4.46) and (4.47) into (4.45), yields

Tηξ = TU̇2
(U̇1)(D+ Ḋ2)uf(V + V̇2)T +uf(U + U̇2)Ḋ1uf(V + V̇2)T +uf(U + U̇2)(D+ Ḋ2)(TV̇2(V̇1))T .

Similarly, the following proposition derives the vector transport by differentiated retraction of

(4.18).
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Proposition 26. Let X = UDV T ∈ Mr, ξ, η ∈ TXMr. Assuming ξ and η have the following

structure

ξ = U̇1DV
T + UḊ1V

T + UDV̇ T
1 ,

η = U̇2DV
T + UḊ2V

T + UDV̇ T
2

then the vector transport by the differentiated retraction of (4.18) is

Tηξ = TU̇2
(U̇1)(D+ Ḋ2)qf(V + V̇2)T + qf(U + U̇2)Ḋ1qf(V + V̇2)T + qf(U + U̇2)(D+ Ḋ2)(TV̇2(V̇1))T ,

(4.48)

where TU̇2
(U̇1) is a differentiated retraction on the compact Stiefel manifold [AMS08, Example 8.1.5]

and qf(·) denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal

of R.

Proof. Based on the definition of the vector transport by differentiated retraction and the QR-type

retraction (4.18), the following hold

Tηξ =
d

dt
RX(η + tξ)|t=0

=
d

dt
[qf(U + U̇2 + tU̇1)(D + Ḋ2 + tḊ1)qf(V + V̇2 + tV̇1)T ]|t=0

=
d

dt
[qf(U + U̇2 + tU̇1)](D + Ḋ2 + tḊ1)qf(V + V̇2 + tV̇1)T |t=0

+ qf(U + U̇2 + tU̇1)
d

dt
[(D + Ḋ2 + tḊ1)]qf(V + V̇2 + tV̇1)T |t=0

+ qf(U + U̇2 + tU̇1)(D + Ḋ2 + tḊ1)
d

dt
[qf(V + V̇2 + tV̇1)]T |t=0

(4.49)

Since U ∈ St(m, r), V ∈ St(n, r) according to the vector transport by differentiated retraction on

the compact Stiefel manifold [AMS08], for U̇1, U̇2 ∈ TUSt(m, r), it follows that

d

dt
[qf(U + U̇2 + tU̇1)]|t=0 = TU̇2

(U̇1), (4.50)

and for V̇1, V̇2 ∈ TV St(n, r),

d

dt
[qf(V + V̇2 + tV̇1)]|t=0 = TV̇2(V̇1), (4.51)

where

TU̇2
(U̇1) = DRU (U̇2)[U̇1]

= Dqf(U + U̇2)[U̇1]

= RU (U̇2)ρskew(RU (U̇2)T U̇1(RU (U̇2)T (U + U̇2))−1)

+ (I −RU (U̇2)RU (U̇2)T )U̇1(RU (U̇2)T (U + U̇2))−1,
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and ρskew(B) denotes the skew-symmetric term of the decomposition of a square matrix B into the

sum of a skew-symmetric term and an upper triangular term, i.e.,

(ρskew(B))i,j =


Bi,j if i >, j
0 if i = j,
−Bj,i if i < j.

Substituting (4.50) and (4.51) into (4.49), yields

Tηξ = TU̇2
(U̇1)(D+ Ḋ2)qf(V + V̇2)T + qf(U + U̇2)Ḋ1qf(V + V̇2)T + qf(U + U̇2)(D+ Ḋ2)(TV̇2(V̇1))T .

4.3.7 Action of the Hessian on a Fixed-rank Manifold

To use the second order information, the action of the Hessian on a vector is required.

Proposition 27. For any X = UDV T ∈ Mr and η ∈ TXMr, the action of the Riemannian

Hessian of a cost function f at X on the direction vector η satisfies

Hess fr(X)[η] = 5ηgrad f(X) = PX(Dgrad fr(X)[η]),

where

Dgrad fr(X)[η] = −2[U⊥(UT⊥ηV D
−1)UT + U(UT⊥ηV D

−1)TUT⊥ ]vec−1(Wvec(R−X))

− 2(UUT )vec−1(Wvec(R− η))− 2vec−1(Wvec(R− η))V V T

− 2vec−1(Wvec(R−X))[V⊥(D−1UT ηV⊥)TV T + V (D−1UT ηV⊥)V T
⊥ ]

+ 2[U⊥(UT⊥ηV D
−1)UT + U(UT⊥ηV D

−1)TUT⊥ ]vec−1(Wvec(R−X))V V T

+ 2UUTvec−1(Wvec(R− η))V V T

+ 2UUTvec−1(Wvec(R−X))[V⊥(D−1UT ηV⊥)TV T + V (D−1UT ηV⊥)V T
⊥ ].

Proof. The gradient of f at X on Mr is given by:

gradfr(X) = PX(−2vec−1(Wvec{R−X}))

= −2UUT (vec−1(Wvec{R−X}))− 2(vec−1(Wvec{R−X}))V V T

+ 2UUT (vec−1(Wvec{R−X}))V V T

(4.52)

where vec−1(Wvec{R − X}) represents reshaping the vector Wvec{R − X} as an m × n matrix.

Since Mr is a Riemannian submanifold of a Euclidean space, according to [AMS08, (5.15)] ,

Hessfr(X)[η] = ∇ηgradfr(x) = Px(Dgradfr(x)[η]), (4.53)
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where Dg(x)[H] is a directional derivative of g at x along H. Differentiating (4.52) according to

(4.53) yields a matrix representation of the action of the Hessian of fr at X along η.

Dgradfr(x)[η] = −2(UUT )′(vec−1(Wvec{R−X}))− 2UUT (vec−1(Wvec{R− η}))

− 2(vec−1(Wvec{R− η}))V V T

− 2(vec−1(Wvec{R−X}))(V V T )′ + 2(UUT )′(vec−1(Wvec{R−X}))V V T

+ 2UUT (vec−1(Wvec{R− η}))V V T + 2UUT (vec−1(Wvec{R−X}))(V V T )′.

(4.54)

Next, (UUT )′ and (V V T )′ must be derived. Since U ∈ St(m, r), U̇ = UΩU + U⊥KU , where

ΩT
U = −ΩU ,KU ∈ R(m−r)×r, it follows that

(UUT )′ = U̇UT + UU̇T = (UΩU + U⊥KU )UT + U(UΩU + U⊥KU )T

= U(ΩU + ΩT
U )UT + U⊥KUU

T + UKT
U + UT⊥

= U⊥KUU
T + UKT

UU
T
⊥

= U⊥(UT⊥ẊV D
−1)UT + U(UT⊥ẊV D

−1)TUT⊥ .

(4.55)

Similarly, (V V T )′ is ,

(V V T )′ = V (D−1UT ẊV⊥)V T
⊥ + V⊥(D−1UT ẊV⊥)TV T . (4.56)

Substituting (4.55) and (4.56) into (4.54), yields

Dgradfr(X)[η] = −2[U⊥(UT⊥ηV D
−1)UT + U(UT⊥ηV D

−1)TUT⊥ ]vec−1(Wvec(R−X))

− 2(UUT )vec−1(Wvec(R− η))− 2vec−1(Wvec(R− η))V V T

− 2vec−1(Wvec(R−X))[V⊥(D−1UT ηV⊥)TV T + V (D−1UT ηV⊥)V T
⊥ ]

+ 2[U⊥(UT⊥ηV D
−1)UT + U(UT⊥ηV D

−1)TUT⊥ ]vec−1(Wvec(R−X))V V T

+ 2UUTvec−1(Wvec(R− η))V V T

+ 2UUTvec−1(Wvec(R−X))[V⊥(D−1UT ηV⊥)TV T + V (D−1UT ηV⊥)V T
⊥ ].

Finally, the action of the Hessian of a cost function f at X in the direction of η satisfies

Hess fr(X)[η] = 5ηgrad fr(X) = PX(Dgradfr(X)[η]).
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4.3.8 Some Observations and Improvements on the Methods using the Double
Minimization Modification

In Section 4.2.2, the novel reformulation of the weighted low-rank approximation problem (4.1)

as a double minimization problem (4.3) by Manton et al. [MMH03] was given. This reformula-

tion allows them to minimize an associated cost function (4.5) on a Grassmann manifold. Two

algorithms are discussed in [MMH03]: a linearly convergent steepest descent algorithm [MMH03,

Algorithm 11] and a quadratic convergent Newton step algorithm [MMH03, Algorithm 14]; and the

Riemannian gradient and Hessian required by the algorithms are also derived. The gradient of the

cost function f(N) is

grad f = 2NT
⊥(R−B)TA, (4.57)

where A ∈ Rm×(n−k) and B ∈ Rm×n are the unique matrices that satisfy

vec{A} = [(N ⊗ Im)TW−1(N ⊗ Im)]−1vec{RN},

vec{B} = W−1vec{ANT }.
(4.58)

The Hessian of f(N) is

H = 2{(In−k ⊗ (R−B)N⊥)T [(N ⊗ Im)TW−1(N ⊗ Im)]−1(In−k ⊗ (R−B)N⊥)

− (In−k ⊗ (R−B)N⊥)T [(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)TW−1(N⊥ ⊗A)C

− CT (N⊥ ⊗A)TW−1(N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(In−k ⊗ (R−B)N⊥)

− CT (N⊥ ⊗A)T (W−1 −W−1(N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)TW−1)(N⊥ ⊗A)C},
(4.59)

where C ∈ Rk(n−k)×k(n−k) is the unique matrix satisfying for all K ∈ Rk×(n−k),

vec{KT } = Cvec{K}. (4.60)

In the numerical study section [MMH03, Section VI], since the Newton method is locally conver-

gent, its initial point is generated by several iterations of the globally convergent steepest descent

algorithm. For the steepest descent, they use a Riemannian version of the Armijo step-size rule.

Newton’s method requires the solution of a linear equation Hvec{K} = −vec{gradf} for the

matrix K ∈ Rk×(n−k), where gradf and H are given by (4.57) and (4.59), respectively. No details

were given on the method used to solve this system. In order to provide the best possible per-

formance data for the Newton method of Manton et al., a version that employs the “inverse-free”
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truncated conjugate gradient method [Ste83] in the experiments presented below. The truncated

conjugate gradient method has been used extensively in Riemannian optimization algorithms, for

details see [Bak08] and [Hua13].

To use the truncated conjugate gradient, the action of the Hessian on the Grassmann manifold

Gr(n, n− k) must be characterized in a computationally efficient manner as done in the following

Proposition.

Proposition 28. For any N ∈ Gr(n, n−k) and η ∈ TNGr(n, n−k), the action of the Riemannian

Hessian of a cost function f at N on the direction vector η satisfies

Hessf(N)[η] = (In −NNT )[−2(ηNT +NηT )(X −B)TA− 2(In −NNT )(vec−1(dvec{B}))A

+ 2(In −NNT )(X −B)T (vec−1(dvec{A}))].
where

dvec{A} = [(N ⊗ Im)TW−1(N ⊗ Im)]−1[vec{(R−B)η} − (N ⊗ Im)TW−1vec{AηT }],

dvec{B} = W−1(N ⊗ Im)dvec{A}+W−1vec{AηT }.

Proof. The vertical space of a Grassmann manifold Gr(n, n− k) is given by [AMS08]

TNGr(n, n− k) = {N⊥K : K ∈ Rk×(n−k)},

and the orthogonal projection onto the vertical space of Gr(n, n− k) at N is

PNZ = N⊥N
T
⊥Z = (I −NNT )Z, ∀Z ∈ Rm×n.

Since the Euclidean gradient of the cost function f is 5f(N) = 2(R−B)TA, where vec{A}, vec{B}
are defined in (4.58). The projection onto the vertical space of the Riemannian gradient onGr(n, n−
k) is

gradf = 2(In −NNT )(R−B)TA. (4.61)

The Riemannian Hessian is then computed by

Hessf(N)[η] = PN (Dgradf(N)[η]). (4.62)

Differentiating (4.61) according to (4.62) yields a matrix representation of the action of the Hessian

of f at N along η.

Dgradf(N)[η] = −2(ηNT +NηT )(X −B)TA− 2(In −NNT )(vec−1(dvec{B}))A

+ 2(In −NNT )(X −B)T (vec−1(dvec{A})).
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where

dvec{A} = [(N ⊗ Im)TW−1(N ⊗ Im)]−1[vec{(R−B)η} − (N ⊗ Im)TW−1vec{AηT }],

dvec{B} = W−1(N ⊗ Im)dvec{A}+W−1vec{AηT }.

The efficient version of the Newton algorithm of Manton et al. with truncated conjugate gradient

is given in Algorithm 3.

Algorithm 3 Manton’s Newton Method with Truncated CG

Require: Data matrix R ∈ Rm×n, weighting matrix W ∈ Rmn×mn, rank specification k. Conver-

gence tolerance ε > 0. Scalars ¯α > 0, c, β, σ ∈ (0, 1).

1: Choose starting point N1 ∈ Rn×(n−k) and N1,⊥ ∈ Rn×k such that
[
N1 N1,⊥

]T [
N1 N1,⊥

]
= I.

Set i = 1.

2: while ‖grad fi‖ ≥ ε do

3: Obtain Ki ∈ Rk×(n−k) by (approximately) solving

Hess f(Ni)K = −grad f(Ni) (4.63)

where f is given by (4.5).

4: Select Ni+1 such that

f(Ni)− f(Ni+1) ≥ c(f(Ni)− f(RNi(t
A
i Ki))), (4.64)

where tAi is the Armijo step-size for the given ᾱ, β, σ. The retraction R is renormalizing[
Ni+1 Ni+1,⊥

]
by setting

[
Ni+1 Ni+1,⊥

]
:= qf(Ni + tAi Ni,⊥Ki), where the symbol qf(·)

denotes the Q-factor of the QR decomposition of its matrix argument.

5: end while

6: Compute

vec{X} = vec{R} −W−1(N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)Tvec{R}.

Since the computation of the Riemannian Hessian of this cost function is expensive, a Rieman-

nian BFGS-type algorithm for minimizing f(N) on the Grassmann manifold was derived by Brace

and Manton in 2006 [BM06]. As in the Euclidean case, the advantage of a BFGS algorithm is

that, compared with the Newton method, is lower computational complexity. While BFGS has

superlinear convergence rather than quadratic, it is often significantly better than Newton in terms
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of total computation time. An outline of the the Riemannian BFGS algorithm called the Improved

BFGS by Brace and Manton [BM06, Algorithm 2] is given in Algorithm 4.

Algorithm 4 Manton’s Improved BFGS

Require: data matrix R ∈ Rm×n, weighting matrix W ∈ Rmn×mn, rank specification k, conver-

gence tolerance ε > 0. Scalars ¯α > 0, c, β, σ ∈ (0, 1).

1: Choose starting point N1 ∈ Rn×(n−k) and N1,⊥ ∈ Rn×k such that
[
N1 N1,⊥

]T [
N1 N,⊥

]
= I.

Set the initial Hessian estimate to B1 = I ∈ Rk(n−k)×k(n−k). Set i = 1.

2: while ‖grad gi‖ > ε do

3: Obtain pi by solving Bipi = −grad gi, where grad gi is defined in (4.57).

4: Select Ni+1 such that

f(Ni)− f(Ni+1) ≥ c(f(Ni)− f(RNi(t
A
i pi))), (4.65)

where tAi is the Armijo step-size for the given ᾱ, β, σ. The retraction R is renormalizing[
Ni+1 Ni+1,⊥

]
by setting

[
Ni+1 Ni+1,⊥

]
:= qf(Ni + tAi Ni,⊥pi), where the symbol qf(·)

denotes the Q-factor of the QR decomposition of its matrix argument.

5: Set ∆g = vec{grad gi+1 −Ni+1,⊥grad gi}, ∆s = vec{Ni+1,⊥tipi}.
6: Compute the BFGS update

Bi+1 = Bi +
∆g∆gT

∆sT∆g
− Bi∆s∆s

TBT
i

∆sTBi∆s
,

7: Set i = i+ 1;

8: end while

9: Compute

vec{X} = vec{R} −W−1(N ⊗ Im)[(N ⊗ Im)TW−1(N ⊗ Im)]−1(N ⊗ Im)Tvec{R}.

Note that the algorithm does not use any explicit vector transport. This is motivated by Brace

and Manton heuristically in order to reduce the complexity of the iteration and its effectiveness was

explored only empirically. The Improved BFGS algorithm of Brace and Manton, also only requires

satisfying Riemannian Armijo conditions in the line search procedure, which does not guarantee

the search directions pi are descent directions.

Recent advances in the theoretical understanding of vector transport, however, allow an expla-

nation of this heuristic approach. The Improved BFGS algorithm of Brace and Manton is equivalent

to the intrinsic dimensional approach discussed in Huang’s dissertation [Hua13, Section 9.5], where
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the matrix representations of the vector transport in Step 6 of Algorithm 4 is an identity matrix.

So, in fact, vector transport is done implicitly since the bases of the tangent spaces are in fact

moved continuously and therefore transport by parallelization is performed.

Furthermore, in [Hua13, Algorithm 3], Huang also considered Riemannian Wolfe conditions in

the line search procedure, i.e.

d

dt
f(R(αpi))|α=ti ≥ c2

d

dt
f(R(αpi))|α=0, (4.66)

where 0 < c2 < 1 is a constant, and shows that convergence of the Riemannian Restricted Broyden

Family, including RBFGS, can be guaranteed when they are used.

So Brace and Manton’s heuristic reduction of the computational complexity of their Riemannain

BFGS algorithms can be analyzed rigorously. More importantly for this dissertation, the rigorously

analyzed and efficiently implemented RBFGS algorithm of Huang’s dissertation [Hua13, Algorithm

3] with intrinsic dimensional approach and the specific “qf” retraction [Hua13, Equation (10.2.3)]

in each iteration can be used on the reformulated cost function of Manton et al. in the experiments.

4.4 Experiments

4.4.1 Test Problems

This section provides numerical experiments illustrating the performance of the modified Rie-

mannian optimization algorithm compared with the other approaches. The results presented are

obtained by implementing the different algorithms in Matlab (Version 7.10.0) on a Mac platform

with 2.4 GHz and 4 GB memory.

In Section 4.4.2, the default values of some parameters are given. In Section 4.4.3, the per-

formance for different values of parameters ε1 and ε2 when approximating matrices with singular

values that have a clear gap and those that have an exponential decay are presented. In particular,

the choice of the parameters for solving the optimization problem to get close to the true rank of

the data matrix and for finding a lower rank but acceptable approximation. In practice, an upper

bound, k, on the rank of the approximating matrix is often given. The effect of different choices

of k are shown in Section 4.4.4 for low-rank data matrices and the results of different methods are

compared. In Section 4.4.5, structured weighting matrices, i.e., diagonal and block-diagonal, are

considered. The influence of the retraction and its invariance to the particular factors in the decom-

position X = UDV T , or lack of invariance, is presented in Section 4.4.6. Finally, the performance
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of different rank reduce methods are shown in Section 4.4.7 and the performance of different inner

algorithms are shown in Section 4.4.8.

As reviewed in previous sections, some of the other approaches reformulated the original problem

(4.1), the cost function used for each method is listed in Table 4.1. The choice of algorithm for

each approach is discussed below.

Table 4.1: Cost function used by the approaches.

Alternating Projections Method (APM) cost function (4.1)

Double Minimization Method (DMM) cost function (4.5)

EW-TLS Method cost function (4.9)

Schneider and Uschmajew’s Line-search Method (SULS) cost function (4.1)

Modified Riemannian Optimization Method (MROM) cost function (4.1)

4.4.2 Algorithm Parameters and Notations

The parameters in the modified Riemannian optimization method (MROM), i.e., Algorithm

2, are set as follows. The Riemannian trust-region method (RTR-Newton) [Bak08] is used as the

inner algorithm in Algorithm 2. Unless stated otherwise, the parameters ε1 and ε2 are
√

3 and 10−4

respectively. Parameter ε4 is ε1
2 . The initial stopping criterion, ε3, on the fixed-rank manifold is 1

and the initial parameter for the rank detection in Algorithm 1 is ∆0 = 10−5. Both the parameters

τ1 and τ2 are 0.1. In order to avoid the effects of noise and get rid of small singular values, 10−8 is

used as an upper bound of ∆. The polar-decomposition-type retraction and rank-related retraction

(4.16), (4.33) are used in the tests in Sections 4.4.3-4.4.5 since they are invariant to the choice of

factors in the decomposition of X = UDV T and efficient in computation.

Manton’s Newton method with truncated CG (Algorithm 3) has been observed to be consis-

tently faster than Manton’s improved BFGS method (Algorithm 4). Therefore, in the following,

Algorithm 3 is used when testing the Double Minimization Method (DMM). Additionally, the eval-

uation of cost function (4.5) in Algorithm 3 involves the inverse of the weighting matrix W . In

order to avoid the computation of the inverse, the Cholesky decomposition of the weighting matrix

W is computed in preprocessing and the effect of the inverse determined by the solution of two

triangular systems.

The truncated CG iteration [AMS08, Section 7.3.2] algorithm is used in both Algorithm 3 and

the inner iteration of the RTR-Newton method in Algorithm 2. The parameters θ and κ in the
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truncated CG iteration stopping criteria [AMS08, (7.10)] are 1 and 0.1 respectively. The parameters

τ1 and τ2 in the trust region update are 0.25 and 2 respectively. The initial trust region radius is

1. The Accelerated line search algorithm [AMS08, Algorithm 1] is used in Algorithm 2, Algorithm

3, and SULS. The constants α and β in the Armijo conditions for the line search in these methods

are 0.01 and 0.99 respectively.

For numerical simulated data, two default cases are used: (1) fully random m × n matrices

R of rank r, R = R1R
T
2 , where R1 ∈ Rm×r and R2 ∈ Rn×r are each generated according to a

Gaussian distribution with zero mean and unit standard deviation (with Matlab’s RANDN); (2)

random low-rank matrices with chosen singular values, R = U1SU
T
2 , where S is a diagonal matrix

with chosen singular values, U1 ∈ Rm×r, U2 ∈ Rn×r are orthogonal matrices generated by Matlab’s

ORTH and RANDN. The initializations of each method are as follows. Algorithm 2 and SULS are

started with a randomly generated rank-1 matrix defined by [U0, D0, V0], where D0 is a random

number obtained by Matlab’s RAND and U0 ∈ Rm×1, V0 ∈ Rn×1 are obtained by Matlab’s ORTH

and RAND. Algorithm 3 is started with a random n× (n− k) matrix and APM is started with a

random m×(m−k) matrix. Both are generated by Matlab’s QR and RAND. Other data generation

choices are explicitly noted when used.

Algorithm 2 and SULS, are stopped when the norm of the final gradient on the fixed-rank

manifold over the norm of initial full gradient is less than 10−8 while Algorithm 3 and APM are

stopped when the norm of final gradient over the norm of initial gradient is less than 10−7.

The reported time are wall clock times. Some machine independent values are also reported

including final value of the cost function (4.1), the relative error, which is computed as ‖R−X‖W‖R‖W

and the error ‖R−X‖F . All computations are in IEEE double precision. The notation used when

reporting the experimental results is given in Table 4.2.

4.4.3 Performance of Different Parameters

4.4.3.1 Performance of High Probability of Finding True Rank. The first set of ex-

periments evaluates the ability of MROM, implemented in Algorithm 2, to find the rank of a matrix

and an associated approximation for matrices where the spectrum has a clear separation defining

the rank. Of particular interest is the effect of the initial matrix on the rank and approximation

found.
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Table 4.2: Notation for reporting the experimental results.

R err relative error ‖R−X‖W‖R‖W
err error ‖R−X‖F
SVerr error between the given r singular values and the r singular values found by algorithm

f final value of the cost function (4.1)

gfr The norm of the final gradient on the fixed-rank manifold Mr

gfF 0 The norm of the initial full gradient

nf number of function evaluations

ng number of gradient evaluations

nH number of operations of the form Hη
nV number of vector transports

nR number of retraction evaluations

nRr number of rank-related retraction evaluations

time average time (seconds)

The data matrices R are chosen as random 50×50 matrices with rank 5. The weighting matrices

W = UΣUT , where U ∈ R2500×2500 are random orthogonal matrices generated by Matlab’s QR

and RAND. The 2500 singular values of the weighting matrix are generated by Matlab function

LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform distribution

matrix on the interval [0.5, 1.5]. The upper bound on rank, k, is 50. Several initial rank i matrix

X
(i)
0 = U

(i)
0 D

(i)
0 (V

(i)
0 )T , where U

(i)
0 ∈ R50×i, V

(i)
0 ∈ R50×i are random matrices generated with

Matlab’s RAND and ORTH, D
(i)
0 is a random i × i diagonal matrix with uniformly distributed

diagonal elements.

Results reported in Table 4.3 and 4.4 are the average of 50 runs for different data matrices R,

weighting matrices W and initial points realizations with upper bound of rank detection ∆ = 10−8

and ∆ = 0 respectively.

When ∆ = 10−8, the results show that for all initial points the true rank is eventually discovered.

When ∆ = 0, the notion of numerical rank is essentially ignored which is much more restrictive

than is done in practice. While not all runs result in a rank of 5, all of the ranks accepted are

greater than or equal to 5, as desired when ∆ = 0, and a high probability of finding 5 is seen over

all of the runs.

Therefore, ∆ = 10−8 is a reasonable value when finding the true rank while allowing some

influence of numerical rank. Also, although the value of the bound k is 50 (the highest possible),
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the rank does not increase to 50 for any iteration of any run. When the initial rank is less than 5,

the rank of any iterate usually only increases to 7 (a small number of times to 9 or 10) and then

drops back quickly to 5. This implies even the value of k is chosen large, the rank is not destined to

increase to the upper bound k if the true rank is small, as often happens with other more simplistic

rank selection heuristics, and time and space efficiency is maintained.

Table 4.3: Approximation with different rank initial conditions. ∆ = 10−8. The subscript ±k
indicates a scale of 10±k.

rank R err err f time(s) gfr gfr/gfF 0

X
(1)
0 5 4.872−15 4.494−06 1.153−11 3.445+00 1.289−06 1.640−08

X
(4)
0 5 1.332−17 2.284−06 3.957−12 3.784+00 6.479−07 8.406−09

X
(5)
0 5 2.826−08 3.913−05 6.896−10 1.005+00 1.107−05 1.438−07

X
(6)
0 5 3.351−15 4.646−06 1.148−11 2.735+00 1.294−06 1.680−08

X
(10)
0 5 1.921−09 5.673−06 1.514−11 4.256+00 1.597−06 1.980−08

Table 4.4: Approximation with different rank initial conditions. ∆ = 0. The number in the
parenthesis indicates the ratio of the numerical rank equals the true rank. The subscript ±k
indicates a scale of 10±k.

rank R err err f time(s) gfr gfr/gfF 0

X
(1)
0 5.04 (49/50) 4.872−15 4.496−06 1.153−11 3.439e+ 00 1.290−06 1.641−08

X
(4)
0 5.1 (47/50) 1.332−17 2.293−06 3.957−12 3.813+00 6.517−07 8.456−09

X
(5)
0 5 2.826−08 3.913−05 6.896−10 1.000+00 1.107−05 1.438−07

X
(6)
0 5.06 (47/50) 3.351−15 4.655−06 1.148−11 2.730+00 1.297−06 1.684−08

X
(10)
0 5.04 (49/50) 1.921−09 5.673−06 1.514−11 4.267+00 1.598−06 1.980−08

Next the advantages of the dynamical rank updating are demonstrated. The data matrices are

randomly generated 100×100 matrices with rank 17. The weighting matrixW = diag{W1, · · · ,W100}.
Each Wi = UiΣiU

T
i is a positive definite symmetric matrix, where Ui ∈ R100×100 is random orthog-

onal matrices generated with Matlab’s ORTH and RANDN, Σi are diagonal matrices with singular

values generated with Matlab’s function LOGSPACE with condition number 100 and multiplying,

element-wise, by a uniform distribution vector on the interval [0.5, 1.5]. The rank upper bound, k, is

100. The deterministic rank increment strategy used in many papers alternates between fixed-rank

optimization and a fixed rank change. To avoid over-estimating the rank, the fixed rank change
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is usually a rank change of 1 or 2. In the following, MROM is compared with fixed rank changes

of 1, 2 and 4. All of fixed rank changes hit 17 exactly, so the rank change of 4, usually avoided

in practice, is an optimistic approach that is suitable for this problem. If MROM is competitive

or superior to the rank change of 4 then it is clear evidence of the robustness and effectiveness of

MROM.

For MROM, different values of ε1 are tested. For the fixed rank changes, a local minima on each

fixed-rank manifold is sought and the local iteration stopped when the norm of fixed-rank manifold

gradient is less than 10−5.

Results reported in Table 4.5 are the average of 50 runs for different data matrices R, weighting

matrices W and initial matrices. Figure 4.1 shows the rank changes as a function of the iteration

numbers and the computational times for a representative single run. The results demonstrate that

different values of ε1 give different rank update patterns for MROM but all reach the same final

rank of 17 as desired. When reaching almost the same relative error and error, the computational

times of MROM are always less than than the practical fixed rank changes of 1 and 2. Furthermore,

when ε1 = tan(70o), MROM increases the rank more aggressively than the optimistic fixed change

by 4. However, MROM does not require finding the an approximate minimizer on each fixed-rank

manifold and therefore does not expend unnecessary computational effort. Table 4.5 shows the

relative errors and absolute errors of the different methods are almost the same, but computational

cost of MROM with ε1 = tan(70o) is significantly less than the practical fixed rank changes of 1

and 2, and less than the optimistic fixed rank change of 4.

Table 4.5: Approximation with different rank update. ε2 = 10−5,∆ = 10−8. The number in the
parenthesis indicates the ratio of the rank increases to 17 is 44 out of 50. The subscript ±k indicates
a scale of 10±k.

method rank f R err err time(s) gfr gfr/gfF 0

ε1 = tan(60o) 17.18(44/50) 5.955−13 9.165−17 1.246−06 5.428+00 3.317−07 1.135−09

ε1 = tan(70o) 17 7.833−14 3.247−13 6.110−07 2.092+00 1.262−07 4.397−10

ε1 = tan(80o) 17 1.613−14 1.347−11 1.971−07 3.343+00 4.114−08 1.430−10

rank-1 update 17 5.724−14 3.299−13 1.676−07 1.316+01 3.854−08 1.354−10

rank-2 update 17 8.459−13 4.455−15 1.917−06 7.497+00 3.966−07 1.374−09

rank-4 update 17 1.148−12 1.246−15 2.975−06 4.259+00 6.992−07 2.431−09
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Figure 4.1: Different rank update.

4.4.3.2 Performance of Rank Approximation. In this set of experiments, data matrices

R with an exponential decay of singular values are considered. For such matrices, finding the rank

of R computationally is challenging. Although it is difficult to find the true rank, MROM, as

implemented in Algorithm 2, gives an efficient way to get a rank approximation consistent with

the precision specified by the choices of ε1 and ε2. Consider a random 100-by-100 data matrix R

with singular values 21−i, i = 1, 2, · · · , 100. This matrix has full rank analytically but it is very

ill conditioned and the numerical rank with singular values greater than 10−8 is 27. In order to

compare the numerical error with the theoretical error, the weighting matrix W is taken as the

identity. The value of the upper bound, k, is 100, which is the size of the data matrix R. Since the

norm of initial full gradient is always between 2 and 10, ε2 is initialized at 10, and decreased by a

factor of 10 for each experiment. For each ε2, three different values of ε1 – 0.5, 1,
√

3 – are tested.

Figures 4.2, 4.3 and Table 4.6 show the average of results for each (ε1, ε2) pair run 100 times

with different R, W , and initial X. The true error is ‖R − X∗‖F = minrank(X)≤r ‖R − X‖F =√
(2−r)2 + · · ·+ (2−99)2 and is matched well by the computed errors. Furthermore, the rank esti-

mation is as expected given the design of Algorithm 2. When ε2 is small, the algorithm is expected

to determine a rank close to the true numerical rank as determined by ∆. Approximate optimiza-

tion results when ε2 is increased and an approximation is found that requires less space and time

at the cost of an increase, hopefully small, in the approximation error.
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In the results, for each ε1 and ε2, the same rank is obtained over the 100 runs except when

ε2 is very small. The results demonstrate that as desired when ε2 is large, increasing the rank of

the approximation is made difficult. As the value of ε2 decreases, the rank of the approximation

increases. Meanwhile, the values of relative error, error and cost function decrease. The rank

stops at 27 when ε2 reaches 10−8. Therefore, different values of ε2 can be chosen depending on the

accuracy/time/space tradeoffs required in specific applications.

Figure 4.2: ε2 versus rank approximation Figure 4.3: ε2 versus relative error

4.4.4 Test of Different Values of the Bound k

Most of the current methods for weighted low-rank approximation are highly dependent on the

value of k. In the following, the performance of MROM, DMM as implemented in Algorithm 3,

SULS and APM for different values of k.

In [MMH03], one of the advantages of DMM over APM is for low-rank approximation with singu-

lar values closely spaced. The first test in this section considers matrices of this type. The data ma-

trixR is chosen as a random 10×10 matrix with chosen singular values {1, 1, 1, 1, 1, 0.99, 0.99, 0.99, 0.99, 0.99}.
The weighting matrix is chosen to be an identity matrix. All algorithms are required to find the

best approximation of R with rank r ≤ k = 5.

The average results of 100 runs with different initial points are reported in Table 4.7. MROM

and DMM have similar times and significant time advantages compared with SULS and APM. So

MROM is competitive with DMM for such problems.
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Table 4.6: Best rank approximation of modified Riemannian optimization method with RTR for
different ε1 and ε2. ε3 = 10−3,∆ = 10−8. The number in the parenthesis indicates the ratio of the
rank increases to 27 are 85 out of 100. The subscript ±k indicates a scale of 10±k.

ε2 ε1 rank R err err SVerr f time

10 0.5 1 5.000−01 5.774−01 1.950−07 3.333−01 8.454−02

1 1 5.000−01 5.774−01 1.950−07 3.333−01 8.436−02√
3 1 5.000−01 5.774−01 1.950−07 3.333−01 8.558−01

1 0.5 4 6.250−02 7.217−02 2.295−14 5.208−03 1.339−01

1 3 1.250−01 1.443−01 5.633−14 2.083−02 1.160−01√
3 2 2.500−01 2.887−01 7.434−13 8.333−01 1.063−01

10−1 0.5 7 7.813−03 9.021−03 2.645−15 8.138−05 1.737−01

1 5 3.125−02 3.608−02 2.486−15 1.302−03 1.522−01√
3 5 3.125−02 3.608−02 2.488−15 1.302−03 1.768−01

10−2 0.5 10 9.766−04 1.128−03 2.724−15 1.272−06 2.240−01

1 9 1.953−03 2.255−03 2.614−15 5.086−06 2.218−01√
3 8 3.906−03 4.511−03 2.618−15 2.035−05 2.539−01

10−3 0.5 13 1.221−04 1.410−04 2.748−15 1.987−08 2.649−01

1 13 1.221−04 1.410−04 3.228−15 1.987−08 2.979−01√
3 12 2.441−04 2.819−04 3.485−15 7.947−08 3.690−01

10−4 0.5 16 1.526−05 1.762−05 3.196−15 3.104−10 3.102−01

1 15 3.052−05 3.524−05 3.201−15 1.242−09 3.348−01√
3 15 3.052−05 3.524−05 4.600−15 1.242−09 4.525−01

10−5 0.5 19 1.907−06 2.202−06 3.673−15 4.851−12 4.209−01

1 19 1.907−06 2.202−06 4.555−15 4.851−12 4.762−01√
3 18 3.815−06 4.405−06 6.433−15 1.940−11 6.068−01

10−6 0.5 22 2.384−07 2.753−07 4.506−15 7.579−14 5.238−01

1 23 1.192−07 1.377−07 5.795−15 1.895−14 6.140−01√
3 22 2.384−07 2.753−07 8.977−15 7.579−14 7.868−01

10−7 0.5 25 2.980−08 3.441−08 4.916−15 1.184−15 6.390−01

1 25 2.980−08 3.441−08 6.253−15 1.184−15 7.216−01√
3 25 2.980−08 3.441−08 1.126−14 1.184−15 9.448−01

10−8 0.5 28 3.725−09 4.302−09 5.814−15 1.850−17 7.630−01

1 27 7.451−09 8.603−09 7.246−15 7.401−17 7.707−01√
3 26.85(85/100) 8.568−09 9.894−09 1.207−14 1.073−16 1.021+00

10−9 0.5 28 3.725−09 4.302−09 5.814−15 1.850−17 7.589−01

1 27 7.451−09 8.603−09 7.246−15 7.401−17 7.673−01√
3 26.85(85/100) 8.568−09 9.894−09 1.207−14 1.073−16 1.019+00

0 0.5 28 3.725−09 4.302−09 5.814−15 1.850−17 7.630−01

1 27 7.451−09 8.603−09 7.246−15 7.401−17 7.707−01√
3 26.85(85/100) 8.568−09 9.894−09 1.207−14 1.073−16 1.021+00
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Table 4.7: Rank 5 approximation of a closely spaced data matrix. The subscript ±k indicates a
scale of 10±k.

method f R err err t

MROM 4.901+00 7.035−01 2.214+00 6.285−02

DMM 4.901+00 7.035−01 2.214+00 6.029−02

SULS 4.901+00 7.035−01 2.214+00 5.739−01

APM 4.901+00 7.035−01 2.214+00 8.405−01

The next experiment considers 80 × 10 data matrices with rank 5. The weighting matrices

W = UΣUT , where U ∈ Rmn×mn is a random orthogonal matrix generated by Matlab’s QR

and RANDN. The mn singular values of the weighting matrix is generated by Matlab function

LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform distribution

matrix on the interval [0.5, 1.5]. Three values of k are considered for each method, one is less than

true rank, one equals the true rank and the other is greater than true rank.

Results shown in Table 4.8 are the average of 100 runs for different data matrices R, weighting

matrices W and initial points. The data show that when k is chosen less than the true rank, all

methods reach almost the same relative error and absolute error, but the time required by MROM

is less than the other three. As the value of k increases, MROM shows significant advantages.

It achieves good accuracy in the approximation with less computational time. Furthermore, for

MROM, as it is iterated based on the three factors U,D, V , the singular values are immediately

available while, for the other three methods, an additional SVD is required.

For k = 7, the numerical rank of singular values greater than 10−8 indicates MROM can obtain

the true rank more reliably than the other three methods. Therefore, MROM is more robust finding

the true rank with respect to the bound k.

4.4.5 Test of Different Weighting Matrices

Thus far all experiments have considered the weighted low-rank approximation with a full

weighting matrix W . In practice, as m and n grow, the complexity of the matrix W must reduce.

Two special cases: element-wise weighting, i.e., W is a diagonal, and column-wise weighting, i.e.,

W is block diagonal with blocks of dimension m×m, are considered.

DMM as implemented in Algorithm 3 does not scale well computationally as m and n grow

while k stays relatively small due to the fact that it works in a space of dimension min(m−k, n−k).
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Table 4.8: Approximation of 80-by-10 rank 5 matrices of different k. The number in the parenthesis
indicates the ratio of the final rank equals the true rank. The subscript ±k indicates a scale of
10±k.

k method rank f R err err t

k = 3 MROM 3 8.846+01 3.513−01 3.257+01 4.823−01

DMM 3 8.846+01 3.513−01 3.257+01 4.706+00

SULS 3 8.846+01 3.513−01 3.257+01 2.190+00

APM 3 8.846+01 3.513−01 3.257+01 5.000+00

k = 5 MROM 5 2.191−19 1.557−11 2.304−09 6.890−01

DMM 5 1.606−15 1.324−09 1.754−07 4.351+00

SULS 5 2.147−12 4.874−08 9.914−06 1.045+00

APM 5 7.611−09 2.895−06 4.308−04 3.585+00

k = 7 MROM 5 1.799−21 1.346−12 1.913−10 4.730−01

DMM 5 1.915−18 4.407−11 7.880−09 2.182+00

SULS 7(0/100) 1.401−12 3.780−08 1.029−05 2.316+00

APM 7(0/100) 2.349−10 4.865−07 9.074−05 7.002+00

This is independent of the structure of W . Therefore, DMM is not included in the discussion of

these experiments. The algorithm EM-TLS is added to the discussion since it specifically targets

block diagonal W .

4.4.5.1 Diagonal Weighting Matrix. The data matrices R are random 80×80 matrices

with rank r = 3, 4, 5. The weighting matrices W are random diagonal matrices with singular values

drawn from a normal distribution having a mean 0 and variance 1. The bound k is set to r.

Table 4.9 shows the average results of 50 runs with different data matrices R, weighting matrices

W and initial points. The results demonstrate MROM and SULS have significant computational

advantages over APM. Furthermore, within almost the same computational time, MROM produces

a more accurate approximation than SULS.

Next, the experiments are repeated for data matrices with exponentially decaying singular

values. The data matrix R is a random m×n matrix with rank 10. The chosen singular values are

{1, 4−1, 4−2, · · · , 4−9}. The weighting matrix W is a diagonal matrix with singular values drawn

from a normal distribution having a mean 0 and variance 1. Table 4.10 shows the average results

with 100 initial points realizations.

The SULS method is clearly not robust. It cannot reach the stopping criterion for some initial

points (the number in the bracket shows the successful runs out of 100). The reported results are
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Table 4.9: Approximation of random data matrix with diagonal weighting matrix. The subscript
±k indicates a scale of 10±k.

r method f R err err t

3 MROM 4.800−15 5.410−10 3.842−08 1.196−01

SULS 1.580−13 7.967−09 5.817−07 1.302−01

APM 1.954−09 7.640−07 5.619−05 1.935+00

4 MROM 2.334−20 1.992−12 1.912−10 1.335−01

SULS 3.141−13 8.512−09 8.743−07 1.425−01

APM 6.136−09 1.059−06 1.033−04 3.088+00

5 MROM 1.924−15 2.814−10 3.475−08 1.499−01

SULS 5.862−13 9.639−09 1.287−06 1.516−01

APM 2.545−09 4.499−07 5.579−05 4.722+00

the average of the successful runs. MROM achieves an accurate approximation in less time than

the ALS or SULS, especially for large matrices.

4.4.5.2 Block Diagonal Weighting Matrix. The method EW-TLS is specifically de-

signed to efficiently solve the matrix approximation problem with a block diagonal weighting matrix

W = diag{W1, · · · ,Wn}. A key part of the success of EW-TLS is the generation of a particular

initial condition for the iteration to optimize the transformed cost function. In this section, MROM

is compared with EW-TLS and the two general methods SULS and APM.

In the experiments, each Wi = UiΣiU
T
i is a positive definite symmetric matrix, where Ui ∈

R10×10 is random orthogonal matrices generated with Matlab’s ORTH and RAND, each Σi is a

diagonal matrix with singular values generated with Matlab’s function LOGSPACE with condition

number 100 and multiplying, element-wise, by a uniform distribution vector on the interval [0.5, 1.5].

The data matrix R is a random generated 10×80 matrix with rank 4. The four methods are tested

for the values of the upper bound k = 3, 4, 5 which are respectively less than, equal to and greater

than the true rank. For the EW-TLS approach, the Matlab library function FMINUNC is used

to find the local minima. The termination criterion for FMINUNC requires that the norm of

final gradient over the norm of initial gradient less than 10−7. For each k and each method, the

experiment is repeated 100 times for different initial matrices generated randomly by Matlab’s

RAND and ORTH. Additionally, each method is run using the custom initial matrix generated by

the GTLS approximation [VV89].
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Table 4.10: Approximation of data matrix with exponential decay singular values and the weighting
matrix is diagonal. ε1 = 1, ε2 = 10−6. The number in the parenthesis indicates the successful runs
out of 100. The subscript ±k indicates a scale of 10±k.

m n method f R err err t

20 20 MROM 9.935−30 4.370−15 4.343−15 7.628−01

SULS 8.038−16 3.760−08 1.104−07 9.062−01

APM 1.596−16 1.568−08 4.503−08 3.038−01

30 20 MROM 3.094−29 7.588−15 7.985−15 6.706−01

SULS 6.909−16 3.419−08 8.873−08 1.013+00

APM 5.785−17 8.731−09 2.092−08 6.772−01

30 30 MROM 5.335−30 2.526−15 2.624−15 6.993−01

SULS 4.804−16 2.937−08 6.683−08 9.606−01

APM 5.365−17 8.916−09 1.850−08 1.209+00

40 30 MROM 1.591−30 1.325−15 1.320−15 6.320−01

SULS 5.734−16 3.291−08 7.527−08 8.192−01

APM 1.314−17 4.426−09 8.535−09 1.950+00

40 40 MROM 4.942−30 1.801−15 1.916−15 8.053−01

SULS (70/100) 3.537−16 2.492−08 4.948−08 1.147+00

APM 1.430−17 4.292−09 7.519−09 2.867+00

50 40 MROM 3.388−30 1.890−15 1.946−15 7.021−01

SULS (93/100) 3.331−16 2.420−08 4.460−08 1.892+00

APM 7.233−18 3.086−09 4.939−09 4.041+00

50 50 MROM 1.455−29 3.578−15 3.699−15 8.044−01

SULS (96/100) 2.453−16 2.063−08 3.562−08 1.836+00

APM 1.260−17 4.131−09 6.318−09 6.159+00

60 50 MROM 3.598−29 8.077−15 8.333−15 7.137−01

SULS (78/100) 7.917−14 6.493−08 2.738−07 1.852+00

APM 4.058−18 2.299−09 3.473−09 8.019+00

60 60 MROM 3.117−30 2.043−15 2.121−15 7.504−01

SULS (93/100) 2.059−13 1.298−07 5.608−07 1.653+00

APM 5.193−18 2.431−09 3.584−09 1.087+01
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Table 4.11: MROM, SULS, EW-TLS and APM for block diagonal weighting matrix W with good
initial points and without noise. The subscript ±k indicates a scale of 10±k.

method k f R err err time(s)

MROM 3 2.931−01 8.545−02 2.534+00 1.263−01

4 3.563−29 9.422−16 2.027−14 1.058−02

5 7.026−29 1.323−15 2.556−14 9.779−03

SULS 3 2.931−01 8.545−02 2.534+00 8.573−01

4 3.563−29 9.422−16 2.027−14 2.529−02

5 4.275−29 1.032−15 2.846−14 2.477−02

EW-TLS 3 2.931−01 8.545−02 2.534+00 8.392−01

4 3.743−26 3.054−14 1.323−12 3.195−02

5 1.366−22 1.845−12 1.049−10 3.172−02

APM 3 2.931−01 8.545−02 2.534+00 6.610−01

4 4.355−29 1.042−15 2.292−14 5.582−02

5 6.274−29 1.250−15 2.688−14 7.522−02

The average results are presented in Table 4.11 and Table 4.12. From the tables, it is clear that

the EW-TLS approach is sensitive to the initial matrix and not only benefits from the use of the

GTLS-based initial matrix but often diverges when the GTLS-based initial matrix is not used. Even

for the EW-TLS successful runs, for any k, MROM produces as good or better approximations using

approximately the same or less computational time and is therefore more robust and as efficient as

EW-TLS. Furthermore, since EW-TLS solves the original problem based on the local optimization

on a rank-k manifold, it is highly dependent on the upper bound k. If we want to use the algorithm

to find the true rank, we need to test different k, which is computationally costly. As with MROM,

SULS and APM are not designed specifically for this problem and the consistently produce less

accurate approximations and require more computational time than MROM. Clearly, of the four

methods MROM using the GTLS-based initial condition is the preferred method.

In practice, a desirable additional property is robustness in the presence of noisy data. The

next set of experiments tests the performance of the MROM and EW-TLS in this situation. The

data matrices all have 10 rows, with the number of columns n varying from 20 to 200 in increments

of 10. Each data matrix R is generated by adding a noise matrix to a rank-4 matrix, i.e., a

10 × n matrix of uniform distributed random numbers with mean 0 and variance 0.0001 is added

to the noise-free data matrix R0 to construct a full rank noisy matrix. The weighting matrix

W = diag{W1, · · · ,Wn}. Each Wi = UiΣiU
T
i , where Ui ∈ R10×10 is a random orthogonal matrix
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Table 4.12: MROM, SULS, EW-TLS and APM for block diagonal weighting matrix W with random
initial points and without noise. The ratio in the parenthesis indicates the percentage of successful
runs. The subscript ±k indicates a scale of 10±k.

method k f R err err time(s)

MROM 3 2.931−01 8.545−02 2.534+00 1.972−01

4 4.464−21 1.055−11 4.475−10 2.274−01

5 4.464−21 1.055−11 4.476−10 2.266−01

SULS 3 2.931−01 8.545−02 2.534+00 7.828−01

4 2.002−14 1.569−08 1.037−06 1.055+00

5 1.233−13 5.516−08 4.775−06 1.495+00

EW-TLS 3 2.931−01 8.545−02 2.534+00 7.299−01(84/100)
4 6.209−12 2.043−07 5.586−06 1.181+00(48/100)
5 4.899−05 2.430−04 7.168−03 1.577+00(47/100)

APM 3 2.931−01 8.545−02 2.534+00 6.208−01

4 5.295−08 2.979−05 9.242−04 6.641−01

5 5.402−08 3.101−05 1.021−03 9.447−01

generated by Matlab’s QR and RAND. The 10 singular values of Wi are generated by Matlab

function LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform

distribution matrix on the interval [0.5, 1.5]. The upper bound on the rank is k = 4. The relative

error ‖R0−X∗‖W
‖R0‖W and absolute error ‖R0 − X∗‖F are presented in Table 4.13. The data are the

average execution times over 100 runs for different noise realizations.

The data show MROM to be more robust with respect to the choice of initial approximation.

The EW-TLS data all use the good GTLS-based initial approximation matrix with true rank (i.e.

rank-4) but a significant number of the runs do not satisfy the stopping criterion while MROM con-

verges for all problems for any initial approximation (i.e. rank-1,2,3,4). The errors are comparable

for MROM with different rank initial approximations and EW-TLS when it converges. In general,

MROM with the true rank good initial condition results in the best error and computational time

combination. Given that the computational complexity of producing the GTLS-based good ini-

tial condition is not significant, MROM using it is the robust and efficient method of choice. Its

advantage in efficiency is seen, in particular, for the data sets of size 10× n with 10 << n.
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Table 4.13: GTLS-based initial points. The ratio in the parenthesis indicates the percentage of
successful runs. The subscript ±k indicates a scale of 10±k.

MROM with different rank initial
m n R err err rank-1 rank-2 rank-3 rank-4 EW-TLS

10 20 6.037−05 8.416−04 1.834−01 1.648−01 1.116−01 8.821−02 4.193−01(95/100)
10 30 6.115−05 1.020−03 1.930−01 1.466−01 1.564−01 9.448−02 5.697−01(96/100)
10 40 6.199−05 1.209−03 1.809−01 1.808−01 1.865−01 1.023−01 7.270−01(97/100)
10 50 6.043−05 1.324−03 2.059−01 1.798−01 1.491−01 1.101−01 9.351−01(96/100)
10 60 5.985−05 1.456−03 1.673−01 1.398−01 1.416−01 1.206−01 1.058+00(98/100)
10 70 5.842−05 1.577−03 2.411−01 1.615−01 2.162−01 1.352−01 1.220+00(98/100)
10 80 6.007−05 1.685−03 2.077−01 2.055−01 1.726−01 1.469−01 1.416+00(98/100)
10 90 5.943−05 1.801−03 2.620−01 2.505−01 2.703−01 1.594−01 1.508+00(94/100)
10 100 5.919−05 1.900−03 1.857−01 2.470−01 2.017−01 1.513−01 1.597+00(97/100)
10 110 5.830−05 1.975−03 2.072−01 2.783−01 2.565−01 1.726−01 1.860+00(96/100)
10 120 5.900−05 2.066−03 2.271−01 2.283−01 2.089−01 1.562−01 1.910+00(96/100)
10 130 5.855−05 2.176−03 2.817−01 2.403−01 2.418−01 1.780−01 2.156+00(97/100)
10 140 6.021−05 2.227−03 2.463−01 2.735−01 2.382−01 1.814−01 2.276+00(95/100)
10 150 6.022−05 2.343−03 2.672−01 2.677−01 2.752−01 2.008−01 2.391+00(94/100)
10 160 6.075−05 2.389−03 3.120−01 2.781−01 2.726−01 2.051−01 2.518+00(92/100)
10 170 6.072−05 2.462−03 3.166−01 2.957−01 3.622−01 2.200−01 2.660+00(97/100)
10 180 6.026−05 2.545−03 2.723−01 2.760−01 3.737−01 2.125−01 2.763+00(98/100)
10 190 6.090−05 2.611−03 3.330−01 2.855−01 2.966−01 2.320−01 3.050+00(96/100)
10 200 6.021−05 2.680−03 4.200−01 3.093−01 3.869−01 2.489−01 3.056+00(95/100)

4.4.6 Choice of Retraction and Performance

Four types of retractions on fixed-rank manifolds have been proposed for consideration along

with the rank-related retractions: SVD-type retraction (4.15), (4.38), polar-decomposition-type

(PD-type) retraction (4.16), (4.33) and QR-type retraction I (4.17), (4.39) and QR-type retraction

II (4.18), (4.41). As noted earlier, the last two types are not invariant to factors in the decomposition

X = UDV T . They are included in the experiments to produce initial evidence as to whether or not

this lack of invariance is important to the effectiveness of the algorithm. Each data matrix R is a

random m×n matrix with rank 4. Each weighting matrix is W = UΣUT , where U ∈ Rmn×mn is a

random orthogonal matrix generated by Matlab’s QR and RAND. The mn singular values of each

weighting matrix are generated by Matlab function LOGSPACE with condition number 100 and

multiplying, element-wise, by a uniform distribution matrix on the interval [0.5, 1.5]. The upper

bound on rank, k, is 4.
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Table 4.14: Rank-4 approximation by different retractions. The subscript ±k indicates a scale of
10±k.

m n Retraction f R err err time(s) gfr gfr/gfF 0 nf ng nH nR nRr
6 6 SVD-type 8.213−17 2.754−10 2.475−08 1.910−01 2.525−09 1.619−09 28.080 28.080 222.220 21.320 1.820

PD-type 1.042−17 5.921−11 5.032−09 2.028−01 1.259−09 8.556−10 38.300 38.300 245.300 31.640 1.820
QR-type I 6.819−18 2.405−16 2.830−09 2.159−01 9.323−10 4.885−10 38.540 38.540 246.440 31.780 1.820
QR-type II 1.922−17 9.902−12 8.258−09 2.288−01 1.490−09 9.129−10 39.520 39.520 254.160 32.780 1.820

6 12 SVD-type 3.683−17 6.988−12 1.423−08 2.028−01 2.090−09 8.494−10 23.180 23.180 204.860 17.940 1.200
PD-type 2.619−17 7.210−13 7.045−09 2.113−01 1.847−09 6.716−10 31.260 31.260 216.760 26.000 1.200

QR-type I 2.669−17 8.605−14 7.946−09 2.224−01 2.152−09 8.224−10 31.500 31.500 216.340 26.280 1.200
QR-type II 3.820−17 9.028−11 1.288−08 2.312−01 3.116−09 1.311−09 32.120 32.120 215.200 26.920 1.180

12 12 SVD-type 1.513−16 5.755−11 2.201−08 1.813−01 3.802−09 1.038−09 20.400 20.400 155.120 15.800 1.000
PD-type 5.152−17 8.057−12 9.493−09 1.963−01 2.717−09 7.942−10 26.560 26.560 167.780 22.040 1.000

QR-type I 8.736−17 2.227−10 1.507−08 1.925−01 3.540−09 1.007−09 26.760 26.760 166.260 22.320 1.000
QR-type II 2.782−17 3.152−14 6.318−09 2.043−01 2.038−09 6.281−10 28.400 28.400 173.980 23.740 1.000

12 24 SVD-type 9.087−17 4.276−15 1.337−08 1.682−01 2.615−09 5.577−10 19.540 19.540 134.140 15.120 1.000
PD-type 1.348−16 1.728−11 1.721−08 1.838−01 4.547−09 9.539−10 23.960 23.960 148.300 19.540 1.000

QR-type I 1.147−16 1.476−11 1.332−08 1.923−01 3.788−09 7.290−10 24.000 24.000 147.700 19.580 1.000
QR-type II 1.306−16 4.983−11 1.973−08 1.966−01 6.156−09 1.255−09 25.660 25.660 149.280 21.300 1.000

24 24 SVD-type 2.222−16 1.233−16 1.557−08 2.466−01 2.770−09 4.169−10 19.560 19.560 116.980 14.860 1.000
PD-type 7.721−16 2.799−10 4.576−08 2.458−01 1.209−08 1.664−09 22.460 22.460 119.920 18.060 1.000

QR-type I 6.310−16 1.726−10 3.880−08 2.632−01 1.026−08 1.338−09 22.860 22.860 121.780 18.420 1.000
QR-type II 2.465−16 1.470−16 1.614−08 2.810−01 5.159−09 7.350−10 25.080 25.080 128.660 20.680 1.000

24 48 SVD-type 2.672−16 5.506−11 1.449−08 4.603−01 3.851−09 3.942−10 19.440 19.440 99.140 15.320 1.000
PD-type 4.100−16 1.587−10 2.167−08 4.688−01 5.993−09 5.854−10 21.940 21.940 102.600 17.940 1.000

QR-type I 3.788−16 1.453−10 2.081−08 4.812−01 5.701−09 5.576−10 21.960 21.960 102.900 17.960 1.000
QR-type II 4.076−16 1.314−16 2.713−08 4.948−01 8.174−09 8.187−10 22.120 22.120 105.400 17.920 1.000

48 48 SVD-type 6.711−19 4.341−12 9.230−10 1.175+00 2.740−10 1.974−11 20.220 20.220 88.280 16.200 1.000
PD-type 2.278−15 2.510−10 8.800−08 1.129+00 2.675−08 1.871−09 21.620 21.620 83.080 17.580 1.000

QR-type I 2.735−15 2.511−10 9.634−08 1.147+00 2.926−08 2.034−09 22.120 22.120 84.000 18.100 1.000
QR-type II 3.216−15 2.245−10 1.007−07 1.177+00 3.204−08 2.232−09 22.100 22.100 86.360 18.000 1.000

48 96 SVD-type 2.686−16 1.203−12 2.019−08 3.709+00 6.660−09 3.337−10 20.860 20.860 79.180 16.860 1.000
PD-type 5.878−15 1.070−16 1.094−07 4.202+00 3.343−08 1.626−09 23.560 23.560 89.520 19.140 1.000

QR-type I 6.809−15 1.055−16 1.182−07 4.168+00 3.628−08 1.764−09 23.560 23.560 89.500 19.140 1.000
QR-type II 7.385−15 6.091−15 1.219−07 4.204+00 4.022−08 1.963−09 23.800 23.800 89.800 19.480 1.000

96 96 SVD-type 3.367−15 5.028−10 3.720−08 1.485+01 1.358−08 4.568−10 22.130 22.130 81.522 17.870 1.000
PD-type 5.468−18 3.240−13 2.606−09 1.509+01 9.273−10 3.246−11 23.826 23.826 81.565 19.826 1.000

QR-type I 5.740−18 3.189−13 2.647−09 1.509+01 9.430−10 3.299−11 23.826 23.826 81.565 19.826 1.000
QR-type II 3.281−16 1.318−10 1.793−08 1.537+01 6.435−09 2.218−10 24.478 24.478 82.652 20.478 1.000

Table 4.14 shows the average results of 100 runs for each retraction with different data and

weighting matrix realizations. All find an approximation with rank the same as the true rank of 4.

The final cost function value, relative error and error are all very small. Note that the two QR-type

retractions without guaranteed invariance also work well in terms of quality of approximation and

computational time.

4.4.7 Performances of Different Rank Reduction Methods

The usual way to reduce the rank is to compute the SVD decomposition of a matrix, set the

smallest singular values to zero. This method has been widely used when considering the low-rank
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approximation. However, when the sizes of the matrices get large, the computation of the SVD is

impractical. We employ the three-factor representation, which avoids the computation. Therefore,

the rank reduction can be realized through the truncation of the smallest singular values. However,

if we start from a rank-1 matrix, in the process of estimation, the rank might be increased first,

then reduce to the true rank. The information obtained in the rank increment can be used to make

the rank reduction more efficient as proposed in Algorithm 2.

Table 4.15 shows the average results of rank reduction by truncation compared with the way

using the rank increment information. The data matrices R are random m × n matrices with

rank 5. The weighting matrices W are block diagonal matrices. Each block is a positive definite

symmetric matrix. The upper bound k is set to be m and the initial starting point is a random

generated rank-1matrix. From the table, it is clear that using the rank increment information for

rank reduction is more efficient than the simple truncation, especially when the sizes get larger.

Table 4.15: Rank-5 approximation by different rank reduction methods. The subscript ±k indicates
a scale of 10±k.

m n Rank Reduce Method R err err f time(s) gfr gfr/gfF 0

10 10 Truncation-type 2.213−15 1.163−07 2.528−15 2.741−01 1.710−08 8.850−10

New-type 7.833−13 1.104−07 1.673−15 2.712−01 1.606−08 8.783−10

20 20 Truncation-type 8.864−12 3.625−07 1.552−14 3.139−01 4.286−08 1.297−09

New-type 6.125−12 3.044−07 1.133−14 3.044−01 3.656−08 1.068−09

30 30 Truncation-type 1.500−10 4.053−07 2.402−14 3.131−01 5.231−08 9.753−10

New-type 1.875−11 5.491−07 3.921−14 3.093−01 6.895−08 1.393−09

40 40 Truncation-type 3.025−16 5.678−07 4.850−14 7.164−01 9.158−08 1.370−09

New-type 6.121−11 4.909−07 3.428−14 5.022−01 4.136−08 6.576−10

50 50 Truncation-type 1.654−13 2.059−07 1.733−14 1.055+00 1.992−08 2.311−10

New-type 1.928−15 4.034−07 2.369−14 7.725−01 4.089−08 5.225−10

60 60 Truncation-type 1.060−11 4.717−07 3.790−14 1.746+00 4.204−08 4.204−10

New-type 4.061−17 5.622−07 4.602−14 1.070+00 7.125−08 8.000−10

4.4.8 Performances of Other General Riemannian Optimization Algorithms

As mentioned earlier, any other optimization methods can be used as the inner algorithm

in MROM. In this section, performances of six Riemannian optimization algorithms are illus-

trated. The six algorithms are Riemannian steepest descent with line search (RTR-SD), Riemannian

trust region with symmetric rank-one update (RTR-SR1), Limited-memory RTR-SR1 (LRT-SR1),
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general Riemmanian trust-region method (RTR-Newton), Riemannian Broyden-Fletcher-Goldfarb-

Shannon (RBFGS) and limited-memory RBFGS (LRBFGS).

Each data matrix R is a random m × n matrix with rank 4. Each weighting matrix is W =

UΣUT , where U ∈ Rmn×mn is a random orthogonal matrix generated by Matlab’s QR and RAND.

The mn singular values of each weighting matrix are generated by Matlab function LOGSPACE

with condition number 100 and multiplying, element-wise, by a uniform distribution matrix on the

interval [0.5, 1.5]. The upper bound on rank, k, is m.

Figure 4.4 shows the average computational time of 5 runs for each method with different data

and weighting matrix realizations. All find an approximation with rank the same as the true rank

of 4. The figure shows RTR-Newton has time advantages when the sizes of matrices, i.e. m×n, are

not too large. As the sizes increase, limited-memory RTR-SR1 and RBFGS show significant time

advantages compared with the other methods. Therefore, we can choose different inner algorithm

based on the size of the matrices and the efficiency required in specific applications.

Figure 4.4: Average computational time versus the size of matrix for each method.
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4.5 Conclusion

The modified Riemannian optimization algorithm with RTR on the weighted low-rank approx-

imation problem has been explored in this section. First, the effect of the parameters ε1 and ε2

on rank estimation for problems with the difficult exponential decay of singular values was tested.

MROM was demonstrated to be effective in computing the appropriate numerical rank approxima-

tion of the data matrix given the values of ε1 and ε2 even when the upper bound on the rank, k,

was taken to be large and therefore potentially allowing an approximation that was unnecessarily

inefficient in terms of space and computational time. For data matrices with a clear gap in their

singular values, the algorithm demonstrated a high probability of finding the true rank indepen-

dently of initial conditions. For the practical situation of a structured weighting matrix and data

with and without noise, MROM consistently outperformed, in terms of computational time and

approximation quality, the general methods SULS and APM as well as the EW-TLS method that is

specifically designed for such problems. Finally, the performance of MROM was seen to be consis-

tent across all choices of the fixed-rank and rank-related retractions independently of the invariance

of those retractions with respect to the particular factors in the decomposition of the matrix X.

This is for moderate problem sizes and RTR as the inner fixed-rank algorithm. For large problems,

limited-memory Riemannian optimization methods as the inner fixed-rank algorithm demonstrated

significant time advantages.
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CHAPTER 5

LOW-RANK APPROXIMATION ON GRAPH

SIMILARITY MATRIX

The node-to-node similarity measure introduced by Blondel et al. [BGH+04] has been used in many

practical problems. They defined the similarity matrix as a fixed point of an iterative process, and

prove that their measure is equivalent to the solution of an eigenvalue problem of a dimension that is

the product of the number of nodes in the two graphs. In this chapter, the efficient determination

of a low-rank approximation approximation of the similarity matrix is considered. Section 5.1

reviews the similarity measure of Blondel et al. Two low-rank approximations of the similarity

matrix introduced by Cason et al. [CAD13] are discussed in Section 5.2. Some observations are

made and new efficient methods of the low-rank approximations of the similarity matrix based

on the Riemannian approach to rank inequality constraints are derived in Section 5.3. In Section

5.4, Riemannian optimization methods reviewed in Chapter 2 are compared with Cason’s iteration

method for low-rank approximation with k identical singular values. Finally, comparisons between

the new rank-related algorithm and Cason’s iteration method on low-rank approximation with rank

at most k are presented in Section 5.5 and the results are summarized in Section 5.6.

5.1 The Similarity Measure of Blondel et al.

In [BGH+04], the node-to-node similarity measure considers two nodes of different graphs “sim-

ilar” if their neighboring nodes are “similar”. For example, the similarity score between node 2 of

GA in Figure 5.1 and node 4 of GB in Figure 5.2 is determined by the similarity score between

their neighbors:

s(a2, b4)← s(a1, b1) + s(a1, b3) + s(a3, b5).
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1 2 3

Figure 5.1: Graph GA with three nodes.

1

5
4

3

2

Figure 5.2: Graph GB with five nodes

In general, given two arbitrary graphs GA and GB with nA and nB vertices and edge sets EA

and EB, the similarity score between node i in GA and node j in GB is updated according to the

following equation:

Sij ←
∑

r:(r,i)∈EB ,s:(s,j)∈EA

Srs +
∑

r:(i,r)∈EB ,s:(j,s)∈EA

Srs.

This can be written in a more compact matrix form

Sk+1 ← ASkB
T +ATSkB :=M(Sk), k = 0, 1, · · · (5.1)

where A and B are the adjacency matrices of GA and GB, and Sk is the nA× nB matrix of entries

Sij at iteration k.

Note that the updating functionM(Sk) is a linear map on the matrix Sk. This can be explicitly

seen by applying the vec{·} operation to the above equation, which concatenates the columns of a

matrix into one column vector, to obtain

vec{Sk+1} ← (B ⊗A+BT ⊗AT )vec{Sk} :≡Mvec{Sk}. (5.2)

Since only the relative score of each pair of nodes is of interest, not the value of Sij , the entire

similarity matrix S is normalized using

vec{Sk+1} =
Mvec{Sk}
‖Mvec{Sk}‖2

, k = 0, 1, · · · . (5.3)

This also avoids over- or under-flow.

The matrix M := (B ⊗ A + BT ⊗ AT ) is symmetric and non-negative, and therefore the non-

negative vector vec{S} is a Perron vector of M , corresponding to the Perron root (i.e. the spectral
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radius) ρ = maxλx=Mx |λ|. Since M is symmetric, its eigenvalues are real and hence it can have

only two extremal eigenvalues: ρ and possibly −ρ. M2 is also non-negative and its extremal

eigenvalue is ρ2, which is unique but its geometric multiplicity can be larger than 1. Let Π be the

orthogonal projector onto the space of eigenvectors of M2 with eigenvalues ρ2, then Π is a non-

negative map and any vector vec{S} = Πvec{S0}, with vec{S0} non-negative, is a non-negative

solution of ρ2vec{S} = M2vec{S}.
It was shown in [BGH+04] that the even iterates of the following recurrence

vec{S0} = 1mn, vec{Sk+1} =
Mvec{Sk}
‖Mvec{Sk}‖2

, k = 0, 1, · · · , (5.4)

converge to the unique non-negative vector with the largest possible 1-norm (the sum of the mag-

nitudes of all entries), where 1mn denotes a vector whose entries are all equal to 1. Therefore, the

definition of the similarity matrix S is the non-negative solution corresponding to S0 = 1m,n of the

following system:

ρ2S =M2(S) =M(M(S)), M(S) := BSAT +BTSA. (5.5)

Two additional properties of the matrix to which iteration (5.4) converges are also presented in

[BGH+04]:

• The self-similarity matrix of a path graph (a undirected tree with two leaves and internal

nodes all with a node degree of 2) is a diagonal matrix.

• When either of the graphs GA or GB is regular (a graph is regular if the in-degrees of all

vertices are equal and the out-degrees of all vertices are equal) or has a normal adjacency

matrix (a matrix A is normal if it satisfies AAT = ATA), then the similarity matrix S has

rank 1.

The cyclic definition very naturally leads to iterative updates, in which similarity scores between

elements propagate along edges to neighboring elements on each iteration.

Algorithm 5 Blondel’s Algorithm

Require: Graph GA and GB respectively of order m and n

1: S0 ← 1/‖1‖F ∈ Rm×n
2: for t = 1, 2, · · · , tmax do

3: St ← ASt−1BT+ATSt−1B
‖ASt−1BT+ATSt−1B‖F

4: end for

5: S← St

6: where tmax is an even number that is ”sufficiently large”.
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The application of this similarity scoring method to the graphs in Figures 5.3 and 5.4 results

in the similarity score shown in Table 5.1.

1 2 3

Figure 5.3: Graph GA with three nodes.

1

2 3

4 5

Figure 5.4: Graph GB with five nodes.

Table 5.1: Similarity Scores between GA and GB.

Nodes 1 2 3

1 0.443 0.104 0
2 0.280 0.396 0.086
3 0.086 0.396 0.280
4 0.222 0.049 0.222
5 0 0.104 0.443

5.2 Low-rank Approximation of Similarity Matrix by Cason et
al.

As the size of the graphs increases, Algorithm 5 becomes computationally expensive. To save

storage space and computation time, a low-rank matrix is considered to approximate the similarity

matrix. The low-rank approximation is known to be reasonable for some cases. For example, we

know the similarity matrix defined in [BGH+04] can have low-rank structure, see details in Section

5.1. Furthermore, in the expriments, low-rank structure is also observed when considering the

similarity between a noisy graph and a given graph, i.e., the similarity between a graph G and

G + ∆G, where ∆G represents “noise” in edge weights (which includes adding edges by changing

weights with value 0) added to the graph G. It is still an open question as to whether or not

a low-rank approximation of a similarity matrix that does not have exact or numerical low-rank

contains any useful information.
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In [CAD13], Cason et al. proposed two low-rank iterative schemes that converge to two ap-

proximations of the Blondel et al. similarity matrix with respectively either k nonzero identical

singular values or at most k nonzero (not necessarily identical) singular values. In this section,

these methods are reviewed.

Cason et al. first show that the similarity matrix defined by Blondel et al. is the solution of an

optimization problem. The iteration in Algorithm 5 is such that

St ∈ argmax
‖S‖F=1

〈S,M(St−1)〉F = tr(STM(St−1)). (5.6)

Moreover, they prove that S2∞ is a solution of

max
S∈S(m,n)

Φ(S), Φ(S) := 〈S,M2(S)〉F = tr(STM2(S)), (5.7)

where M2(S) =M(M(S)) and [M(S)]ij = [ASBT + ATSB]ij , S(m,n) := Norm(1,m, n) = {S ∈
Rm×n : ‖S‖F = 1}. This problem maximizes a continous function Φ on a compact domain S(m,n).

Hence, according to the first order optimality condition, if S2∞ is a maximizer, then S2∞ is a

stationary point of the iteration. They then proposed the following two low-rank approximations

and gave two iterative algorithms.

Approximation with k Identical Singular Values:. In this case, they replace the set

S(m,n) by Sk(m,n), which is the set of rank-k matrices with Frobenius norm 1 with k identical

singular values, i.e.

Sk(m,n) =

UÎkV
T ∈ Rm×n : U ∈ St(m, k), V ∈ St(n, k),

Îk = Ik/‖Ik‖F = Ik/
√
k

 . (5.8)

where St(m, k) is Stiefel manifold which denotes the set of all m× k orthonormal matrices, i.e.

St(m, k) := {X ∈ Rm×k : XTX = Ik}, (5.9)

and Ik denotes the k×k identity matrix. They propose an iteration algorithm, Algorithm 6, to find

an approximation of the similarity matrix defined by Blondel et al. and prove that it converges to

a stationary point of maximization problem (5.7) .
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Algorithm 6 Cason’s Algorithm 1

Require: Graph GA and GB respectively of order m and n

1: S0 ← 1/‖1‖F ∈ Rm×n
2: for t = 1, 2, · · · , tmax do

3: Compute St ∈ Sk(m,n) according to

4: St(= U tÎk[V
t]T )← f(St−1) := argmaxS̃∈Sk(m,n)〈S̃,M2(St−1)〉F

5: end for

6: S← St

7: where M2(S) =M(M(S)) and [M(S)]ij = [ASBT +ATSB]ij

Approximation of rank at most k:. The second method they propose is replacing the set

S(m,n) by S≤k(m,n), the set of matrices of norm 1 with rank at most k, i.e.

S≤k(m,n) =

UDV T ∈ Rm×n : U ∈ St(m, k), V ∈ St(n, k),

D is a diagonal matrix, ‖D‖F = 1

 . (5.10)

They give another iteration algorithm, Algorithm 7, to find an approximation of the similarity

matrix defined by Blondel et al. and they prove that it also converges to a stationary point of the

maximization problem (5.7).

Algorithm 7 Cason’s Algorithm 2

Require: Graph GA and GB respectively of order m and n

1: S0 ← 1/‖1‖F ∈ Rm×n
2: for t = 1, 2, · · · , tmax do

3: Compute St ∈ S≤k(m,n) according to

4: St(= U tDt[V t]T )← f(St−1) := argmaxS̃∈S≤k(m,n)〈S̃,M2(St−1)〉F
5: end for

6: S← St

7: where M2(S) =M(M(S)) and [M(S)]ij = [ASBT +ATSB]ij

Note that at every iteration Algorithm 7, is exactly the same as Algorithm 5, except taking only

the first k dominant singular values, assuming k < min(m,n). The case when they are equivalent

is easy to characterize.

Proposition 29. If k = min(m,n), then Algorithm 7 is equivalent to Algorithm 5.

98



Proof. Let M2(S) have an ordered singular value decomposition

M2(S) = PΣQT =
[
P1 P2

] [Σ1 0
0 Σ2

] [
QT1
QT2

]
, (5.11)

with P1 ∈ Rm×k, P2 ∈ Rm×(m−k), Q1 ∈ Rn×k, Q2 ∈ Rn×(n−k),Σ1 ∈ Rk×k and Σ2 ∈ R(m−k)×(n−k).

Then the next iteration is determined by

St(= U tDt[V t]T )← Φ(St−1) := argmax
S̃∈S≤k(m,n)

〈S̃,M2(St−1)〉F (5.12)

and

〈S̃,M2(S)〉F = tr(S̃TM2(S)) = tr(V DUTM2(S)) = tr(DUTM2(S)V )

≤
k∑
i=1

σi(DU
TM2(S)V ) ≤

k∑
i=1

σi(D)σ(UTM2(S)V ) ≤
k∑
i=1

σi(D)σi(Σ1)

≤ tr(Σ̂1Σ1)

(5.13)

where Σ̂1 := Σ1
‖Σ1‖F . Thus,

St =
1

‖Σ1‖F
P1Σ1Q

T
1 . (5.14)

If k = min(m,n), without loss of generality, let us assume m < n, then P1 = P,Σ1 = Σ and

Q1 = Q,

St =
1

‖Σ‖F
PΣQT =

PΣQT

‖PΣQT ‖F
=
M2(S)

‖M2(S)‖F
. (5.15)

which is the same as the iteration in Blondel’s Algorithm 5 (take even iteration).

5.3 Some Observations and Proposed Methods

Algorithm 5 is, in fact, a power method, so the rate of convergence depends on the ratio |λ2|/|λ1|
the largest two eigenvalues of M2 with |λ1| > |λ2|. Algorithm 7 is equivalent to Blondel’s Algorithm

5 when k = min(m,n). For low-rank approximation, Algorithm 7 exhibits linear convergence as

well, although this is not proven in [CAD13]. To avoid this deficiency, second-order information

about the cost function can be used to get higher rates of convergence.

The feasible sets (5.8) and (5.10) in the low-rank approximation proposed by Cason et al. have

either manifold structure or manifold-like structure. For the approximation with k identical singular

values, the set (5.8) has a manifold structure. The general optimization algorithms introduced in

Chapter 2 can be used to solve the optimization problem (5.7) on the set (5.8). For the second
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kind of approximation with at most k possibly not equal singular values, set (5.10) does not have

a manifold structure, but it can be seen as the union of several fixed-rank manifolds. Thus, the

modified Riemannian optimization methods (MROM) proposed in Chapter 3 can be applied to

solve (5.7) on the set (5.10).

For (5.7) on the set (5.10) when the geometric multiplicity of the extremal eigenvalue of M2 is

more than 1, the eigenspace associated to the extremal eigenvalue has dimension greater than 1.

MROM can only guarantee convergence to an eigenvector, not necessarily the unique one with the

largest 1-norm.

Since it is not necessarily known a priori if the geometric multiplicity is greater than 1, it is nec-

essary to develop algorithms to handle, in a seamless fashion, problems with geometric multiplicity

greater than 1 as well as those with multiplicity 1. The following three modifications to MROM

will be investigated:

1. Add a penalty term on the cost function (5.7), i.e., a new cost function

Φ2(S) := tr(STM2(S)) + λ1TS1, (5.16)

where λ is a penalty coefficient and 1 is a vector of all 1 and solve using MROM.

2. Using MROM, solve the following Augmented Lagrangian cost function

Φ3(S) = 1TS1− λ‖gradΦF (S)‖2F + µ‖gradΦF (S)‖4F , (5.17)

where λ is a Lagrange multiplier.

3. Find the optimal solution S∗ for the cost function (5.7) using MROM. Then using a second

application of MROM with S∗ as an initial condition optimize the cost function with an

additional penalty term

Φ4(S) = 1TS1− λ‖gradΦF (S)‖2F , S0 = S∗, (5.18)

where gradΦF (S) = 2M2(S)− 2tr(STM2(S))S is the full gradient of cost function (5.7).

Note that all three default to MROM for problems with geometric multiplicity 1.

A geometric multiplicity greater than 1 appears only under certain conditions and appears to

be uncommon. It follows from Perron-Frobenius Theorem that the eigenspaces associated with

the Perron-Frobenius eigenvalue is one-dimensional if the non-negative matrix M is primitive, i.e.,

(Mh)ij > 0 for some power h. For (5.7), the following proposition shows if A and B satisfy a

certain condition, there exists a pair (i, j) such that (Mh)ij = 0 for some power h.
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Theorem 30. Let Q = {q|a sequence of length h with elements that are either 1 or T} and Aq =

Πh
i=1A

qi where Aqi = A or AT . Let Mh = (B ⊗ A + BT ⊗ AT )h =
∑

q∈Q(Bq ⊗ Aq). Then the

((k − 1)nB + h, (j − 1)nA + i)-th element of Mh is equal to zero if and only if the product of the

(h, i)-th element of Aq and the (k, j)-th element of Bq is equal to zero for all a ∈ Q.

Proof. The ((k − 1)nB + h, (j − 1)nA + i)-th element of Mh can be represented by

vec(ehk)
TMhvec(eij) = vec(ehk)

T
∑
q∈Q

(Bq ⊗Aq)vec(eij), (5.19)

where ers ∈ RnA×nB represents a basis element matrix with (r, s)-th entry equal to 1, and all others

equal to 0.

Since A and B are non-negative matrices, (Bq⊗Aq) is also a non-negative matrix and therefore,

the ((k − 1)nB + h, (j − 1)nA + i)-th element of Mh is equal to zero if and only if ∀q ∈ Q,

vec(ehk)
T (Bq ⊗Aq)vec(eij) = tr

(
eThkA

qeij(B
q)T
)

= 0. (5.20)

Since eThkA
q is an nB ×nA matrix with the k-th row equal to the h-th row of Aq and all other rows

zero and, similarly, eij(B
q)T is an nA × nB matrix with the i-th row equal to the j-th column of

Bq and all other rows zero, it follows that tr
(
eThkA

qeij(B
q)T
)

= 0 if and only if the product of the

(h, i)-th element of Aq and the (k, j)-th element of Bq is 0.

5.4 Approximation with k Identical Singular Values

We first look at the feasible set (5.8) in [CAD13] with k identical singular values

Sk(m,n) =

UÎkV
T ∈ Rm×n : U ∈ St(m, k), V ∈ St(n, k),

Îk = Ik/‖Ik‖F = Ik/
√
k

 .

This set has a manifold structure [CAVD11]. In this case, the general Riemannian optimization

algorithms reviewed in Chapter 2 can be used directly to solve problem (5.7). In the following, the

crucial ingredients needed in the general Riemannian optimization algorithms to this feasible set

are introduced first. Then some experimental results are used to show the efficiency.
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5.4.1 Riemannian Gradient

The tangent space to the feasible set Sk(m,n) at a point S = UÎkV
T ∈ Sk(m,n) is

TSSk(m,n) := {γ̇(0) : γ curve on Sk(m,n) with γ(0) = S}

=

 UΩV T + UKT
V V

T
⊥ + U⊥KUV

T s.t.

Ω ∈ Sskew(k),KU ∈ R(m−k)×k,KV ∈ R(n−k)×k

 ,
(5.21)

where U⊥, V⊥ are any orthogonal complements of U, V and Sskew(k) denotes the set of skew matrices

of order k, skew(A) = A−A∗
2 .

The normal space to the feasible set Sk(m,n) at a point S = UÎkV
T ∈ Sk(m,n) is

NSSk(m,n) := {ζ : 〈ζ, ξ〉F = 0, ∀ξ ∈ TSSk(m,n)}

=
{
UHV T + U⊥KV

T
⊥ s.t. H ∈ Ssym(k),K ∈ R(m−k)×(n−k)

}
,

(5.22)

with Ssym(k) denotes the set of symmetric matrices of order k, sym(A) = A+A∗

2 .

By restricting the Euclidean inner product on Rm×n,

〈A,B〉 = tr(ATB) with A,B ∈ Rm×n,

to the tangent space, Sk(m,n) is a Riemannian manifold with the Riemannian metric

gS(ξ, η) := 〈ξ, η〉 = tr(ξT η) with S ∈ Sk(m,n) and ξ, η ∈ TSSk(m,n) (5.23)

where the tangent vectors ξ, η are seen as matrices in Rm×n.

Once the metric is defined, the notation of gradient of an objective function can be introduced.

Since Sk(m,n) is embedded in Rm×n, the Riemannian gradient is given as the orthogonal projection

of the gradient of cost function Φ(S), which is a function on Rm×n, onto the tangent space at S,

given by

PTSSk(m,n) : Rm×n → TSSk(m,n)

Z → PSZ = Uskew(UTZV )V T + U(UTZV⊥)V T
⊥ + U⊥(UT⊥ZV )V T

= −Usys(UTZV )V T + UUTZ + ZV V T − UUTZV V T .
(5.24)

Similarly, the orthogonal projection of the gradient of cost function Φ(S) onto the normal space at

S is

PNSSk(m,n) : Rm×n → NSSk(m,n)

Z → P⊥S Z = Usym(UTZV )V T + (Im − UUT )Z(In − V V T ). (5.25)

102



Since the (Euclidean) gradient of the cost function Φ(S) is 2M2(S), whereM2(S) =M(M(S)) and

[M(S)]ij = [ASBT + ATSB]ij , projecting the Euclidean gradient onto tangent space TSSk(m,n),

yields the Riemannian gradient

gradΦ(S) := PS2M2(S)

= −U U
T 2M2(S)V + V T 2M2(S)TU

2
V T + 2UUTM2(S) + 2M2(S)V V T − 2UUTM2(S)V V T

= −3UUTM2(S)V V T − UV TM2(S)TUV T + 2UUTM2(S) + 2M2(S)V V T .

(5.26)

5.4.2 Riemannian Retraction

Given S ∈ Sk(m,n) and Ṡ ∈ TSSk(m,n), similar to Section 4.3.3, we give the following three

ways of retractiing onto the manifold Sk(m,n): the SVD-type retraction, the QR-type retrac-

tion and the polar-type retraction.

Let S = UV T ∈ Sk(m,n), the Ṡ ∈ TSSk(m,n) can be computed as

Ṡ = U̇V T + UV̇ T . (5.27)

The expression of (U̇ , V̇ ) can be derived as follows. Since U ∈ St(m, k), V ∈ St(n, k), in view of the

form of the tangent space to the Stiefel manifold St(n, p) at a point X,

TXSt(n, p) = {XΩ +X⊥K : ΩT = −Ω,K ∈ R(n−p)×p}, (5.28)

we have

U̇ = UΩU + U⊥KU ,

V̇ = V ΩV + V⊥KV ,
(5.29)

where ΩT
U = −ΩU ,Ω

T
V = −ΩV , KU ∈ R(m−k)×k,KV ∈ R(n−k)×k. It follows that

Ṡ = (UΩU + U⊥KU )V T + U(V ΩV + V⊥KV )T

= U(ΩU + ΩT
V )V T + U⊥KUV

T + UΩV V
T

(5.30)

Multiplying both sides by UT from the left and V from the right, we get

ΩU + ΩT
V = UT ṠV. (5.31)

Similarly, we have

KU = UT⊥ ṠV,

KT
V = UT ṠV⊥.

(5.32)
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Since ΩU ,ΩV are skew matrices, ΩU + ΩT
V is a skew matrix. There are many possibilities, but for

convenience, we take ΩU and ΩV as follows:

ΩU =
1

2
UT ṠV,

ΩT
V = −1

2
(UT ṠV )T

(5.33)

Therefore, we have the explicit expression of U̇ and V̇ :

U̇ = UΩU + U⊥KU =
1

2
UUT ṠV + U⊥U

T
⊥ ṠV = ṠV − 1

2
UUT ṠV, (5.34)

V̇ = V ΩV + V⊥KV = −1

2
V V T ṠTU + V⊥V

T
⊥ Ṡ

TU = ṠTU − 1

2
V UT ṠV − V V T ṠTU. (5.35)

The SVD-type retraction is a projective retraction ([AM12]):

RS(Ṡ) =
1√
k
UkV

T
k , (5.36)

where [U,D, V ] = svd(S+ Ṡ) is (ordered) singular value decomposition (SVD), and Uk, Vk are first

k columns of U, V respectively.

The QR-type retraction is defined as

RS(Ṡ) =
1√
k
U+V

T
+ , (5.37)

where

U+ = qf(U + U̇),

V+ = qf(V + V̇ ),
(5.38)

where U̇ , V̇ are defined in (5.34), (5.35) and qf(A) denotes the orthogonal Q factor of the QR

decomposition of a matrix A = QR.

An alternative choice is the polar-type retraction:

RS(Ṡ) =
1√
k
U+V

T
+ , (5.39)

where

U+ = uf(U + U̇),

V+ = uf(V + V̇ ),
(5.40)

and the symbol uf(·) denotes the orthogonal component of the polar decomposition.
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5.4.3 Vector Transport

In our framework, vector transport can be represented by an m by n matrix. Given two

points S1 and S2 in Sk(m,n), the corresponding tangent spaces are denoted TS1 , TS2 . We choose

the isometric vector transport T from S1 to S2 to be the direct rotation from TS1Sk(m,n) to

TS2Sk(m,n), restricted to act on TS1Sk(m,n).

Efficient implementations of the direct rotation vector transport are constructed following

Huang’s approach [Hua13]. LetBS1 andBS2 be an orthonormal basis of TS1Sk(m,n) and TS2Sk(m,n)

respectively. Hence BS1 and BS2 can be viewed as mn by d matrices (d is the intrinsic dimension)

and BT
S1
BS1 = BT

S2
BS2 = Id. The direct-rotation transport from S1 to S2 is then given by

T = BS2V U
TBS1 (5.41)

where BT
S1
BS2 = UΣV T is a singular value decomposition (SVD).

If the codimension, mn − d, is sufficiently smaller than the dimension, d, and if, moreover,

orthonormal bases NS1 and NS2 are available, then the following vector transport becomes compu-

tationally advantageous,

T = (I −QS1Q
T
S1

) +QS2V U
TQTS2

, (5.42)

where QTS1
QS2 = UΣV T is an SVD and QS1 , QS2 are obtained by orthonormalizing (I−NS1N

T
S1

)NS2

and (I −NS2N
T
S2

)NS1 .

If smoothness is imposed, i.e. B : S → BS and N : S → NS are smooth functions to build basis

of TSSk(m,n) and NSSk(m,n), then we have a simpler form of isometric vector transports:

T = BS2B
T
S1
, (5.43)

T = I −QS1Q
T
S1
−QS2Q

T
S1
. (5.44)

Using this idea, we must construct the functions to build the bases. Note that since

TSSk(m,n) =

 UΩV T + UKT
V V

T
⊥ + U⊥KUV

T s.t.

Ω ∈ Sskew(k),KU ∈ R(m−k)×k,KV ∈ R(n−k)×k

 ,

an orthonormal basis of TSSk(m,n), denoted by BS , is given by

{ 1√
2
U(eie

T
j − ejeTi )V : i = 1, · · · , k, j = i+ 1, · · · , k}

∪ {U(ej ẽ
T
i )V T

⊥ : i = 1, · · · , n− k, j = 1, · · · , k}

∪ {U⊥(êie
T
j )V T : i = 1 · · · ,m− k, j = 1, · · · , k},

(5.45)
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where (e1, · · · , ek) is the canonical basis of Rk, (ê1, · · · , êm−k) is the canonical basis of Rm−k and

(ẽ1, · · · , ẽn−k) is the canonical basis of Rn−k. Similarly, we can construct the basis for normal space

NSSk(m,n) =
{
UHV T + U⊥KV

T
⊥ s.t. H ∈ Ssym(k),K ∈ Rm−k×n−k

}
.

Using NS to denote the basis, which is given by

{UeieTi V T : i = 1, · · · , k} ∪ { 1√
2
U(eie

T
j + eje

T
i )V T : i = 1, · · · , k, j = i+ 1, · · · , k}

∪ {U⊥ẽiêjV T
⊥ : i = 1, · · · ,m− k, j = 1, · · · , n− k}.

(5.46)

The columns of BS and NS are thus chosen as the “vec” of the basis elements.

We can also derive the vector transport by the differentiated retraction of (5.37).

Proposition 31. Let S = UÎkV
T ∈ Sk(m,n), ξ, η ∈ TSSk(m,n). Assuming ξ and η have the

following structure

ξ = U̇1V
T + UV̇ T

1 ,

η = U̇2V
T + UV̇ T

2 .

Then the vector transport by the differentiated retraction of (5.37) is

Tηξ = TU̇2
(U̇1)qf(V + V̇2)T + qf(U + U̇2))(TV̇2(V̇1))T , (5.47)

where TU̇2
(U̇1) is a differentiated retraction on Stiefel manifold [AMS08, Example 8.1.5] and qf(·)

denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal of R.

Proof. Based on the definition of the vector transport by differentiated retraction and the QR-type

retraction (5.37), we have

Tηξ =
d

dt
RX(η + tξ)

∣∣∣∣
t=0

=
d

dt
[qf(U + U̇2 + tU̇1)qf(V + V̇2 + tV̇1)T ]

∣∣∣∣
t=0

=
d

dt
[qf(U + U̇2 + tU̇1)]qf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ qf(U + U̇2 + tU̇1)
d

dt
qf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ qf(U + U̇2 + tU̇1)
d

dt
[qf(V + V̇2 + tV̇1)]T

∣∣∣∣
t=0

.

(5.48)
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Since U ∈ St(m, r), V ∈ St(n, r), according to the vector transport by differentiated retraction on

Stiefel manifold [AMS08], we have for U̇1, U̇2 ∈ TUSt(m, r),

d

dt
[qf(U + U̇2 + tU̇1)]|t=0 = TU̇2

(U̇1), (5.49)

and for V̇1, V̇2 ∈ TV St(n, r),

d

dt
[qf(V + V̇2 + tV̇1)]|t=0 = TV̇2(V̇1), (5.50)

where

TU̇2
(U̇1) = DRU (U̇2)[U̇1]

= Dqf(U + U̇2)[U̇1]

= RU (U̇2)ρskew(RU (U̇2)T U̇1(RU (U̇2)T (U + U̇2))−1)

+ (I −RU (U̇2)RU (U̇2)T )U̇1(RU (U̇2)T (U + U̇2))−1,

and ρskew(B) denotes the skew-symmetric term of the decomposition of a square matrix B into the

sum of a skew-symmetric term and an upper triangular term, i.e.,

(ρskew(B))i,j =


Bi,j if i >, j
0 if i = j,
−Bj,i if i < j.

Substituting (5.49) and (5.50) into (5.48), we have

Tηξ = TU̇2
(U̇1)qf(V + V̇2)T + qf(U + U̇2)(TV̇2(V̇1))T .

Similarly, vector transport by the differentiated retraction of (5.39) can also be derived and is

stated in the following Proposition.

Proposition 32. Let S = UÎkV
T ∈ Sk(m,n), ξ, η ∈ TSSk(m,n). Assuming ξ and η have the

following structure

ξ = U̇1V
T + UV̇ T

1 ,

η = U̇2V
T + UV̇ T

2 .

Then the vector transport by the differentiated retraction of (5.39) is

Tηξ = TU̇2
(U̇1)uf(V + V̇2)T + uf(U + U̇2))(TV̇2(V̇1))T , (5.51)

where TU̇2
(U̇1) is a vector transport by differentiated retraction of (5.39) on the Stiefel manifold

[Hua13, Lemma 10.2.1] and uf(·) denotes the orthogonal factor of the polar decomposition.
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Proof. Based on the definition of the vector transport by differentiated retraction and the polar-

decomposition-type retraction (5.39), we have

Tηξ =
d

dt
RX(η + tξ)

∣∣∣∣
t=0

=
d

dt
[uf(U + U̇2 + tU̇1)uf(V + V̇2 + tV̇1)T ]

∣∣∣∣
t=0

=
d

dt
[uf(U + U̇2 + tU̇1)]uf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ uf(U + U̇2 + tU̇1)
d

dt
uf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ uf(U + U̇2 + tU̇1)
d

dt
[uf(V + V̇2 + tV̇1)]T

∣∣∣∣
t=0

.

(5.52)

Since U ∈ St(m, r), V ∈ St(n, r), according to the vector transport by differentiated retraction on

the Stiefel manifold [Hua13, Lemma 10.2.1], for U̇1, U̇2 ∈ TUSt(m, r), it follows that

d

dt
[uf(U + U̇2 + tU̇1)]|t=0 = TU̇2

(U̇1), (5.53)

and for V̇1, V̇2 ∈ TV St(n, r),

d

dt
[uf(V + V̇2 + tV̇1)]|t=0 = TV̇2(V̇1), (5.54)

where

TU̇2
(U̇1) = DRU (U̇2)[U̇1]

= Duf(U + U̇2)[U̇1]

= RU (U̇2)Ω + (I −RU (U̇2)(RU (U̇2))T )U̇1((RU (U̇2))T (U + U̇2))−1,

and R is (5.39), vec{Ω} = ((RU (U̇2))T (U + U̇2) ⊕ (RU (U̇2))T (U + U̇2))−1vec{(RU (U̇2))T U̇1 −
U̇T1 RU (U̇2)}, ⊕ is the Kronecker sum, i.e., A⊕B = A⊗ I + I ⊗B.

Substituting (5.53) and (5.54) into (5.52), we have

Tηξ = TU̇2
(U̇1)uf(V + V̇2)T + uf(U + U̇2)(TV̇2(V̇1))T .

5.4.4 The Action of Riemannian Hessian

In order to exploit second-order information, we give the following proposition with an expres-

sion of the action of Riemannian Hessian.
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Proposition 33. For any S = UÎkV
T ∈ Sk(m,n) and η ∈ TSSk(m,n), the Riemannian Hessian

of Φ at S in the direction of η satisfies

HessΦ(S)[η] = 5ηgradΦ(S) = PS(DgradΦ(S)[η])

where

DgradΦ(S)[η] = −3k2[ηSTM2(S)STS + SηTM2(S)STS + SSTM2(η)STS

+ SSTM2(S)ηTS + SSTM2(S)ST η]

− k[ηM2(S)TS + SM2(η)TS + SM2(S)T η]

+ 2k[ηSTM2(S) + SηTM2(S) + SSTM2(η)]

+ 2k[M2(η)STS +M2(S)ηTS +M2(S)ST η].

Proof. We already have the Riemannian gradient of the cost function Φ(S) on Sk(m,n) is given

by:

gradΦ(S) = 2PSM2(S)

= −3UUTM2(S)V V T − UV TM2(S)TUV T + 2UUTM2(S) + 2M2(S)V V T

= −3k2SSTM2(S)STS − kSM2(S)TS + 2kSSTM2(S) + 2kM2(S)STS.

(5.55)

Since Sk(m,n) is a Riemannian submanifold of a Euclidean space, according to [AMS08, Equation

(5.15)] ,

HessΦ(S)[η] = ∇ηgradΦ(S) = PS(DgradΦ(S)[η]), (5.56)

where Dg(x)[H] is a directional derivative of g at x along H. We now differentiate (5.55) to get a

matrix representation of the directional derivative of Riemannian gradient, gradΦ, at S along η.

DgradΦ(S)[η] = −3k2[ηSTM2(S)STS + SηTM2(S)STS + SSTM2(η)STS

+ SSTM2(S)ηTS + SSTM2(S)ST η]

− k[ηM2(S)TS + SM2(η)TS + SM2(S)T η]

+ 2k[ηSTM2(S) + SηTM2(S) + SSTM2(η)]

+ 2k[M2(η)STS +M2(S)ηTS +M2(S)ST η].

Finally, the Hessian of a cost function Φ at S in the direction of η satisfies

HessΦ(S)[η] = 5ηgradΦ(S) = PS(DgradΦ(S)[η]).
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5.4.5 Experiments

In this section, we compare the performance of Cason’s iteration method with those of the gen-

eral Riemannian manifold methods introduced in Chapter 2. Six Riemannian algorithms are used,

i.e., Riemannian steepest descent with line search (RTR-SD), Riemannian trust region with sym-

metric rank-one update (RTR-SR1), limited-memory RTR-SR1 (LRTR-SR1), general Riemannian

trust-region method (RTR-Newton), Riemnnian Broyden-Fletcher-Goldfarb-Shannon (RBFGS) and

limited-memory RBFGS (LRBFGS). Four of them are combined with a trust region: RTR-SD,

RTR-SR1, LRTR-SR1, RTR-Newton. The rest are combined with a line search algorithm, i.e.,

RBFGS with inversion Hessian approximation Hk, LRBFGS (limited-memory RBFGS). The inner

iteration algorithm of trust region is the truncated CG inner iteration [AMS08, Section 7.3.2]. The

θ, κ parameters in the inner iteration stopping criteria [AMS08, (7.10)] are set to 1, 0.1. τ1, τ2 in

trust region are 0.25 and 2 respectively. The initial radius ∆0 is 1. c in RTR-SR1 and LRTR-SR1 is

set to 0.1, ν is the square root of machine epsilon. The constants c1, c2 used in the Wolfe conditions

are 1e− 04 and 0.999 respectively.

The results presented are obtained by implementing the different algorithms in Matlab (Version

7.10.0) on a Mac platform with 2.4 GHz and 4 GB memory.

Unless otherwise indicated in the description of the experiments, the following test data param-

eters are used. The test graph is a random graph based on Erdós-Rényi model with 100 nodes and

average of outgoing edges of each node is 10 and the self-similarity matrix is computed. The initial

iterate S0 of Riemannian algorithms is composed by two parts U0, V0, where U0, V0 are the first k

columns of U and V generated by applying Matlab’s function SVD on an all 1 matrix. The initial

iterates S0 of Cason’s iteration method, i.e. Algorithm 6, is an all 1 matrix, which is setting in

Step 1 of Algorithm 7. The stopping criterion required the ratio of the norm of final gradient and

the norm of initial gradient is less than 10−7 for all methods. To obtain sufficiently stable timing

results, an average time is taken of five runs with identical parameters.The notation used when

reporting the experimental results is given in Table 5.2.

In Section 5.4.5.2, different retractions are compared. Section 5.4.5.2 compares the perfor-

mances of Algorithm 7 and RTR-Newton method. In Section 5.4.5.3, the performances of different

Riemannian algorithms are compared with Algorithm 7.
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Table 5.2: Notation for reporting the experimental results.

Rerr relative error ‖S−S
B‖F

‖SB‖F
, where SB is the full rank matrix obtained by Blondel’s algorithm

f final value of the cost function (5.7)

gf0 Riemannian metric value of the initial gradient

gff Riemannian metric value of the final gradient

iter number of iterations

nf number of function evaluations

nf number of function evaluations

ng number of gradient evaluations

nH number of operations of the form Hη
nV number of vector transports

nR number of retraction evaluations

t average time (seconds)

5.4.5.1 Performance of different retractions. Three types of retractions are proposed in

Section 5.4.2. In this section, the results of RTR-Newton with different retractions are compared.

Table 5.3 shows the results of different retractions for different k in RTR-Newton. From the

table, we observe as k increases, all three retractions get almost the same relative error and the

same final value of the cost function (5.7). The computation time of QR-type retraction and

polar-decomposition type retraction are almost the same. But the computation time of SVD-type

retraction is more than the other two types of retraction. Table 5.3 also shows the number of

operations of the form Hη in SVD-type retraction is more than that in the other two types of

retractions when k is small hence the difference in computational times.

5.4.5.2 Comparision of Cason’s Iteration algorithm and RTR-Newton. From the

comparison of different retractions, we observe polar-decomposition-type retraction has time ad-

vantages compared to the other two. In the following experiments, this retraction is always used.

In this section, the results of low-rank approximation generated by Cason’s iteration method and

RTR-Newton are compared. Table 5.4 shows the results. It shows RTR-Newton method has no-

ticeable time advantages compared with iteration method, especially when k gets large. It can also

be observed that when the rank of the approximation increases i.e. as k increases, the relative error

(‖S−S
B‖F

‖SB‖F
, where SB is the full rank matrix obtained by Blondel’s algorithm 5), also increases,

although the values of the cost function decrease. These counterintuitive results occur because

similarity matrices do not usually have identical eigenvalues.
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Table 5.3: Comparison of different retractions for approximation with k identical singular values.
The subscript ±z indicates a scale of 10±z.

k Rerr Retraction f time(s) gff/gf0 gff nF nG nH nR

1 1.875−02 SVD-type 4.404+04 1.704−01 1.578−10 2.846−06 7 7 23 6
QR-type 4.404+04 1.058+00 1.995−09 3.599−05 7 7 21 6
PD-type 4.404+04 1.332−01 1.995−09 3.599−05 7 7 21 6

2 7.655−01 SVD-type 3.203+04 4.457−01 2.108−10 2.691−06 11 11 67 10
QR-type 3.203+04 4.026−01 7.468−09 9.531−05 11 11 64 10
PD-type 3.203+04 4.184−01 7.468−09 9.531−05 11 11 64 10

3 9.195−01 SVD-type 2.706+04 6.205−01 5.055−10 5.303−06 17 17 100 16
QR-type 2.706+04 6.200−01 1.346−09 1.412−05 18 18 103 17
PD-type 2.706+04 6.087−01 1.346−09 1.412−05 18 18 103 17

4 9.996−01 SVD-type 2.359+04 5.773−01 2.383−08 2.184−04 15 15 93 14
QR-type 2.359+04 8.849−01 1.796−08 1.646−04 17 17 96 16
PD-type 2.359+04 6.001−01 1.796−08 1.646−04 17 17 96 16

5 1.052+00 SVD-type 2.113+04 1.304+00 8.339−08 6.837−04 24 24 218 23
QR-type 2.116+04 7.262−01 2.126−09 1.743−05 22 22 119 21
PD-type 2.116+04 7.081−01 2.126−09 1.743−05 22 22 119 21

6 1.088+00 SVD-type 1.916+04 1.729+00 7.720−11 5.844−07 30 30 295 29
QR-type 1.918+04 7.965−01 1.090−09 8.253−06 22 22 134 21
PD-type 1.918+04 7.885−01 1.090−09 8.253−06 22 22 134 21

10 1.165+00 SVD-type 1.331+04 3.162+00 2.361−09 1.365−05 31 31 418 30
QR-type 1.331+04 2.934+00 3.044−09 1.760−05 33 33 463 32
PD-type 1.331+04 2.924+00 2.942−09 1.701−05 31 31 480 30

Table 5.4: Comparison of Cason’s iteration method and RTR-Newton for approximation with k
identical singular values. The subscript ±z indicates a scale of 10±z.

Iteration Method RTR-Newton Method
k Rerr f t gff/gf0 gff f t gff/gf0 gff
1 3.48−02 4.69+04 0.67 9.03−09 2.15−03 4.69+04 0.18 1.84−09 4.38−05

2 7.66−01 2.30+04 1.69 9.57−08 1.61−03 3.26+04 0.41 2.20−08 3.73−04

3 9.20−01 2.62+04 1.13 9.99−08 1.37−03 2.62+04 0.90 6.38−09 8.68−05

4 1.00+00 2.29+04 10.83 9.99−08 1.18−03 2.29+04 0.49 2.26−08 2.67−04

5 1.05+00 1.95+04 12.33 9.99−08 1.02−03 1.95+04 1.35 7.42−09 7.74−05

10 1.16+00 1.15+04 31.09 9.94−08 7.33−04 1.15+04 1.79 4.16−08 3.05−04
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5.4.5.3 Comparison of other Riemannian algorithms. In this section, six Riemannian

optimization methods are compared with Algorithm 7. Results are shown in Table 5.4.5.3, where

the values in brackets show the iteration numbers and the missing values (−) mean the result

needs more time to reach the stop criteria or has exceeded the allowable amount of memory. From

the results, we observe limited-memory RBFGS method is comparable with RTR-Newton method.

What is more, the Riemannian optimization methods, except RBFGS method, have significant

time advantages compared with iteration method, especially when k is small.
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5.5 Approximation of rank at most k

Since the relative error of the approximation with k identical singular values increases as k

increases, we enhance our method with a diagonal positive scaling Dk. However, there is no rigorous

way of how to choose k, i.e., if k is chosen “too small”, the result may not be a good approximation

of the similarity matrix; if k is chosen “too large”, the algorithm may require excessive computation.

In this section, we consider the set of rank at most k, i.e. (5.10) in [CAD13]:

S≤k(m,n) =

UDV T ∈ Rm×n : U ∈ St(m, k), V ∈ St(n, k),

D diagonal, ‖D‖F = 1

 .

The set S≤k(m,n) is not a manifold, it can be written as

S≤k(m,n) =
⋃
r≤k
Sr, (5.57)

where

Sr(m,n) =

UDrV
T ∈ Rm×n : U ∈ St(m, r), V ∈ St(n, r),

Dr is a diagonal matrix , ‖Dr‖F = 1

 (5.58)

is a fixed-rank manifold with r nonzero singular values. Thus, the modified Riemannian opti-

mization method can be applied once the required differential geometric objects (e.g. Riemannian

gradient, full gradient, retraction, rank-related retraction etc.) are defined.

5.5.1 Gradients of Interest

Following Cason et al. [CAD13], the tangent space to Sr(m,n) at a point S = UDrV
T ∈

Sr(m,n) is

TSSr(m,n) : =

UAV T + UBV T
⊥ + U⊥CV

T :

B,C arbitrary, tr(ADr) = 0


=


[
U U⊥

] [A B
C 0

] [
V T

V T
⊥

]
:

B,C arbitrary, tr(ADr) = 0

 ,

(5.59)

where U⊥, V⊥ are any orthogonal complements of U, V . There is an extra condition onA such that

tr(ADr) = 0, due to the requirement on matrix Dr, i.e., it satisfies ‖Dr‖F = 1.
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The normal space to Sr(m,n) at the point S = UDrV
T ∈ Sr(m,n) is

NSSr(m,n) : =


[
U U⊥

] [αDr 0
0 R⊥

] [
V T

V T
⊥

]
:

α ∈ R, R⊥ ∈ R(m−r)×(n−r)


=

 αS + U⊥R⊥V
T
⊥ :

α ∈ R, R⊥ ∈ R(m−r)×(n−r)

 .

(5.60)

By restricting the Euclidean inner product on Rm×n,

〈A,B〉 = tr(ATB) with A,B ∈ Rm×n,

to the tangent space, we turn Sr(m,n) into a Riemannian manifold with Riemannian metric

gS(ξ, η) := 〈ξ, η〉 = tr(ξT η) with S ∈ Sk(m,n) and ξ, η ∈ TSSk(m,n), (5.61)

where the tangent vectors ξ, η are seen as matrices in Rm×n.

Once the metric is defined, the Riemannian gradient can be determined which in turn requires

projection. The orthogonal projection onto the tangent space and the normal space at S = UDrV
T

are

PTSSr(m,n) : Rm×n → TSSr(m,n)

Z → PSZ = UUTZV V T − αS + UUTZV⊥V
T
⊥ + U⊥U

T
⊥ZV V

T

= UUTZ + ZV V T − UUTZV V T − αS,
(5.62)

PNSSr(m,n) : Rm×n → NSSr(m,n)

Z → P⊥S Z = αS + (Im − UUT )Z(In − V V T ). (5.63)

In order to get the explicit form of projection, an explicit expression of α is needed. We have

any Z ∈ Rm×n can be rewritten into the following form

Z = UKV T + UBV T
⊥ + U⊥CV

T + U⊥EV⊥, (5.64)

where K ∈ Rr×r, B ∈ Rr×(n−r), C ∈ R(m−r)×r, E ∈ R(m−r)×(n−r). Projecting Z onto the tangent

and normal spaces, yields

Z = PSZ + P⊥S Z. (5.65)
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From the two terms in the expression for Z, the tangent and normal spaces are seen to be TSSr =

{UAV T +UBV T
⊥ +U⊥CV

T } and NSSr = {αS+U⊥R⊥V
T
⊥ }, where B,C,R⊥ are arbitrary matrices

and A is any matrix that satisfies tr(ADr) = 0.

To get a computationally useful form of elements of these spaces, suitable expressions for A and

α are required. Since αS = αUDrV
T , we seek A in the form A = K − αDr. Multiplying Z by UT

from the left and V from the right, eliminates the last three terms and gives K = UTZV . Thus

A = UTZV −αDr. Combining this with the constraint tr(ADr) = 0, we get tr((K−αDr)Dr) = 0.

Therefore, the form of α can be obtained:

α =
tr(KDr)

tr(DrDr)
= tr(UTr ZVrDr) = tr(ZVrDrU

T
r ) = tr(Z(UTr DrV

T
r )T ) = tr(ZST ). (5.66)

Given the explicit form of α, we obtain the formula for projection onto tangent and normal

space as follows:

PTSSr(m,n) : Rm×n → TSSr(m,n)

Z → PSZ = UUTZV V T − tr(ZST )S + UUTZV⊥V
T
⊥ + U⊥U

T
⊥ZV V

T

= UUTZ + ZV V T − UUTZV V T − tr(ZST )S,
(5.67)

PNSSk(m,n) : Rm×n → NSSk(m,n)

Z → P⊥S Z = tr(ZST )S + (Im − UUT )Z(In − V V T ). (5.68)

Since the Euclidean gradient of cost function Φ(S) is 2M2(S), projecting the gradient onto

tangent space, we obtain the Riemannian gradient

gradΦ(S) := PS2M2(S) = 2PSM2(S)

= 2UUTM2(S) + 2M2(S)V V T − 2UUTM2(S)V V T − 2tr(M2(S)ST )S,
(5.69)

where M2(S) =M(M(S)) and [M(S)]ij = [ASBT +ATSB]ij .

In order to apply MROM, a Riemannian submanifold M is needed such that the cost function

can be extended. Since for each S = UDV T ∈ S≤k(m,n), we require ‖D‖F = 1, which implies

‖S‖F = 1, the submanifold M can be treated as a unit sphere Smn−1. Consider the following two

functions ΦF and Φr:

ΦF :M = Smn−1 → R : S 7→ tr(STM2(S)),

Φr : Sr(m,n)→ R : S 7→ tr(STM2(S)).
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The cost function for the rank inequality constrained problem is then Φ = ΦF|S≤k and Φr = ΦF|Sr =

Φ|Sr .
The tangent space and normal space to a sphere Smn−1 at a point S ∈ Smn−1 are given in

[AMS08, Example 3.6.1]:

TSS
mn−1 = {Z ∈ Rm×n : STZ = 0}, (5.70)

NSS
mn−1 = {αS : α ∈ R}, (5.71)

and the projections are

PTSSmn−1 :Rm×n → TSS
mn−1

Z 7→ PSZ = Z − αS,
(5.72)

PNSSmn−1 :Rm×n → NSS
mn−1

Z 7→ P⊥S Z = αS,
(5.73)

where α = tr(ZST ). Thus, the full gradient on the submanifold M can be obtained by projecting

the Euclidean gradient of cost function ΦF(S) onto the tangent space TSM

gradΦF(S) := 2PSM2(S) = 2M2(S)− 2tr(M2(S)ST )S, (5.74)

where M2(S) =M(M) and [M(S)]ij = [ASBT +ATSB]ij .

5.5.2 Retractions of Interest

Two kinds of retractions are required for MROM: retraction onto the fixed-rank manifolds and

rank-related retractions.

Given the triple (U,D, V ) such that S = UDV T , the computation of the triple (U̇ , Ḋ, V̇ ) is

similar to the discussions in Section 4.3.4. For U̇ and V̇ , they are the same as shown in Section

4.3.4. However, there is an additional restriction on D such that ‖D‖F = 1. Thus, Ḋ is computed

as

Ḋ = UT ṠV − αD = UT ṠV − tr(ṠST )D. (5.75)

The three choices of retractions on the fixed-rank manifold Sr are considered in the following:

• three-factor SVD-type retraction:

RS(Ṡ) = U+D+V
T

+ (5.76)

118



where

U̇D = QuRu,

V̇ D = QvRv,

UsDsVs =

[
D + Ḋ RTv
Ru 0

]
,

U+ =
[
U Qu

]
Us(:, 1 : r),

D+ =
Ds(1 : r, 1 : r)

‖Ds(1 : r, 1 : r)‖F
,

V+ =
[
V Qv

]
Vs(:, 1 : r),

• three-factor polar-type retraction

RS(Ṡ) = U+D+V
T

+ (5.77)

where

UsDsV
T
s = D + Ḋ using SVD,

U+ = uf(U + U̇)Us,

D+ =
Ds

‖Ds‖F
,

V+ = uf(V + V̇ )Vs

and uf(·) denotes the orthogonal component of the polar decomposition.

• three-factor QR-type retraction I

RS(Ṡ) = U+D+V
T

+ . (5.78)

where

UsDsV
T
s = D + Ḋ using SVD,

U+ = qf(U + U̇)Us,

D+ =
Ds

‖Ds‖F
,

V+ = qf(V + V̇ )Vs,

and qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

• three-factor QR-type retraction II

RS(Ṡ) = U+D+V
T

+ . (5.79)
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where

U+ = qf(U + U̇),

D+ =
D + Ḋ

‖D + Ḋ‖F
,

V+ = qf(V + V̇ ),

and qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

In order to apply Algorithm 2, a rank-related retraction is also needed. It must satisfy certain

properties as in Definition 8 in Chapter 3. Given S ∈ Sr, based on Definition 8 in Chapter 3, the

following three types of rank-related retractions are constructed:

• SVD-type rank-related retraction

R̃S(η∗) = Ur̃D̂r̃V
T
r̃ , (5.80)

where [U,D, V ] = svd(S + η∗) is (ordered) singular value decomposition (SVD), Ur̃, Vr̃ are

first r̃ columns of U, V respectively, Dr̃ are the upper r̃ by r̃ block of matrix D, D̂r̃ = Dr̃
‖Dr̃‖F .

This can be computed more efficiently by

R̃S(η∗) = Ũ+D̃+Ṽ
T

+ , (5.81)

where

QuRu = Ũp,

QvRv = Ṽp,

UsDsVs =

[
Dr̃ + Ḋr̃ RTv
Ru 0

]
,

Ũ+ =
[
Ur̃ Qu

]
US(:, 1 : r̃),

D̃+ =
Ds(1 : r̃, 1 : r̃)

‖Ds(1 : r̃, 1 : r̃)‖F
,

Ṽ+ =
[
Vr̃ Qv

]
VS(:, 1 : r̃),

and r̃ = r + ∆r, Ur̃ =
[
Ur U∆r

]
, Dr̃ =

[
Dr 0r×∆r

0∆r×r 0∆r×∆r

]
, Vr̃ =

[
Vr V∆r

]
.

• Polar-type rank-related retraction

R̃S(η∗) = Ũ+D̃+Ṽ
T

+ , (5.82)
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where

Ũ+ = uf(Ur̃ + U̇r̃)Us,

D̃+ =
Ds

‖Ds‖F
,

Ṽ+ = uf(Vr̃ + V̇r̃)Vs,

Dr̃ + Ḋr̃ = UsDsV
T
s ,

where uf(·) denotes the orthogonal component of the polar decomposition.

• QR-type rank-related retraction I

R̃S(η∗) = Ũ+D̃+Ṽ
T

+ , (5.83)

where

Ũ+ = qf(Ur̃ + U̇r̃)Us,

D̃+ =
Ds

‖Ds‖F
,

Ṽ+ = qf(Vr̃ + V̇r̃)Vs,

Dr̃ + Ḋr̃ = UsDsV
T
s ,

where qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

For the three types of rank-related retraction above, the rank-related vector η∗ has the form

of η∗ = U̇r̃V
T
r̃ + Ur̃Ḋr̃V

T
r̃ + Ur̃V̇r̃ and Ḋ = UT ṠV − tr(ṠST )D. If Ḋr̃ is assumed to be a

diagonal matrix and η∗ = U̇r̃Dr̃V
T
r̃ + Ur̃Ḋr̃V

T
r̃ + Ur̃Dr̃V̇r̃, then similar to Section 4.3.5, we

have the QR-type rank-related retraction II:

R̃X(η∗) = Ũ+D̃+Ṽ
T

+ , (5.84)

where

Ũ+ = qf(Ur̃ + U̇r̃),

D̃+ =
Dr̃ + Ḋr̃

‖Dr̃ + Ḋr̃‖F
,

Ṽ+ = qf(Vr̃ + V̇r̃),

where qf(·) denotes the Q-factor of the thin QR decomposition of its matrix argument.

5.5.3 Vector Transport

In our framework, vector transport can be represented by an m by n matrix. Given two points

S1 and S2 in Sk(m,n), the corresponding tangent spaces are TS1 , TS2 . We choose the isometric
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vector transport T from S1 to S2 as the direct rotation from TS1Sk(m,n) to TS2Sk(m,n), restricted

to act on TS1Sk(m,n). Note that the tangent space has the following structure

TSSk(m,n) =

 UAV T + UBV T
⊥ + U⊥CV

T :

B,C arbitrary, tr(ADk) = 0,

 .

An orthonormal basis of TSSk(m,n), denoted by BS , is given by

{U(eie
T
j )V : i = 1, · · · , k, j = 1, · · · , k, i, j can not both equal to k}

∪ {U(ej ẽ
T
i )V T

⊥ : i = 1, · · · , n− k, j = 1, · · · , k}

∪ {U⊥(êie
T
j )V T : i = 1 · · · ,m− k, j = 1, · · · , k}

(5.85)

where (e1, · · · , ek) is the canonical basis of Rk, (ê1, · · · , êm−k) is the canonical basis of Rm−k and

(ẽ1, · · · , ẽn−k) is the canonical basis of Rn−k. Similarly, we can construct the basis for normal space

NSSk(m,n) =

 αS + U⊥R⊥V
T
⊥ :

α ∈ R, R⊥ ∈ R(m−k)×(n−k)

 .

Using NS to denote, which is given by

{UDV T } ∪ {U⊥ẽiêjV T
⊥ : i = 1, · · · ,m− k, j = 1, · · · , n− k}. (5.86)

The columns of BS and NS are thus chosen as the “vec” of the basis elements.

We can also derive the vector transport by the differentiated retraction of (5.78) and (5.79).

Proposition 34. Let S = UDkV
T ∈ Sk(m,n), ξ, η ∈ TSSk(m,n). Assuming ξ and η have the

following structure

ξ = U̇1DkV
T + UḊ1V

T + UDkV̇
T

1 ,

η = U̇2DkV
T + UḊ2V

T + UDkV̇
T

2 .

Then the vector transport by the differentiated retraction of (5.78) is

Tηξ = TU̇2
(U̇1)

Dk + Ḋ2

‖Dk + Ḋ2‖F
qf(V + V̇2)T + qf(U + U̇2))

Dk + Ḋ2

‖Dk + Ḋ2‖F
(TV̇2(V̇1))T

+ qf(U + U̇2))

(
Ḋ1

‖Dk + Ḋ2‖F
− Dk + Ḋ2

‖Dk + Ḋ2‖2F
(Dk + Ḋ2)T Ḋ1

‖Dk + Ḋ2‖F

)
qf(V + V̇2)T ,

(5.87)

where TU̇2
(U̇1) is a differentiated retraction on Stiefel manifold [AMS08, Example 8.1.5] and qf(·)

denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal of R.
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Proof. Based on the definition of the vector transport by differentiated retraction and the QR-type

I retraction (5.78), we have

Tηξ =
d

dt
RX(η + tξ)

∣∣∣∣
t=0

=
d

dt
[qf(U + U̇2 + tU̇1)

(
Dk + Ḋ2 + tḊ1

‖Dk + Ḋ2 + tḊ1‖F

)
qf(V + V̇2 + tV̇1)T ]

∣∣∣∣
t=0

=
d

dt
[qf(U + U̇2 + tU̇1)]

(
Dk + Ḋ2 + tḊ1

‖Dk + Ḋ2 + tḊ1‖F

)
qf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ qf(U + U̇2 + tU̇1)
d

dt

[(
Dk + Ḋ2 + tḊ1

‖Dk + Ḋ2 + tḊ1‖F

)]
qf(V + V̇2 + tV̇1)T

∣∣∣∣
t=0

+ qf(U + U̇2 + tU̇1)

(
Dk + Ḋ2

‖Dk + Ḋ2‖F
+ tḊ1

)
d

dt
[qf(V + V̇2 + tV̇1)]T

∣∣∣∣
t=0

.

(5.88)

Since U ∈ St(m, r), V ∈ St(n, r), according to the vector transport by differentiated retraction on

the Stiefel manifold [AMS08], we have for U̇1, U̇2 ∈ TUSt(m, r),

d

dt
[qf(U + U̇2 + tU̇1)]|t=0 = TU̇2

(U̇1), (5.89)

and for V̇1, V̇2 ∈ TV St(n, r),

d

dt
[qf(V + V̇2 + tV̇1)]|t=0 = TV̇2(V̇1). (5.90)

where

TU̇2
(U̇1) = DRU (U̇2)[U̇1]

= Dqf(U + U̇2)[U̇1]

= RU (U̇2)ρskew(RU (U̇2)T U̇1(RU (U̇2)T (U + U̇2))−1)

+ (I −RU (U̇2)RU (U̇2)T )U̇1(RU (U̇2)T (U + U̇2))−1,

and ρskew(B) denotes the skew-symmetric term of the decomposition of a square matrix B into the

sum of a skew-symmetric term and an upper triangular term, i.e.,

(ρskew(B))i,j =


Bi,j if i >, j
0 if i = j,
−Bj,i if i < j.
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The derivative d
dt

(
Dk+Ḋ2+tḊ1

‖Dk+Ḋ2+tḊ1‖F

) ∣∣∣∣
t=0

is computed as follows:

d

dt

(
Dk + Ḋ2 + tḊ1

‖Dk + Ḋ2 + tḊ1‖F

)∣∣∣∣
t=0

=
d
dt(Dk + Ḋ2 + tḊ1)‖Dk + Ḋ2 + tḊ1‖F − (Dk + Ḋ2 + tḊ1) ddt(‖Dk + Ḋ2 + tḊ1‖F )

‖Dk + Ḋ2 + tḊ1‖2F

∣∣∣∣
t=0

=
Ḋ1

‖Dk + Ḋ2‖F
− Dk + Ḋ2

‖Dk + Ḋ2‖2F
(Dk + Ḋ2)T Ḋ1

‖Dk + Ḋ2‖F

(5.91)

Substituting (5.89), (5.90) and (5.91) into (5.88), we have the vector transport by differentiated

retraction (5.78) are following

Tηξ = TU̇2
(U̇1)

Dk + Ḋ2

‖Dk + Ḋ2‖F
qf(V + V̇2)T + qf(U + U̇2))

Dk + Ḋ2

‖Dk + Ḋ2‖F
(TV̇2(V̇1))T

+ qf(U + U̇2))

(
Ḋ1

‖Dk + Ḋ2‖F
− Dk + Ḋ2

‖Dk + Ḋ2‖2F
(Dk + Ḋ2)T Ḋ1

‖Dk + Ḋ2‖F

)
qf(V + V̇2)T .

(5.92)

5.5.4 Action of the Hessian on Fixed-rank Manifold

Proposition 35. For any S = UDkV
T ∈ Sk(m,n) and η ∈ TSSk(m,n), the Riemannian Hessian

of Φ at S in the direction of η satisfies

HessΦ(S)[η] = 5ηgradΦ(S) = PS(DgradΦ(S)[η]),

where

DgradΦ(S)[η] = 2[U⊥(UT⊥ηV D
−1
k )UT + U(UT⊥ηV D

−1
k )TUT⊥ ]M2(S) + 2(UUT )M2(η)

+ 2M2(η)V V T + 2M2(S)[V⊥(D−1
k UT ηV⊥)TV T + V (D−1

k UT ηV⊥)V T
⊥ ]

− 2[U⊥(UT⊥ηV D
−1
k )UT + U(UT⊥ηV D

−1
k )TUT⊥ ]M2(S)V V T − 2UUTM2(η)V V T

− 2UUTM2(S)[V⊥(D−1
k UT ηV⊥)TV T + V (D−1

k UT ηV⊥)V T
⊥ ]

− 2tr(M2(η)ST )S − 2tr(M2(S)ηT )S − 2tr(M2(S)ST )η.

Proof. As the Riemannian gradient of Φ(S) at a point S = UDkV
T is

gradΦ(S) = PS2M2(S) = 2PSM2(S)

= 2UUTM2(S) + 2M2(S)V V T − 2UUTM2(S)V V T − 2tr(M2(S)ST )S.
(5.93)
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In order to find the Hessian, we need the derivative of UUT and the derivative of V V T . Since U ∈
St(m, k), its derivative has the form U̇ = UΩ1 +U⊥K1, where Ω1 is a skew matrix, K1 ∈ R(m−k)×k.

Similarly for V ∈ St(n, k), the derivative of V has the form V̇ = V Ω2 + V⊥K2, where Ω2 is a skew

matrix, K2 ∈ R(n−k)×k. Thus, for any S = UDkV
T ∈ Sk(m,n), its derivative can be written into

the following form:

Ṡ = UAV T + U⊥K1DkV
T + UDkK

T
2 V

T
⊥ , (5.94)

where A ∈ Rk×k,K1 ∈ R(m−k)×k,K2 ∈ R(n−k)×k, tr(ADk) = 0. Multiplying Ṡ by UT⊥ from the left

and V from the right, we get

K1 = UT⊥ ṠV D
−1
k . (5.95)

Similarly, we can get

KT
2 = D−1

k UT ṠV⊥. (5.96)

The derivative of UUT is computed as

(UUT )′ = U̇UT + UU̇T = (UΩ1 + U⊥K1)UT + U(UΩ1 + U⊥K1)T

= U(Ω1 + ΩT
1 )UT + U⊥K1U

T + UKT
1 U

T
⊥

= U⊥K1U
T + UKT

1 U
T
⊥

= U⊥(UT⊥ ṠV D
−1
k )UT + U(UT⊥ ṠV D

−1
k )TUT⊥ .

(5.97)

Similarly, we can obtain the derivative of V V T :

(V V T )′ = V⊥(D−1
k UT ṠV⊥)TV T + V (D−1

k UT ṠV⊥)V T
⊥ . (5.98)

Therefore, the directional derivative of gradΦ at S along η is

DgradΦ(S)[η] = 2(UUT )′M2(S) + 2(UUT )M2(η) + 2M2(η)V V T + 2M2(S)(V V T )′

− 2(UUT )′M2(S)V V T − 2UUTM2(η)V V T − 2UUTM2(S)(V V T )′

− 2tr(M2(η)ST )S − 2tr(M2(S)ηT )S − 2tr(M2(S)ST )η

= 2[U⊥(UT⊥ηV D
−1
k )UT + U(UT⊥ηV D

−1
k )TUT⊥ ]M2(S) + 2(UUT )M2(η)

+ 2M2(η)V V T + 2M2(S)[V⊥(D−1
k UT ηV⊥)TV T + V (D−1

k UT ηV⊥)V T
⊥ ]

− 2[U⊥(UT⊥ηV D
−1
k )UT + U(UT⊥ηV D

−1
k )TUT⊥ ]M2(S)V V T − 2UUTM2(η)V V T

− 2UUTM2(S)[V⊥(D−1
k UT ηV⊥)TV T + V (D−1

k UT ηV⊥)V T
⊥ ]

− 2tr(M2(η)ST )S − 2tr(M2(S)ηT )S − 2tr(M2(S)ST )η.

(5.99)
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Finally, the Riemannian Hessian of Φ at S in the direction of η can be computed by

HessΦ(S)[η] = 5ηgradΦ(S) = PS(DgradΦ(S)[η]).

5.5.5 Some Observations of Cason’s Algorithm

To reduce the complexity, Cason et al. do not use Algorithm 7, i.e., they do not work with

S ∈ Rm×n itself but with its singular value decomposition (U,D, V ) ∈ Rm×k×Diag(k, k, k)×Rn×k,
where Diag(k, k, k) := {D ∈ Rk×k : D diagonal, Dii = 0 for all i > k}. Similarly, in practice,

they do not compute M2(S) ∈ Rm×n itself but its singular value decomposition. Algorithm 7 is

rewritten as following

Algorithm 8 Cason’s Algorithm 3

Require: Graph GA and GB respectively of order m and n

1: (U0, D0, V 0)← SV Dk(1/‖1‖F )

2: for t = 1, 2, · · · , tmax do

3: U ′ ←
[
AU t−1Dt−1, ATU t−1Dt−1

]
∈ Rm×2k;

4: U ′′ ←
[
AU ′, ATU ′

]
∈ Rm×4k;

5: V ′ ←
[
BV t−1, BTV t−1

]
∈ Rn×2k;

6: V ′′ ←
[
BV ′, BTV ′

]
∈ Rn×4k;

7: (QU , RU )← QR(U ′′) ∈ Rm×4k × R4k×4k;

8: (QV , RV )← QR(V ′′) ∈ Rn×4k × R4k×4k;

9: (U ′′′, D′′′, V ′′′)← SV Dk(RUR
T
V ) ∈ Rm×k × Rk×k × Rn×k;

10: (U t, Dt, V t)← (QUU
′′′, D′′′

‖D′′′‖ , QV V
′′′);

11: end for

Note that Algorithm 8 does not use any Riemannian objects. It is an update of the form

St+1 = P (St + st(M2(St)− St)), (5.100)

with step size st = 1 and P is a projection using the SVD and a normalization, that projects a

proposed iterate onto the feasible set Sk.
The update of the Riemannian steepest descent algorithm with line search on the fixed rank

manifold Sk(m,n) is given by

St+1 = RSt(−stPSt∇Φ(St)), (5.101)
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where st is a step size, PSt∇Φ(St) is the Riemannian gradient obtained by projecting the Euclidean

gradient ∇Φ(St) onto the tangent space TStSk(m,n), and RSt is the retraction from the tangent

space of St to the manifold, e.g., a projection of the matrix St − stPSt∇Φ(St). Cason’s iteration

(5.100) is not exactly Riemannian steepest descent on Sk(m,n) but it is related to Riemannian

steepest descent.

Comparing the two forms and reviewing the Riemannian gradient discussed in Section 5.5.1, we

observe the update in (5.100) is equivalent to the update of Riemannian steepest descent method

with Riemannian gradient of submanifoldM, i.e., the full gradient (5.74) on the sphere of dimension

mn−1, and a particular step size st = 1
α = 1

2tr(M2(St)STt )
mapped to the feasible set Sk(m,n) using

the SVD-type retraction (5.76) discussed in Section 5.5.2.

Therefore, Cason’s improved Algorithm 8 is a generalization of the well-known Euclidean gra-

dient projection method for constrained optimization that maps every point of the line xi + αdi

defined by the unconstrained line search method to the nearest point of the, typically convex, fea-

sible set. In this case, the “line” is defined by a step of Riemannian steepest descent on the sphere

retracted by simple scaling of the norm followed by a rank-k approximation of the point on the

sphere and a second normalization to a point on Sk(m,n). Additionally, we have seen empirically

that this fixed step size of Cason’s in this form satisfies the Riemannian Armijo condition that is

one of the line search termination criteria that is used to guarantee convergence.

5.5.6 Experiments

In this section, Algorithm 8 is used in all comparisons. Given the relationship of Algorithm

8 to a fixed step size gradient projection algorithm we compare it to the Riemannian steepest

descent method on rank-k manifold first. Then, Algorithm 2 is compared to Algorithm 8. Section

5.5.6.2 shows the performance of both methods on approximating a rank-1 similarity matrix. The

performance when approximating a similarity matrix for random graphs is shown in Section 5.5.6.3.

Finally, in Section 5.5.6.4, the difficulties for Algorithm 8 and MROM when the two dominant

eigenvalues of M2 = (A ⊗ B + AT ⊗ BT )2 are close, where A,B are adjacency matrices, are

illustrated and the performance improvement of a modification to MROM is demonstrated.

The parameters in Algorithm 2 are set to be the same as they were in Section 4.4.2. The initial

point in Algorithm 8 is given in Step 1. The initial point in Algorithm 2 is a rank-1 matrix defined

by [U0, D0, V0], where U0 = 1√
m

[
1, · · · , 1

]T
, D0 = 1, V0 = 1√

n

[
1, · · · , 1

]T
. The stopping criteria of
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Algorithm 2 and Algorithm 8 are set to be the norm of final gradient on the fixed-rank manifold

over the norm of initial full gradient is less than 10−7.

5.5.6.1 Comparision of Approximation with k Nonzero Singular Values. In this

section, the performance of Cason’s method is compared with the performance of Riemannian

steepest descent method (RSD) on rank-k manifold. Note that the rank-k manifold is a noncom-

pact manifold since the limit may be not in the feasible set. The projection in Algorithm 8 is

equivalent to an SVD-type retraction. In this section, the SVD-type retraction and the ortho-

graphic retraction [AO13, Section 3.2] on the fixed-rank manifold is used for RSD. Both of them

are second-order retraction. Furthermore, like Algorithm 8, the step size chosen in RSD is fixed,

which is 1
2tr(M2(Sk)STk )

.

The random generated graph is a directed graph with 1000 nodes and the probability of adding

a new edge for each node is 0.01. We look at the performances of both methods to compute low-rank

approximations of self-similarity matrices, i.e., A = B. The initial point in RSD is a rank-k matrix

defined by [U0, D0, V0], where U0 ∈ Rm×k, V0 ∈ Rn×k are orthogonal matrices generated by Matlab’s

ORTH and RANDN, D0 = D
‖D‖F , where D is a diagonal matrix with diagonal elements from 1 to k.

The stopping criterion for both methods are ‖∆S‖F ≤ 10−6‖S‖F . The relative error is computed

by ‖S−S
B‖F

‖SB‖F
, where SB is the true similarity matrix obtained from the Blondel’s algorithm. The

numerical rank of the true similarity matrix is small. There are 8 singular values greater than 10−5

and 9 of them greater than 10−6.

The average computational times and the average relative errors with respect to the true self-

similarity matrices for exactly k nonzero eigenvalues are shown in Figure 5.5 and Figure 5.6. From

the two figures, we observe that when reaching almost the same relative error, the computational

time of RSD is much smaller than Cason’s method, especially when k gets larger. This shows that

even for fixed k the combination of the somewhat lower computational complexity per step of RSD

and its choice of direction are a clear improvement over the choices of direction and projection in

Algorithm 8

Figure 5.6 shows when k reaches 8, the relative error is already small, which matches the singular

values we observed in true similarity matrix. After that, increasing k makes no big difference on the

relative error. This means the value k greater than 8 may be “too large” and can bring unnecessary
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operations. This motivates using Algorithm 2 rather than a fixed rank k to exploit its ability to

find a suitable numerical rank independent of the upper bound k.

Figure 5.5: Comparison of compuational time be-
tween Riemannian Steepest Descent method and
Cason’s iteration method with different k.

Figure 5.6: Comparison of relative error between
Riemannian Steepest Descent method and Ca-
son’s iteration method with different k.

5.5.6.2 Comparison of approximation to a rank-1 similarity matrix. As mentioned

in Section 5.3, when one of the graphs is symmetric, the similarity matrix is a rank-1 matrix. In the

following, we compare Cason’s method with MROM for different bounds k. The inner algorithm

in MROM is taken to be the Riemannian steepest descent method (RSD) with fixed step size in

each iteration discussed earlier.

The adjacency matrix of a random symmetric graph with N nodes is generated by A = A0+AT0 ,

where A0 is generated by Matlab’s RANDINT with seed 1. The graph B is also generated by

Matlab’s RANDINT. Since the rank of the true similarity matrix is 1, the bound on rank is

considered with two values k = 1 and k = 5. The relative error is computed by ‖S−S
B‖F

‖SB‖F
, where SB

is true similarity matrix obtained from Blondel’s algorithm. The initial point in MROM is a rank-k

matrix defined by [U0, D0, V0], where U0 ∈ Rm×k, V0 ∈ Rn×k are orthogonal matrices generated by

Matlab’s ORTH and RANDN, D0 = D
‖D‖F , where D is a diagonal matrix with diagonal elements

from 1 to k. The initial point in Algorithm 8 is a rank-1 matrix given in Step 1 independent of the

value of the bound k.
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Results are shown below in Figures 5.7 and 5.8. For MROM, we observe, independently of

the rank of the initial point, always adjusts the rank of the similarity matrix to the correct value

of 1. Figure 5.7 shows the computational time of both methods with different k. MROM has

significant time advantages as N (the size of graph) increases, independently of the initial point.

The computational time of Algorithm 8 are almost the same for different k. The algorithm works

with m×4k and m×2k matrices which since m� k here yields mild dependence on k in complexity

per step. MROM has a similar mild dependence per step. Figure 5.8 shows although the relative

error achieved by both methods is small that of MROM is near numerical roundoff and noticeably

smaller than that of Cason’s method.

Therefore, the rank adjustment and efficient optimization on each fixed rank manifold clearly

provide a significant benefit compared to Cason’s method. Furthermore, figure 5.7 indicates that

MROM starting from a rank-1 matrix is more efficient than starting from a higher rank matrix.

In the all experiments in the remainder of this chapter, we start from a rank-1 matrix and let the

rank adjust automatically using our rank control strategy.

Figure 5.7: Comparison of computational time
between MROM and Cason’s iteration method for
k = 1 and k = 5.

Figure 5.8: Comparison of relative error between
MROM and Cason’s iteration method for k = 1
and k = 5.

5.5.6.3 Comparison of approximation of a self-similarity matrix of a random graph.

In this section, the performances of MROM and Cason’s method when computing a low-rank ap-

proximation of the self-similarity matrix of a randomly generated graph are compared. The random
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graph is a directed graph with 500 nodes and, since the probability of adding a new edge for each

node is 0.003, it has a sparse adjacency matrix. The relative error is computed by ‖S−S
B‖F

‖SB‖F
, where

SB is true similarity matrix obtained from the Blondel’s algorithm. The numerical rank of the true

similarity matrix is not large compared to the size of the matrix. There are 182 singular values

greater than 10−5 and 311 of them greater than 10−6.

The comparison in Section 4.4.8 shows for matrix with large size, limited-memory RBFGS

method has significant time advantage. Therefore, it is used as the inner algorithm in MROM.

Since the numerical rank is large, ε1 is chosen to be
√

3
3 in Algorithm 2 in order to allow a more

rapid increase of rank at each step.

Figures 5.9 and 5.10 show the comparison of relative error and computational time for the

two methods with different values of k. It can be observed for each k, that the relative error of

both methods are almost the same, however, the computational time cost by MROM is much less

than Algorithm 8. Clearly, by allowing an approximate minimization and starting with a rank-1

similarity matrix, MROM’s rank adjustment and efficient Riemannian optimization on each fixed

rank manifold makes it the preferred method is the numerical rank of the low-rank approximation

is not very small.

Figure 5.9: Comparison of relative error between
MROM and Cason’s Iteration Method on random
generated graph

Figure 5.10: Comparison of cost time between
MROM and Cason’s Iteration Method on random
generated graph
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5.5.6.4 Comparision when the largest two eigenvalues are close. In this section,

situations that cause difficulties for both Cason’s Algorithm 8 and MROM are considered. First,

note that, due to its relationship to the power method, when the two dominant eigenvalues of

M2, where M = A ⊗ B + AT ⊗ BT , are very close in magnitude, the rate of the convergence of

Algorithm 8 to the desired dominant eigenvector can be very slow. The limiting case when the

dominant eigenvalue of M2 has geometric multiplicity greater than 1, requires that the similarity

matrix S is the eigenvector of M2 with the largest 1-norm. Given an appropriately large bound k,

Cason’s Algorithm 8 will converge to this eigenvector by design, possibly very slow. Unfortunately,

MROM, while converging to an eigenvector of M2, does not necessarily converge to the desired

one.

Fortunately, in general, it does not appear to be a common situation to have large graphs

for comparison where M2 has two such dominant eigenvalues, either analytically or numerically.

However, it is possible to construct a family of graphs to illustrate the effect on the algorithms of

interest and to provide some basis for the expectation that MROM with some modification can

maintain its efficiency and effectiveness.

We consider computing the self-similarity matrix of a graph G defined by a unidirectional cycle

and an additional source node. The graph with 10 nodes and uniform edge weights of 1 is shown

in Figure 5.11.

1 2 3 4 5 6 7 8 9

10

Figure 5.11: A sparse Graph G with 10 nodes.
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The adjacency matrix A of graph G in Figure 5.11 is

A =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0


.

The two dominant eigenvalues of the matrix M2, where M = A ⊗ A + AT ⊗ AT , are 5.6280 and

5.5818 yielding a ratio of approximately 0.9918 which is close enough to 1 to expect a degradation

in convergence.

Table 5.6 shows the relative error (‖S−S
B‖F

‖SB‖F
, SB is true similarity matrix obtained from the

dominant eigenvector associated with matrix M2), the final value of the cost function (5.7) and

the computational time. With the bound k = 10, both methods produce a similarity matrix with

rank 10, which is the true rank. The relative error achieved by MROM is much smaller than

Algorithm 8, and is essentially at double precision roundoff. Furthermore, although the modified

Riemannian optimization method starts from a rank-1 matrix and adjusts rank automatically, the

computational time cost is less than Cason’s method. This shows the degradation of convergence

in Cason’s algorithm and that, despite the fact that the eigenvalues are close, they are not close

enough to affect MROM’s performance.

Table 5.6: Rank ≤ k approximation of self-similarity matrix of graph 5.11. The subscript ±z
indicates a scale of 10±z.

Iteration Method MROM
k relative err f time(s) relative err f time(s)

10 2.005−06 5.6280 0.359 3.049−14 5.6280 0.167

A larger member of the family of graphs can be used to illustrate the need for a modification

to MROM. Consider the extending the graph above from 10 to 41 nodes and adding a tiered set of
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edge weights as seen in the adjacency matrix

A =



0 5 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 10−5 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 10−5

0 1 0 · · · 0 0 · · · 0


.

.

Checking the singular values of the true rank similarity matrix SB, we observe that the weighting

has caused the singular values to become small after the first six singular values[
0.81700 0.57577 0.03147 0.00085 4.66e− 05 1.26e− 06

]
.

Clearly, a low-rank approximation of SB is a reasonable goal. The two computed dominant eigen-

values of M2 are equal to double precision accuracy with a value approximately 677.00148 and

there is a significant gap to the next eigenvalue at approximately 27. Therefore, the invariant

subspace associated with the dominant eigenvalue has dimension 2 and according to [BGH+04],

the true rank similarity matrix SB can be provided by the normalized projection of a vector 1 on

the dominant invariant subspaces.

Different values for upper bound k (k = 1, 2, 3, 4, 5, 6) are used in the experiments. Figure 5.12

shows the results of log |gradΦ| versus number of iterations in Cason’s method. It is clear that for

k = 2, 3, 4 the algorithm has significant difficulties reaching the desired stopping criterion. The

rapid convergence for k = 1 does not yield the desired eigenvector of M2 since the bound is too

small compared to the numerical rank of 6 of SB. However, when k is taken large enough at 6 a

good approximation of SB is computed. The first six singular values of the computed similarity

matrix, listed in the second column of Table 5.7, are very close to those of SB given in the first

column of the same table.

When MROM with RTR-Newton as inner algorithm is applied to the problem, we observed

that, while convergence is reasonable, the method simply converges to an eigenvector associated

with the largest eigenvalues. It does not satisfy the property of the desired similarity matrix, i.e.,

it does not have the largest 1 norm. In order to get the approximation of similarity matrix with

largest 1 norm, a modification such as those proposed in Section 5.3 must be made.
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Figure 5.12: Low rank approximation with rank at most k by Cason’s Iteration Method.

We consider the first modification proposed in Section 5.3. It requires adding a penalty term

on the cost function (5.7), i.e. the following new cost function is considered:

Φ2(S) := tr(STM2(S)) + λ1TS1, (5.102)

where λ is the penalty coefficient, 1 is an all one vector.

The Euclidean gradient of the new cost function Φ2(S) is 2M2(S) + λ√
mn

1T1. As before,

projecting the Euclidean gradient onto the tangent space of submanifold M (the sphere Smn−1)

and the fixed-rank manifold Sr yields the full Riemannian gradient and Riemannian gradient on

the fixed-rank manifold.

All the parameters are set to be the same as before. In addition, the new parameter λ in the

penalty term is set to be
√
mn

1000mn . The value of the quantity log |gradΦ| as a function of the iteration

is shown in Figure 5.13.

For all values of the bound k, MROM on the modified cost function achieves the stopping

criterion. The characteristic behavior of changing rank from the rank-1 initial guess at the similarity

matrix to the appropriate rank final approximation - in this case always the bound k – is observed.
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Figure 5.13: Low rank approximation with rank at most k by applying MROM on new cost function.

For a given rank, the value of log |gradΦ| decreases rapidly as the Riemannian optimization on

the fixed-rank submanifold Sr of the sphere converges. After a rank change the value increases as

expected and then once again decreases rapidly due to the fixed-rank optimization. Eventually,

the final rank is chosen and a value of log |gradΦ| satisfying the stopping criterion is achieved. The

third column of Table 5.7 contains the relevant singular values of the similarity matrix computed

by MROM on the modified cost function with k = 6. Clearly, they are good approximations to

those of SB and they have been computed efficiently.

5.6 Conclusion

The adaptation and application of MROM to generating a low-rank approximation of a graph

similarity matrix has been explored in this chapter. While the utility of a low-rank approximation

matrix when the similarity matrix is not low-rank either numerically or exactly is still an open

question, it is reasonable to consider the efficient computation of such a low-rank approximation,

especially for those cases where the true similarity matrix has low-rank structure.
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Table 5.7: The first 6 singular values of true similarity matrix SB, low rank approximation got by
Cason’s iteration algorithm SC and low rank approximation got by modified Riemannian optimiza-
tion algorithm SM .

SB SC SM

0.817005719797966 0.817005719800206 0.817006681732839
0.57576954816249 0.575769548159327 0.575768137078938

0.0314698499477739 0.0314698499477084 0.0314705899851615
0.000852991923203862 0.000852991923194901 0.000853796152030672
4.6621999922645e-05 4.66218975973872e-05 7.2624727193948e-05
1.26369173803024e-06 1.26368896454642e-06 4.53024313970956e-05

Two types of low-rank approximation have been considered. For the first type, the feasible set

of low-rank approximations with k identical singular values is a manifold. Therefore, the general

Riemannian optimization methods can be applied directly. The second type, approximation with

rank at most k, is more general and its feasible set does not have a manifold structure. The

algorithm proposed by Cason et al. is essentially equivalent to Blondel’s algorithm (Algorithm 5)

when k = min(m,n). What is more, we observe the more efficient version of their algorithm, i.e.,

Algorithm 8, can be analyzed in terms of a Riemannian manifold rather than a heuristic Euclidean

algorithm.

Support for the following conclusions was demonstrated. First, the performances of the Rie-

mannian optimization algorithms on fixed-rank manifold show that working on rank-k manifold is

more efficient in terms of space and computational time than using Algorithm 8. Next, the most

significant advantage of MROM is its efficient and effective updating of the rank of the approx-

imation to the similarity matrix. Additionally, the performance of MROM was seen to be more

efficient for most cases especially the practical case when the numerical rank is not very small and

an approximate optimization yields a useful low-rank approximation for the particular application.

For the special rank-1 similarity matrix, MROM has significant time advantages compared with

Cason’s iteration method. This advantage holds even if the starting point has rank greater than 1.

MROM can decrease the rank to 1 efficiently to save time and space. MROM’s overall robustness

was clearly demonstrated.

MROM failed to compute a good approximation to the similarity matrix when the geometric

multiplicity of the extremal eigenvalue of M2 is greater than 1, i.e., the eigenspace associated to

the extremal eigenvalue is not one-dimensional. While this situation appears to be uncommon,
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MROM can only guarantee convergence to an eigenvector, not necessarily the unique one with the

largest 1-norm required for this special case. Applying MROM to one of the proposed modified

cost functions has been shown to address the problem for a family of example graphs. We have

also introduced other modified cost functions in Section 5.3. They may prove useful for this special

case.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we present new algorithms that solve optimization problems on a matrix

manifold M ⊆ Rm×n with an additional rank inequality constraint. New geometric objects are

defined to facilitate efficiently finding a suitable rank. The convergence properties of the algorithms

are analyzed and empirically verified. Experiments and applications are used to illustrate the

efficiency and effectiveness of the algorithm.

The major contributions of this dissertation are:

1. Developed a rank-related vector that defines a search direction on the tangent cones.

2. Developed a rank-related retraction that facilitates the change from one fixed-rank manifold

to another that is more flexible and effective than fixed-increment updating.

3. Developed a general algorithm with flexible fixed-rank inner algorithm choice to solve opti-

mization problems with rank inequality constraints.

4. Completed the convergence theory for the new algorithms.

5. Empirically evaluated the algorithms for two important applications: weighted low-rank ma-

trix approximation problems and low-rank approximation of a graph similarity matrix.

6. For weighted low-rank matrix approximation problems:

(a) Empirically evaluated the ability of the new algorithms to determine a space efficient

approximation when the singular value profile is gapless and strongly gapped for general

weighting matrix for a range of problem sizes and choice of fixed-rank inner algorithm.

(b) Empirically evaluated the performance of the new algorithms for problems with a struc-

tured weighting matrix for a range of problem sizes and choice of fixed-rank inner algo-

rithm.

(c) Empirically evaluated the influence of the retraction and its factor (in)variance for a

range of problem sizes and choice of fixed-rank inner algorithm.

(d) Empirically evaluated the performance of different inner algorithms and sizes. For large

size matrix, the limited-memory algorithms were shown to be preferable.
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7. For low-rank approximation of a graph similarity matrix:

(a) Developed algorithms with flexible fixed-rank inner algorithm choice for geometric mul-

tiplicity of 1 and greater than 1.

(b) Empirically evaluated the new algorithms for problems with geometric multiplicity of 1

for a range of problem sizes and choice of fixed-rank inner algorithm.

(c) Characterized some problems that yield geometric multiplicity greater than 1.

(d) Considered the case when the similarity matrix defined by the full-rank iteration does not

have a good low-rank approximation in the sense of the Frobenius norm and determined

if the low-rank approximations that are produced by the proposed algorithms have any

useful information for the related graph problems.

There are several avenues of future research in both algorithms and their applications. For al-

gorithms, we will consider developing heuristics to choose/adapt parameters ε1 and ε2 in Algorithm

2. To avoid the singular value decomposition for a large matrix, we implement three-factor repre-

sentations of each matrix. Further analysis is needed on the invariance and variance of retractions

with respect to the three-factor representations.

For applications, there are other constraints on the approximating matrix of interest in the lit-

erature apart from the rank constraint, e.g., non-negativity and Hankel structure. We will continue

to adapt and improve the Riemannian methods and our understanding of their behavior and its

relationship to application characteristics and constraints. The adapted and improved methods

will be systematically compared with current state-of-the-art methods in each application area.
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