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Abstract

Matrix and tensor completion are a type of data recovery problem that arises
in many different real-world applications related to the inference or acquisition
of data. In this thesis, we investigate matrix and tensor completion problems
in the aspects of models, algorithms and regularization.

With respect to models and algorithms, we tackle these problems in the
framework of low-rank matrix optimization with a least-squares model. These
rank-constrained models are known not only for their low computational com-
plexity but also the capability of extracting the most important information in
the data that has an intrinsically low rank. By exploiting the manifold struc-
tures in the rank-constrained models, we develop Riemannian algorithms and
analyze the convergence properties of these algorithms. In particular, we fo-
cus on algorithms designed via Riemannian preconditioning and provide novel
results that explain their efficiency on the quotient manifold of fixed-rank ma-
trices.

Regularization, in general terms, refers to a mechanism that imposes some
additional structure in the problem variable to prevent over-fitting of the model.
We investigate the usage of a certain graph-based regularizer in the matrix
and tensor completion problems. The penalty function in the graph-based
regularization is an extension of the Frobenius norm in the problem variable,
in the sense that the entries in the variable are not penalized with uniform
weights but with respect to the intensities of some pairwise relations encoded
in a graph Laplacian matrix. The graph Laplacian-based penalty function
promotes matrix or tensor solutions such that the pairwise similarities among
its entries are conform to the underlying graph structure. Besides traditional
graph models, we propose a graph learning algorithm for learning a desired
graph structure from data.
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Notation

Variables, vectors and matrices

1 A (column) vector of all ones (of size given by context)
Ip, I Identity matrix (of size p× p or given by context)
AT, vT Transpose of a matrix A and a vector v
Aij Entry of a matrix A on the row i and column j, (i, j)-th entry

of A
δij Kronecker delta, δij = Iij
Ai,: i-th row of a matrix A
A:,j j-th column of a matrix A
diag(A) Vector composed of diagonal entries of a matrix A
Diag(d1, . . . , dn) Diagonal matrix, the (i, i)-th entry is di
Diag(d) Diagonal matrix, the (i, i)-th entry is di
‖v‖1, ‖v‖2 `1 and `2 norms of the vector v
‖Ai,:‖2 `2 norm of the i-th row of the matrix A

Matrix, tensor properties and operations

vec(A) Vectorization of a matrix A
vecS(A) Half-vectorization of a symmetric matrix A
tr(A) Trace of a matrix A
rank(A) Rank of a matrix A
σmin(A) Minimal non-zero singular value of a matrix A
σi(A) i-th singular value of A
λi(A) i-th eigenvalue of A
A � 0, A � 0 Positive semi-definite matrix, positive definite matrix
A† Moore–Penrose pseudoinverse of a matrix A
U⊥ Orthonormal matrix that generates span(U)

⊥

A ? B Hadamard product of two matrices A and B
A⊗B Kronecker product of two matrices A and B
A�B Khatri-Rao product of two matrices A and B
u1 ◦ · · · ◦ uk Outer product of k vectors u1, . . . ,uk
T kth-order tensor (multidimensional array), k ≥ 3
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rankCP(T ) Canonical polyadic rank of a tensor
ranktc(T ) Tucker rank (multilinear rank) of a tensor
T(i) Mode-i matricization of the kth-order tensor T , 1 ≤ i ≤ k
‖A‖F, ‖T ‖F Frobenius norm of a matrix A, tensor T

Sets and manifolds

Rn Set of n-dimensional real vectors
Rm×n Set of m× n real matrices
GL (k) Set of k × k invertible matrices
Rm×k∗ Set of m× k real matrices with full column rank (k ≤ m)
St(m, p) Stiefel manifold {U ∈ Rm×p : UTU = Ip}
span(U) Subspace spanned by the columns of U
Rm×k × Rn×k Product space of Rm×k and Rn×k
M≤k Set of m × n real matrices with rank equal or smaller than

k ≤ min(m,n)
Mk Set of m× n real matrices with rank k ≤ min(m,n)
Sn−1 Unit-sphere in Rn
Sn−1

+ Nonnegative orthant of the unit-sphere in Rn

Manifolds and operators

E Vector space
〈u, v〉 Inner product between the vectors u, v
F⊥ ⊂ E Orthogonal complement of a subspace F of E
E1 × E2 Product space
M Manifold
M1 ×M2 Product manifold
x ∼ y Equivalence relation
M/ ∼ Quotient space
Vx̄, Hx̄ Vertical and horizontal spaces at x to a quotient manifold
TxM Tangent space at x to the manifoldM
PTxM(·) Orthogonal projection onto the tangent space TxM
gx(·, ·) Riemannian metric at x
‖ξ‖x Norm of the tangent vector ξ at x
gradf(x) Riemannian gradient of f at x

Acronyms

SVD Singular value decomposition
GL graph learning
LRMC, LRTC Low-rank matrix completion, low-rank tensor completion
GRMC Graph-regularized matrix completion
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Flops Floating point operations
GD, RGD Gradient descent, Riemannian gradient descent
CG, RCG Conjugate gradient, Riemannian conjugate gradient
AltMin Alternating minimization
ADMM Alternating directions multiplier method
PD Polyadic decomposition
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Chapter 1

Introduction

Low-rank matrices are often encountered in data science and other applications.
Many problems in machine learning, signal processing and big data analysis can
be modeled as a problem of learning a low-rank matrix from data. Low-rank
models constitute a powerful data representation paradigm that is well-known
for its computational and storage efficiency. In addition to matrix optimization
problems, low-rank models have also been extended to problems with higher-
order multidimensional arrays, known as tensors.

In this thesis, we focus on low-rank models and algorithms for matrix and
tensor completion. Matrix completion refers to the task of estimating, or in-
ferring the missing entries of a matrix, given a number of its known entries.
Motivated by the application in recommendation systems and especially pop-
ularized by the Netflix Prize [BL+07] for movie recommendations, the matrix
completion problem has seen quick developments and numerous applications
in the last decade. Tensor completion, as the term suggests, is a problem simi-
lar to matrix completion but deals with the imputation of missing entries in a
tensor. Here, the tensor refers to a multidimensional array, which is a widely
used data structure for storing data that has multiple (more than two) modes
such as sounds, images, user profiles, time stamps, and spatial information.

The task of filling the missing entries of a data matrix, without any prior
knowledge, is an ill-posed problem. Among the many early attempts for ma-
trix completion, the optimization approach of [KBV09], based on the idea of
latent factor models, consists in optimizing a low-rank matrix factorization to
fit the sparsely distributed known entries of the data matrix. This approach
not only provided impressive completion results through various experimental
demonstrations, but also achieved those results with low computational cost.
Therefore, low-rank matrix optimization and matrix completion problems have
gained much attention from research communities in machine learning and nu-
merical optimization. Our work in this thesis addresses the matrix and tensor
completion problems through the two aspects: models and algorithms.

For the modeling of matrix and tensor matrix problems, we take an in-
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CHAPTER 1. INTRODUCTION 2

terest in regularization methods in the framework of low-rank models. In the
context of machine learning, regularization refers to a process that imposes an
additional structure on the problem variable of a machine learning model to
prevent over-fitting of the model. We study so-called graph-based regulariza-
tion, which exploits relational information in the form of graphs: while it is
common approach to use the Frobenius norm (of the matrix variables) as a
penalty function of the matrix completion problem, graph-based regularization
exploits structural information of the data in a more adaptive manner. More
precisely, the index sets of the data matrix are modeled as graphs, in which
the graph edges indicate the connections or degrees of similarity between the
columns or rows of the matrix. This graph-based modeling can be understood
in the example of the movie recommendations application: given a matrix of
ratings (e.g., in a scale of 1 to 5) of a number of movies made by a number
of users, the matrix row and column index sets are the sets of the users and
movies. In addition to the known ratings, the interrelations between the users
and/or the movies are important side information; for example, the users (re-
spectively, the movies) form different clusters, or closely-connected subgroups,
according to similarities in some of their features, interests or profiles. Con-
sequently, given a graph that conforms to the clustering patterns of the set of
these users (respectively, movies), the pairwise similarities can be encoded in
the adjacency matrix of this graph, and constitute valuable side information in
addition to the low-rank matrix completion model. In a larger sense, graphs
provide a natural tool for many machine learning problems other than ma-
trix and tensor completion. In particular, advances in graph spectral analysis
and graph signal processing [Chu97, Spi12, LK02, SNF+13] lay the ground for
extending the notion of smoothness of real-valued functions on a continuous
domain to functions defined on the vertices of a graph. A prominent applica-
tion of these theories is the use of graph Laplacian matrices in machine learning
models [ZGL03, Liu06, TSF14].

When one tries to exploit graph information in a certain task like graph-
based regularization, important questions to ask include how to get graph infor-
mation and how to use the graph information in the specific task. To address
these questions, we investigate a graph learning method. Also, we explore
several ways of building graphs from a given data matrix and then focus on
the usage of graph-based regularization for matrix completion. In a previous
work about what we refer to as graph-regularized matrix completion, Rao et
al. [RYRD15] investigated the effect of a graph Laplacian-based regularization
for matrix completion and proposed an alternating minimization algorithm for
solving the underlying problem. We approach this problem from a Riemannian
optimization perspective, which is the second main topic of this thesis.

With respect to optimization, the most important feature of the low-rank
models is that the matrix or tensor candidate for the completion task is repre-
sented by a tuple of low-rank matrices through matrix or tensor factorization.
From the perspective of numerical optimization on manifolds, such a prob-
lem with (low) rank constraints can be seen as an unconstrained optimization
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problem on a certain manifold or variety of low-rank matrices. Therefore, this
thesis takes a view of optimization on matrix manifolds [AMS08]. Following
developments in algorithms for low-rank matrix optimization [KO09, CCS10,
JMD10, MBS11, MAS12, Van13, AAM14, MMBS14], we focus on a type of al-
gorithms designed through Riemannian preconditioning [MS16] for solving the
problems underlying the aforementioned matrix and tensor completion mod-
els. The particularity of these algorithms is that their search directions on
the matrix manifold are determined with respect to a certain variable metric
that is designed according to the cost function of the low-rank model; notice
that, in the case of the least-squares loss function, the so-designed metric is
a Riemannian metric on the manifold. To further understand the efficiency
of these algorithms that we observe through various experiments, we investi-
gate the properties of the Riemannian gradient descent algorithm, designed
through Riemannian preconditioning, on the manifold of m× n matrices with
a fixed-rank; the algorithmic framework is built upon the quotient manifold
interpretation of the set of fixed-rank matrices. We find a new perspective
for the convergence analysis of this algorithm and provide results about the
local convergence behavior of the algorithm, which explain the time efficiency
and some nice properties of this algorithm that traditional (Euclidean) gradi-
ent descent or alternating minimization does not possess for low-rank matrix
optimization problems.

The contributions of this thesis come from a collection of research works
made by the author and his coauthors, which are listed in the organization of
the thesis; see Section 1.1. In the next section, we list some applications of
matrix and tensor completion, other than the aforementioned application in
movie recommendations.

Applications

Apart from the application to recommendation systems that we will demon-
strate in detail, matrix and tensor completion have numerous other applica-
tions. In computer vision, matrix and tensor completion are used to restore
visual data that has missing values due to limitations of the acquisition or
transmission of data or simply technical issues; one can find examples in the
following areas.

Biomedical imaging. The recovery of images from limited and noisy mea-
surements is essentially a matrix completion problem and is an important prob-
lem in areas of biomedical imaging such as microscopy, magnetic resonance
imaging (MRI) and computed tomography; see [HLJ18] for details.

Structure from motion. Structure from motion (SFM) [YJHB14] refers to
a photogrammetric range imaging technique for estimating three-dimensional
structures from two-dimensional image sequences that may be coupled with
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local motion signals; it is a computer vision analogue of the phenomenon in
biological vision by which humans (or other living creatures) can recover three-
dimensional structure from the projected two-dimensional (retinal) motion field
of a three-dimensional scene or moving object. In the SFM problem, it is com-
mon to require operations on matrices with missing entries because of occlusion
or tracking failures [CS04].

In social computing [SGCH19], matrix and tensor completion are used to
estimate missing information concerning the individuals and social interactions
within societies; one can find examples in the following areas.

Link prediction. Link prediction aims at predicting missing connections in
a network or the probabilities of future node connections. This problem can be
formulated as a matrix completion problem based on the existing or observed
connections in the network. More recently, link prediction is also modeled
as tensor completion problems, following the extension of static networks to
networks with dynamic connections over time or networks that contain multiple
types of interactions [SGCH19].

Urban computing. Urban computing deals with the human behaviors and
mobilities with the help of computing technology to benefit living quality
in urban areas. “Traffic and mobility” information is one of the most sig-
nificant topics in this field. The traffic occupancy data recorded by PeMS
(http://pems.dot.ca.gov/) and the New York Taxi trip record data (https://
www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page) are notable ex-
amples. Based on this large amount of data, the processing of traffic informa-
tion and mobility recommendation are directly related to matrix and tensor
problems.

1.1 Organization of the thesis

Chapter 2: Preliminaries

This chapter presents the background and fundamental definitions and proper-
ties about (i) manifolds, Riemannian geometry and optimization with low-rank
matrices, (ii) graphs and (iii) tensor computations.

Chapter 3: Graph learning and applications

This chapter presents an optimization approach to the problem of inferring a
graph structure from data. The graph learning problem consists of finding a
graph adjacency or Laplacian matrix by minimizing a smoothness-promoting
function in the graph-related matrix variable. We investigate one of the graph
learning formulations and propose a novel graph learning algorithm. The pro-
posed algorithm is applied to graph-dependent machine learning tasks such as

http://pems.dot.ca.gov/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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semi-supervised learning and graph-based regularization for matrix completion.
This chapter is partly based on the paper [DAG18].

Chapter 4: Graph-regularized matrix completion

Low-rank matrix completion is the problem of recovering the missing entries
of a data matrix by using the assumption that the true matrix admits a good
low-rank approximation. Much attention has been given recently to exploiting
correlations between the column/row entities to improve the matrix completion
quality. In this chapter, we propose preconditioned gradient descent algorithms
for solving the low-rank matrix completion problem with graph Laplacian-based
regularizers and establish global convergence results of these algorithms.

Experiments on synthetic data show that our approach achieves significant
speedup compared to an existing method based on alternating minimization.
Experimental results on real world data also show that our methods provide
low-rank solutions of similar quality in comparable or less time than the state-
of-the-art method. This chapter is based on the conference and journal pa-
pers [DAG19, DAG20].

Chapter 5: Optimization with fixed-rank matrices

In this chapter, we study a Riemannian gradient descent algorithm on a set of
fixed-rank matrices. The set Mk of m × n real matrices with a fixed rank k
is identified with a quotient manifold of a two-factor product space via matrix
factorization. The underlying Riemannian gradient is defined with respect to a
metric that induces preconditioning for the matrix factorization problem. We
provide novel results about the properties of Riemannian gradient descent on
the quotient manifoldMk.

For a class of fixed-rank matrix optimization problems with a quadratic cost
function, we analyze the local convergence behavior of the Riemannian gradi-
ent descent algorithm. The geometric and convergence results show that the
Riemannian algorithm not only has fast convergence behavior but also enjoys
desirable invariance properties, in contrast to the Euclidean gradient descent
on the matrix product space. Numerical experiments on matrix completion
with fixed-rank matrices are provided to demonstrate these properties. This
chapter is based on a joint project with P.-A. Absil and K. A. Gallivan. An
initial extended abstract of this work was accepted for a talk at MTNS 2020;
the conference was postponed and recently canceled.

Chapter 6: Graph-regularized tensor completion

This chapter contains an introduction to the tensor completion problem with
an emphasis on the tensor decomposition approach using the polyadic decom-
position. The rest of this chapter is based on the paper [GDAG20]. As second
author of this paper, my contributions are mainly in the development of the
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algorithms and the integration of graph construction methods, in an extended
framework of the GRMC project (Chapter 4).

In this work, we start from a low-rank tensor decomposition model for ten-
sor completion and consider an additional graph Laplacian-based function in
the model variables. The graph-based function exploits correlations between
the rows of the low-rank matrix factors of the polyadic decomposition model.
We propose an alternating minimization algorithm for solving the problem
that we refer to as graph-regularized tensor completion (GRreg-TC). Further-
more, based on the Kurdyka-Łojasiewicz property, we show that the sequence
generated by the proposed algorithm globally converges to a critical point of
the objective function. Besides, an alternating direction method of multipliers
algorithm is also developed for GRreg-TC. We show the efficiency of the pro-
posed algorithms through extensive numerical experiments on synthetic and
real data.

Chapter 7: Riemannian preconditioned algorithms for tensor com-
pletion

We propose Riemannian preconditioned algorithms for low-rank tensor com-
pletion via the polyadic decomposition of a tensor. These algorithms exploit a
non-Euclidean metric on the product space of the factor matrices of the low-
rank tensor in polyadic decomposition form. This new metric is designed using
an approximation of the diagonal blocks of the Hessian of the tensor completion
cost function, thus has a preconditioning effect on these algorithms. We prove
that the proposed Riemannian gradient descent algorithm globally converges
to a stationary point of the tensor completion problem, with convergence rate
estimates using the Łojasiewicz property. Numerical results on both synthetic
and real-world data suggest that the proposed algorithms present advantages
over existing algorithms in terms of time efficiency under flexible choices of the
tensor rank. This chapter is based on the paper [DGGG21].

List of publications

[DAG18] S. Dong, P.-A. Absil, and K. A. Gallivan. Graph learning for reg-
ularized low rank matrix completion. Proceedings of the 23rd International
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[DAG19] S. Dong, P.-A. Absil, and K. A. Gallivan. Preconditioned Conjugate
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Chapter 2

Preliminaries

This chapter is composed of the main background knowledge of the topics in
this thesis: manifolds and Riemannian geometry, low-rank matrices, graphs
and tensors (also known as multidimensional arrays). The first two sections
are about the fundamental definitions and properties in the field of numerical
optimization on manifolds. In the third and the last sections, brief expositions
on the background of graphs and tensors are given.

2.1 Manifolds, Riemannian geometry and opti-
mization

In this section, we give an overview on the essential elements about manifolds
and Riemannian optimization that are used in this thesis. The contents of this
section relies on [AMS08, Chapters 3–4]. We also refer to [Car92, Lee97, Lee03,
O’n83] for the related topics.

A manifold can be informally understood as a setM that is a collection of
patches, or charts, that can be locally identified as open sets of a d-dimensional
vector space Rd.

Definition 2.1.1 (Chart). A chart of a setM is a pair (U ,ϕ) where U ⊂M
and ϕ is a bijection between U and an open set of Rd.

In the above definition, the chart is d-dimensional and for a point x ∈ M,
the elements of ϕ(x) := (y1, . . . , yd) are called the coordinates of x in the chart
(U ,ϕ).

Definition 2.1.2 (Atlas). A collection of charts (Uα,ϕα) is called an (C∞)
atlas if it satisfies:

1. ∪αUα =M,

2. For any Uα,Uβ with Uα ∩ Uβ 6= ∅, the sets ϕα(Uα ∩Uβ) and ϕβ(Uα ∩ Uβ)

9
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are open sets in Rd and the change of coordinates

ϕβ ◦ ϕ−1
α : Rd 7→ Rd

is (C∞) smooth. In this case, Uα and Uβ are said to be compatible charts.

Two atlases A1 and A2 are equivalent if A1 ∪ A2 is an atlas; this implies
that (via Definition 2.1.2) any chart (U ,ϕ) in A1 is compatible with all charts
of A2 and vice versa. Given an atlas A, let A+ be the set of all charts such that
A ∪A+ is also an atlas. One can see that A+ is also an atlas, called maximal
atlas generated by A. For any atlas A, there exists an unique maximal atlas
A+ generated by A.

We are interested in maximal atlas A+ such that the topology induced on
M by A+ is Hausdorff and second countable. In brief, a topological space is
Hausdorff if two distinct points in this space have disjoint neighborhoods. In
view of iterative algorithms, the Hausdorff property rules out the possibility
of having a convergent sequence that has distinct limit points. A topological
space is second-countable if there is a countable collection B of open sets that
generates all open sets of the space by union. Based on such a maximal atlas,
we define a manifold in the following classical way.

Definition 2.1.3 (Manifold). A manifold (M,A+) is a set M endowed with
a maximal atlas A+ of M .

The manifold (M,A+) is (C∞) smooth if the atlas A+ is (C∞) smooth.

Example 2.1.4 (The set Rm×n). The set of real-valued matrices Rm×n, en-
dowed with the chart

Rm×n 7→ Rmn : X 7→ vec(X),

where the matrix entry Xij is mapped to the `-th element of vec(X) for i ∈
{1, . . . ,m}, j ∈ {1, . . . ,n} and ` = i+ n(j − 1), is a manifold, since the chart
(via vectorization) forms an atlas.

Note that the chart through vectorization vec(·) is unwieldy, as it destroys
the matrix structure of its argument; in particular, vec(AB) cannot be written
as a simple expression of vec(A) and vec(B). In this thesis, it is the properties
(e.g. closeness and linearity) of the vector space Rmn that matter; the matrix
structure and all matrix computations are preserved.

Example 2.1.5 (The unit 2-sphere). The unit sphere S2 = {w ∈ R3 : ‖w‖2 =
1}, endowed with the two charts (stereographic projections)

{w = (x, y, z) ∈ S2 : z = ±1} 7→ R2 : w 7→
(

x

1∓ z ,
y

1∓ z

)
,

is a manifold, since these charts form an atlas.

From now, we use the notationM for the manifold (M,A+) when the atlas
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information underlying the manifold structure is not required.

Definition 2.1.6 (Smooth function). Let M be a manifold. A function f :
M 7→ R is a smooth function (of class Ck) if, for any x ∈M, the function

f̂ := f ◦ ϕ−1
x : Rd 7→ R,

where (Ux,ϕx) is a chart onM containing x, is (Ck) smooth.

The set of real-valued smooth functions on a neighborhood of x ∈ M is
denoted as Fx(M).

Definition 2.1.7 (Smooth mapping). Let M1 and M2 be two smooth mani-
folds. A mapping F : M1 7→ M2 is of class Ck if, for all p ∈ M, there is a
chart (U ,ϕ) ofM and a chart (V,ψ) ofM2 such that p ∈ U ,F (U) ⊂ V and

ψ ◦ F ◦ ψ−1 : ϕ(U) 7→ ψ(V)

is of class Ck. The latter is called the local expression of F in the charts (U ,ϕ)
and (V,ψ).

2.1.1 Embedded submanifold

Intuitively, an embedded submanifold refers to a subset of a manifold (M,A+)
that inherits the differential structure ofM, and such an inheritance is unique;
see details in [AMS08, Proposition 3.3.1]. Formally, a subset N of a manifold
M is a d-dimensional embedded submanifold ofM if and only if, around each
point x ∈ N , there exists a chart (U ,ϕ) ofM such that

N ∩ U = {x ∈ U : ϕ(x) ∈ Rd × {0}}.

From an numerical optimization perspective, embedded submanifolds of
Euclidean spaces is a special yet important case of embedded submanifolds; in
fact, identifying a set M as an embedded submanifold (of a given Euclidean
space) is a common way of recognizing a manifold. The following proposition
shows the identification of manifolds through submersion (see [AMS08, §3.2.1])
instead of constructing charts explicitly.

Proposition 2.1.8. Let F : M1 7→ M2 be a smooth mapping between two
manifolds of dimension d1 and d2, d1 > d2, and let y be a point of M2. If
the rank of F is equal to d2 at every point of F−1(y), then F−1(y) is a closed
embedded submanifold ofM1, and dim(F−1(y)) = d1 − d2.

Example 2.1.9 (The unit-sphere in Rn). Using the mapping F : Rn 7→ R :
x 7→ ‖x‖2 − 1, it follows from Proposition 2.1.8 that the sphere Sn−1 = {x ∈
Rn : ‖x‖2 = 1} is a (n− 1)-dimensional submanifold of Rn.

Example 2.1.10 (Fixed-rank matrices). Given integers m,n and 1 ≤ k ≤
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min(m,n), the set of m× n real matrices with a fixed rank k, i.e.,

Mk = {X ∈ Rm×n : rank(X) = k},

is a submanifold embedded in Rm×n; see Section 2.2 for more details.

2.1.2 Quotient manifold

Definition 2.1.11 (Equivalence relation). Let M be a set. An equivalence
relation ∼ onM is a relation that satisfies the following properties: (i) reflex-
ivity: x ∼ x for all x ∈ M, (ii) symmetry: x ∼ y if and only if y ∼ x, for
all x, y ∈ M, and (iii) transitivity: if x ∼ y and y ∼ z, then x ∼ z, for all
x, y, z ∈M.

Definition 2.1.12 (Quotient set). LetM be a set and let ∼ be an equivalence
relation on M. For a point x ∈ M, the set of points y ∈ M such that y ∼ x,
denoted as [x] = {y ∈ M : y ∼ x}, is called the equivalence class, or fiber, of
x. The quotient set associated to the equivalence relation ∼, denoted asM/∼,
is the set of all equivalence classes: M/∼ := {[x] : x ∈M}.

The operator π :M 7→M/∼ : x 7→ [x] that maps a point to its equivalence
class is referred to as the natural projection or canonical projection. We also
use π(x) to denote [x], which can be seen as a point in the quotient setM/∼.
The setM is called the total space of the quotient setM/∼.

Let (M,A+) be a manifold and ∼ be an equivalence relation on M. The
quotient set M/∼ admits at most one manifold structure; In this case, there
is a unique maximal atlas B+ such that (M/∼,B+) is a manifold, which we
refer to as the quotient manifold.

Example 2.1.13 (Fixed-rank matrices). The set of m× n real matrices with
rank 1 ≤ k ≤ min(m,n), i.e.,

Mk = {X ∈ Rm×n : rank(X) = k},

is a quotient submanifold in Rm×k∗ × Rn×k∗ , where Rm×k∗ and Rn×k∗ are the
sets of full column-rank matrices. In fact, Mk ' Rm×k∗ × Rn×k∗ /∼, where
the equivalence relation is defined as, for any (L,R), (L′,R′) ∈ Rm×k∗ × Rn×k∗ ,
(L,R) ∼ (L′,R′) if and only if LRT = L′R′T.

Functions on quotient manifolds. A function f onM is termed invariant
under ∼ if f(x) = f(y) if x ∼ y, in which case the function f induces a unique
function f onM/ ∼, called the projection of f , such that f = f̃ ◦ π.

2.1.3 Tangent vectors and tangent space

The notion of tangent vector is interpreted by the velocity of a smooth curve
at a point onM. For a manifoldM embedded in a vector space Rd, let x be a



13 2.1. MANIFOLDS, RIEMANNIAN GEOMETRY AND OPTIMIZATION

point onM and γ : R 7→ M be a smooth mapping, called a curve, onM such
that γ(0) = x. Then the derivative of the curve at t = 0, defined as

γ′(0) :=
d

dt
c(t)

∣∣∣∣
t=0

(2.1)

characterizes a tangent vector to the manifold M at x ∈ M. Note that the
above derivative is well-defined since the curve γ on M is embedded in the
vector space Rd. Thus, the tangent space toM at a point x onM is defined
as follows,

TxM := {γ′(0) : such that γ(0) = x}, (2.2)

where γ is a smooth curve onM. The tangent space characterized in (2.2) is
a linear subspace of Rd. In fact, the dimension of TxM is the dimension of a
chart ofM containing x.

In the general sense, the characterization of tangent vector to a manifold
M can be realized through a real-valued function on M and smooth curves.
Let x be a point on M, let γ be a smooth curve passing through x at t = 0,
and let Fx(M) denote the set of smooth real-valued functions (Definition 2.1.6)
defined on a neighborhood of x. The tangent vector to a curve onM passing
through x is characterized as follows.

Definition 2.1.14 (Tangent vector). Let x ∈ M. The tangent vector to a
smooth curve γ at x is the mapping γ̇(0) from Fx(M) to R defined as follows,

γ̇(0)f :=
d

dt
f(γ(t))

∣∣∣∣
t=0

, for f ∈ Fx(M).

Consequently, the tangent space to M at x, denoted as TxM is the set of
all tangent vectors toM at x.

Definition 2.1.15 (Directional derivative). The directional derivative of a
smooth real-valued function f onM at x ∈M along the direction ξ ∈ TxM is
the scalar:

Df(x)[ξ] :=
d

dt
f(γ(t))

∣∣∣∣
t=0

= (f ◦ γ)′(0),

where γ : R 7→ M is any smooth curve such that γ(0) = x and γ′(0) = ξ.

Definition 2.1.16 (Tangent bundle). LetM be a smooth manifold. The tan-
gent bundle, denoted as TM, is the disjoint union of all tangent spaces:

TM =
⋃
x∈M

TxM.

Definition 2.1.17 (Vector field). A vector field X is a smooth mapping ξ :
M 7→ TM such that ξ(x) = ξx, where ξx ∈ TxM.
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Tangent space to a vector space

A vector space E can be seen as a manifold with a linear structure. Through
Definition 2.1.14, a tangent vector ξ to E at a point x ∈ E is a mapping

ξ : Fx(E) 7→ R : f 7→ ξf =
d

dt
f(γ(t))

∣∣∣∣
t=0

,

where γ is a curve in E passing through x at t = 0. In other words, the tangent
vector is characterized via the image ξf = Df(x)[γ′(0)], for any f ∈ Fx(M).
Thus, there is a linear one-to-one correspondence γ′(0) 7→ ξ, which identifies
tangent vectors to E at x with velocities of smooth curves passing through x.
Therefore, the tangent space to E is identified with E , i.e.,

TxE ' E . (2.3)

Since tangent vectors are local objects, if E∗ is an open submanifold of E , then
TxE∗ ' E for all x ∈ E∗.

Tangent space to an embedded manifold

Let M be an embedded submanifold of a vector space E . As shown in the
beginning of this subsection, the tangent vectors to M are defined with (2.1)
through smooth curves onM and the tangent space toM at a point x ∈ M
is defined in (2.2). In particular, when a manifold M is (locally or globally)
defined through a level set of a constant-rank function F : E 7→ Rd, where E is
a vector space, one has

TxM = ker(DF (x));

as shown in [AMS08, §3.5.7]. In other words, a tangent vector to M at x
correspond to a vector ξ that satisfies DF (x)[ξ] = 0.

Example 2.1.18 (Tangent space to the sphere). Consider the unit sphere
Sn−1 as the level set F−1(0), with F : Rn 7→ R : zTz− 1. Given x ∈ Sn−1, the
directional derivative of F at x along ξ ∈ Rn is DF (x)[ξ] = ξTx+xTξ. Hence,
the tangent space to Sn−1 at x is the set

ker(DF (x)) = {ξ ∈ Rn : xTξ = 0}.

Tangent space to a quotient manifold

Unlike the tangent vectors to a manifold embedded in a vector space, the no-
tion of tangent vectors to a quotient manifold is more abstract and requires
a representation that comes from the tangent vectors of the total space (Sec-
tion 2.1.2).

Let ĎM be a manifold andM = ĎM/∼ be a quotient manifold with canonical
projection π. Any tangent vector to the quotient manifold M can be repre-
sented by a tangent vector in the total space ĎM via the canonical projection π;
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this representation is not unique, and in fact, infinitely many representations
are valid. More precisely, given x ∈ M and ξ ∈ TxM, let x̄ be an element of
the equivalence class π−1(x). Then, any element sξ ∈ Tx̄ ĎM that satisfies

Dπ(x̄)[sξ] = ξ

can be considered as a representation of ξ. Indeed, for any smooth function
f : M 7→ R and the function f̄ := f ◦ π : ĎM 7→ R, one has the following
identification,

Df̄(x̄)[sξ] = Df (π(x̄))
[
Dπ(x̄)[sξ]

]
= Df(X)[ξ].

Since π is surjective, the kernel of Dπ(x̄) is non-trivial, thus, the matrix repre-
sentation of ξ in Tx̄ ĎM is not unique. Nevertheless, one can find a unique repre-
sentation of ξ in a subspace of Tx̄ ĎM. This is realized by decomposing the tan-
gent space Tx̄ ĎM into two complementary subspaces, such that Tx̄ ĎM = Vx̄⊕Hx̄,
where Vx̄ is the tangent space at x̄ of the equivalence class [x̄], i.e.,

Vx̄ := Tx̄(π−1(x)),

which is referred to as the vertical space; the complement of Vx̄, denoted as Hx̄,
is called the horizontal space. It is clear that a tangent vector sξ ∈ Vx̄ satisfies
Dπ(x̄)[sξ] = 0. Consequently, for any x ∈ M and ξ ∈ TxM, there is a unique
representation sξ ∈ Hx̄ ⊂ Tx̄ ĎM of ξ such that Dπ(x̄)[sξ] = ξ. The tangent vector
sξ ∈ Hx̄ is called the horizontal lift of ξ.

x

Vx

Hx

π

E/∼

E

x = π(x)

π−1(π(x))

Figure 2.1: Tangent space to a quotient manifold. Figure courtesy of [AMS08].

Figure 2.1 gives an illustration of the tangent space to the total space ĎM
and a horizontal lift for the representation of a tangent vector to the quotient
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manifoldM at a point x = [x̄].

2.1.4 Riemannian geometry

A manifold can be locally seen as a vector space, thus it can be endowed with
a metric to form a metric space, in a similar way as for a vector space. The
main difference in defining a metric onM than a vector space lies in the fact
that the tangent space toM at a point x varies according to the position of x
on the manifold.

Definition 2.1.19 (Inner product). Let M be a smooth manifold and x be a
point in M. An inner product on TxM, denoted as 〈·, ·〉x, is a bilinear form
satisfying the following properties, for all ξ, η ∈ TxM,

1. bilinearity: 〈aξ + bη, ζ〉x = a 〈ξ, ζ〉x + b 〈η, ζ〉x, for all a, b ∈ R;

2. symmetry: 〈ξ, η〉x = 〈η, ξ〉x;

3. positive definite: 〈ξ, ξ〉x ≥ 0, where the equality holds if and only if ξ = 0.

The norm of a tangent vector ξ ∈ TxM is ‖ξ‖x :=
√
〈ξ, ξ〉x.

Definition 2.1.20 (Riemannian metric). Let M be a manifold, and x ∈ M.
A Riemannian metric is an inner product gx : TxM × TxM 7→ R, i.e., a
bilinear symmetric positive-definite form, defined on each tangent space TxM,
and varying smoothly with x.

Definition 2.1.21 (Riemannian manifold). A Riemannian manifold (M , g) is
a manifoldM endowed with a Riemannian metric g.

A Riemannian manifold (M, g) is often denoted as M when the metric is
given from the context.

For a smooth, real-valued function f defined on a vector space E , the gradi-
ents of f form a vector field on E , along which one realizes local steepest ascents
in the evaluation of the function values. In the case of a function f defined on
a Riemannian manifold M, the notion of gradients of f depends on both the
properties of f and the differential geometry ofM, since the quantification of
ascents and steepest ascents in function values depends on a measure of “align-
ment” between tangent vectors, and the degree of alignment is determined by
an inner product on the tangent space. The following definition provides a
formal characterization of such an ascent direction.

Definition 2.1.22 (Riemannian gradient). Let f :M 7→ R be a smooth func-
tion onM. The Riemannian gradient of f at x ∈M, denoted as gradf(x), is
defined as the unique element of TxM that satisfies

gx(gradf(x), ξ) = Df(x)[ξ], for all ξ ∈ TxM. (2.4)
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Note that in the above definition, the right-hand side of (2.4) is the di-
rectional derivative of f along ξ ∈ TxM; see Definition 2.1.15. Remarkably,
and similarly to the Euclidean case, the gradient defined above is the steepest-
ascent vector field and the norm ‖gradf(x)‖x is the steepest slope of f at x.
More precisely,

‖gradf(x)‖x = max
ξ∈TxM;‖ξ‖x=1

Df(x)[ξ],

for which the maximizer is ξ = gradf(x)/‖gradf(x)‖x achieves the maximum.

Riemannian quotient manifolds

It is shown in Section 2.1.3 that the tangent vectors to a quotient manifold
are defined through their representations in the total space, i.e., the horizontal
lifts. Now, we consider quotient manifoldsM of a Riemannian manifold, and
present how to equip the quotient manifolds with a Riemannian geometry. Let
ĎM be a manifold andM = ĎM/ ∼ be a quotient manifold with the canonical
projection π. Given two tangent vectors ξ, η ∈ TxM, a metric on the quotient
manifoldM can be defined via any metric ḡ on ĎM that satisfies the following
invariance property:

Definition 2.1.23. For X ∈ M and x̄ ∈ π−1(x), let sξ, sη ∈ Tx̄ ĎM denote the
horizontal lifts of ξ and η respectively, a metric ḡ in the total space is said to
be invariant along π−1(x) if

ḡx̄(sξ, sη) = ḡȳ(sξȳ, sηȳ), (2.5)

for any point ȳ ∼ x̄ in π−1(x), where sξȳ, sηȳ denote the horizontal lifts of ξ and
η at ȳ respectively.

Consequently, an inner product gx : TxM×TxM 7→ R such that gx(ξ, η) =
ḡx̄(sξx̄, sηx̄) is a Riemannian metric on the quotient manifoldM, provided that
ḡ satisfies the invariance property as described in (2.5). Endowed with such
a Riemannian metric, the quotient manifold (M, g) is called a Riemannian
quotient manifold, and the canonical projection π is a Riemannian submersion,
i.e., the projection Dπ is surjective everywhere and preserves the inner products
in the tangent space of the quotient manifoldM.

2.1.5 Distances and geodesic curves

Definition 2.1.24 (Geodesic). Let I ⊂ R be an open interval and let γ : I 7→
M be a curve on M. γ is a geodesic if and only if its acceleration is zero on
I.

Definition 2.1.25 (Exponential map). LetM be a smooth manifold endowed
with a connection ∇ and let x ∈ M. For every ξ ∈ TxM, there exists an
open interval I containing zero and a unique geodesic γx,ξ : I 7→ M such that
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γ(0) = x and γ̇(0) = ξ. The mapping

Expx : TxM 7→M : ξ 7→ Expx(ξ) = γx,ξ(1)

is called the exponential map at x.

Note that, the geodesic satisfies the homogeneity property, i.e., γx,ξ(t) =
γx,αξ(αt), for any α ∈ R.

Definition 2.1.26 (Retraction). Let R : TXM 7→ M be a smooth mapping,
and for x ∈ M, let Rx denote the restriction of R to TxM. The mapping R
is a retraction onM if it satisfies the following properties, for all x ∈M,

1. Rx(0) = x, and

2. The differential DRx(0) : TxM 7→ TxM is the identity map.

Retractions on quotient manifolds

Proposition 2.1.27 ([AMS08, Proposition 4.1.3]). LetM = ĎM/ ∼ be a quo-
tient manifold with a prescribed horizontal distribution. Let R̄ be a retraction
on ĎM such that for all x ∈M and ξ ∈ TxM,

π( sRx̄(sξx̄)) = π( sRȳ(sξȳ)) (2.6)

for all x, y ∈ π−1(x). Then the mapping R such that

Rx(ξ) := π( sRx̄(sξx̄))

defines a retraction onM.

2.1.6 Optimization on manifolds: techniques and line-
search methods

In this subsection, we present techniques for optimization on Riemannian man-
ifolds, which is also referred to as Riemannian optimization. The manifold-
related and differential geometric tools used in these techniques are described
in the previous part of Section 2.1.

Given a Riemannian manifold (M, g) and a smooth, real-valued function f
defined onM, the optimization of f onM is formulated as follows,

min
x∈M

f(x), (2.7)

where the manifold characterization of the feasible set usually originates from
the nonlinear structure of the variable x.

The formulation (2.7) arises in many problems including the optimization
problems in this thesis. In the graph learning problem in Chapter 3, for ex-
ample, M is a compact subset of the unit-sphere. In the matrix and tensor
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completion problems in Chapters 4, 6 and 7,M appears as a product manifold
of low-rank matrices. In the optimization problems with fixed-rank matrices
in Chapter 5, M takes the form of a quotient manifold. The rest of this sub-
section, mainly based on [AMS08, §4], reviews some Riemannian optimization
techniques for solving problems in the form of (2.7), with a focus on tools for
Riemannian line-search methods.

A basic and ubiquitous approach to solving the optimization problem (2.7)
is to produce a sequence of points {xt}t≥0 on the manifold M according to
a series of descent directions of f . Intuitively, this scheme is an analogue of
classical line-search methods for unconstrained optimization on an Euclidean
vector space, but it involves two main challenges, due to fact that the manifold
M is generally a nonlinear space: (i) since the movement of the iterates needs
to meet the nonlinear structure of M, the update rule requires a nonlinear
mapping to ensure the manifold constraint, and (ii) the search directions for
the line-search update rule needs to be defined regarding the local geometry of
the Riemannian manifold.

Retractions and search directions

For the first challenge, the retraction operator (Definition 2.1.26) provides sys-
tematic tool for moving on the manifold along any direction in the tangent
space. The underlying update rule is as follows, given a retraction R and an
iterate xt ∈M,

xt+1 = Rxt
(sηt), (2.8)

where ηt ∈ Txt
M is a search direction and the scalar s a stepsize to be discussed

later.
Ideally, the exponential map (Definition 2.1.25) is a natural choice for the

retraction operator in (2.8): given an iterate xt on M and a search direction
ηt in the tangent space Txt

M, the operation xt+1 = Expxt
(sηt), for a certain

stepsize s ≥ 0, is a valid update rule. However, from a numerical optimization
point of view, the computation of the exponential mapping corresponds to
solving a nonlinear ordinary differential equation, which leads to significant
computational requirements; moreover, it is often computationally intractable.
Nevertheless, in many cases, the exponential map is not a necessary option,
in the computational point of view. Alternatively, by designing the retraction
operator as the first-order (or second-order in certain cases) approximation of
the exponential map, one can ensure the manifold constraint with much reduced
complexity, without compromising the convergence property of the Riemannian
line-search method. Throughout this thesis, we consider the update rule using
a retraction with such characterization.

For the second challenge, the search direction in the update rule (2.8) needs
to be defined in a way such that the sequence {xt}t≥0 has a chance to reach
a minimizer of f on M. The definition of global and local minimizers in nu-
merical optimization on a vector space [NW06, §2.1] applies to the Riemannian
optimization problem (2.7). Indeed, if an element x ∈M is a global minimizer
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of the problem (2.7), then it is necessarily a local minimizer in an open neigh-
borhood of x inM; also, if x is a local minimizer of the problem (2.7), then x
is necessarily a critical point of f onM. This motivates the search of critical
points of f on the manifoldM, and thus, requires the first-order information of
f onM; such information is naturally assessed via the Riemannian gradients
(Definition 2.1.22) of f . In particular, through the characterization (2.4) of the
Riemannian gradient, any element x ∈ M satisfying gradf(x) = 0 is a critical
point of f onM. Therefore, in the framework of Riemannian line-search meth-
ods [AMS08, §4.2], the search directions and stepsizes in (2.8) are selected in
relation to the Riemannian gradient of f , as we describe next.

The following definition is useful for determining if a sequence of search
directions are sufficiently aligned with the negative Riemannian gradients of f
on noncritical points.

Definition 2.1.28 (Gradient-related sequence). Given a real-valued, smooth
function f defined on a Riemannian manifold M, let {ηt} be a sequence such
that ηt ∈ TxtM, for {xt}t≥0 ⊂ M. The sequence {ηt} is gradient-related if,
for any subsequence {xt}t∈K of {xt} that converges to a noncritical point of f ,
the corresponding subsequence {ηt}t∈K is bounded and satisfies

lim
t→∞

sup
t∈K

gxt(gradf(xt), ηt) < 0.

Definition 2.1.29 (Armijo point). Given a real-valued, smooth function f on
M, with retraction R, a point x ∈M, a tangent vector η ∈ TxM, and scalars
α > 0 (an initial stepsize), β,σ ∈ (0, 1), the Armijo point is η` := αβ`η ∈ TxM,
where ` is the smallest nonnegative integer such that

f(x)− f(Rx(αβ`η)) ≥ −σgx(gradf(x),αβ`η).

The scalar s := αβ` is called the Armijo stepsize.

The Armijo line-search criterion above, along with the gradient-relatedness
property in Definition 2.1.28—which is shared by many Riemannian gradient-
based algorithms—provide conditions for establishing global convergence re-
sults of line-search methods with (2.8); see [AMS08, §4.3] for example.

2.2 Low-rank matrices: representations and Rie-
mannian geometries

In this section, we take a look at sets of low-rank real matrices in a geo-
metric point of view. Based on the elements about manifolds and Rieman-
nian geometry given in Section 2.1, we present a manifold description of the
set of fixed-rank matrices, along with geometric tools used in some Rieman-
nian optimization methods on this manifold; these contents are mainly based
on [Van13, MMBS14, UV19, UV20b] about numerical methods with low-rank
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matrices.
Given m,n, r ∈ N+ such that r ≤ min(m,n), letM≤r be the set of m× n

real matrices with rank equal or lower than r, i.e.,

M≤r = {X ∈ Rm×n : rank(X) ≤ r}. (2.9)

Since the matrix rank is a nonlinear function on Rm×n, the rank-constrained set
M≤r is a nonlinear subset of Rm×n. In fact, M≤r is a real algebraic variety,
and is nonsmooth on matrices (or points) that have a rank strictly smaller
than r; see [UV19, UV20b]. The smooth part ofM≤r is the set of the rank-r
matrices

Mr = {X ∈ Rm×n : rank(X) = r}, (2.10)

which is of particular importance in understanding the numerical methods with
low-rank matrices.

In the rest of this section, we describe representations of low-rank matrices,
a manifold structure of the setMr (2.10) and geometric tools of some existing
algorithms onMr.

2.2.1 Parametrization via matrix factorizations

Because of the low-rank constraints in (2.9) and (2.10), the m×n real matrices
inMr andM≤r can be parametrized by fewer than mn variables, and this is
possible by representing these matrices through matrix factorization. Several
different forms of matrix factorization can be used for such parametrization.
Next, we list some matrix factorization forms for the parametrization of a
matrixX inMr ⊂M≤r, followed by some examples of application in numerical
methods with low-rank matrices.

� The singular-value decomposition (SVD) of X is

X = UΣV T, (2.11)

where U ∈ St(m, r) = {U ∈ Rm×r : UTU = Ir}, V ∈ St(n, r), and
Σ = Diag(σ1, . . . ,σr) � 0. In particular, with a fixed order of the singular
values, e.g., the decreasing order σ1 ≥ · · · ≥ σr > 0, the SVD represen-
tation (U , Σ,V ) of X via (2.11) is unique. The representation (2.11) is
called the compact SVD (in contrast to the full SVD), as it only involves
the non-zero singular values and corresponding singular vectors.

The SVD representation is used in e.g., [Van13] for low-rank matrix com-
pletion.

� The UY factorization of X is as follows,

X = UY T, (2.12)
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where U ∈ St(m, r) is a matrix that contains the left-singular vectors of
X—as the factor U defined in (2.11)—and Y ∈ Rn×r.
The UY representation (2.12) is useful in the variable projection approach
for low-rank matrix problems, e.g., in the RTRMC algorithm [BA15] for
low-rank matrix completion.

� The two-term factorization of X is as follows,

X = LRT, (2.13)

where L and R are m × r and n × r matrices with the full column-
rank r respectively, i.e., (L,R) ∈ Rm×k∗ × Rn×k∗ . An example of (L,R)

satisfying (2.13) is (L,R) = (UΣ
1
2 ,V Σ

1
2 ), where U ,V , Σ are the SVD

factor matrices of X in (2.11). The two-term factorization (2.13) is not
unique, and in fact, there are infinite many pairs of rank-r factor matrices
satisfying (2.13). It suffices to note that, for any matrix F ∈ GL (k),
(L′,R′) := (LF−1,RFT) satisfies (2.13) if (L,R) ∈ Rm×k∗ × Rn×k∗ does.
The two-term factorization is used in the graph-regularized matrix com-
pletion problem and also in the quotient manifold approach to low-rank
matrix problems, which will be discussed in detail in Chapters 4 and 5
respectively.

2.2.2 Geometry of the set of fixed-rank matrices
The setMr (2.10) is known to have a smooth manifold structure; see, e.g., [Lee03,
Example 8.14], which shows through the construction of a local submersion that
Mr is a smooth embedded submanifold of Rm×n. From another perspective,
through matrix factorization (e.g., (2.11)–(2.13)), any matrix X inMr can be
seen as an equivalence class in the domain of definition of the factor matrices
of X, in the sense that two tuples of factor matrices are equivalent if and only
if their product matrices inMr are identical; see Example 2.1.13. This means
that the setMr is inherently a quotient space; moreover, it can be interpreted
as a Riemannian quotient manifold; see [MBS11, MMBS14, AAM14].

In this subsection, we describe the geometry of Mr as an embedded sub-
manifold of Rm×n; the quotient manifold structure of Mr will be presented
later, in Chapter 5, in relation to recent and novel developments for Rieman-
nian optimization with fixed-rank matrices.

Based on the first-order perturbation of the SVD (e.g., [Van13, UV19]) of a
matrixX inMr, one has the following characterization for the tangent space to
Mr atX, which involves the full SVD form. Note that, in addition to the factor
matrices (U , Σ,V ) of the compact SVD (2.11) of X, two orthonormal matrices,
U⊥ ∈ St(m,m− r) and V⊥ ∈ St(n,n− r), corresponding to the orthogonal
complements span(U)⊥ and span(V )⊥ are used.

Proposition 2.2.1 ([Van13, Proposition 2.1]). The setMr (2.10) is a smooth
submanifold of dimension (m+n−r)r embedded in Rm×n. Given X = UΣV T ∈
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Mr, where (U , Σ,V ) is the SVD representation of X via (2.11), the tangent
space at X toMr is as follows,

TXMr =
{
UAV T + UBTV T

⊥ + U⊥CV
T : A ∈ Rr×r,B ∈ R(n−r)×r,

C ∈ R(m−r)×r} (2.14a)

=
{
UAV T + UBT

p + CpV
T : A ∈ Rr×r,Bp ∈ Rn×r,Cp ∈ Rm×r,

UTCp = 0,V TBp = 0
}

. (2.14b)

We refer to [UV19, §2.2] and [Van13, §2] for the proof of the proposition
above.

From (2.14a) in Proposition 2.2.1, and by the complementarity of span(U)
and span(U⊥) (respectively span(V ) and span(V⊥)), the tangent space TXMr

can also be written as follows,

TXMr = {UB̃T + C̃V T : B̃ ∈ Rn×r, C̃ ∈ Rm×r}. (2.15)

Any matrix in the tangent space TXMr, through (2.14a), consists of three
components, each corresponding to one of the three mutually orthogonal sub-
spaces. The orthogonal projections onto these three subspaces can be written
using PU := UUT and PV := V V T, which are the orthogonal projections onto
span(U) and span(V ) respectively. More precisely, the orthogonal projection
operator PTXMr

: Rm×n 7→ TXMr is as follows, for any Z ∈ Rm×n,

PTXMr
(Z) = PUZPV + PUZ(I − PV ) + (I − PU )ZPV (2.16a)

= PUZ + ZPV − PUZPV . (2.16b)

Given a matrix X ∈ Mr and a matrix ξ in the tangent space TXMr, the
displacement of X on Mr along ξ can be realized by the exponential map,
which is shown ([Van13, AM12]) to have the following form.

Proposition 2.2.2 (Exponential map onMr). Given a matrix X = UΣV T ∈
Mr, where (U , Σ,V ) is the SVD representation of X via (2.11), the exponential
map onMr is as follows, for any matrix ξ ∈ TXMr,

ExpX(ξ) = X + ξ + (I − PU )ξX†ξ(I − PV ) + ∆X(ξ), (2.17)

where X† denotes the Moore–Penrose pseudoinverse of X and ∆X is the sum
of third- and higher-order terms, in the sense that ‖∆X(ξ)‖ . ‖ξ‖3.

2.2.3 Tools for Riemannian optimization on Mr

In Section 2.2.2, the setMr is described as an embedded submanifold in Rm×n
and the characterization of the tangent space toMr is given. In this subsection,
we present some geometric tools for Riemannian optimization with fixed-rank
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matrices based on the aforementioned manifold structure. Given a smooth,
real-valued function f defined on Rm×n, the optimization of f with matrices of
a fixed rank r inspires the Riemannian optimization problem (2.7), where the
manifoldM takes the form ofMr (2.10).

The following two elements—retraction and Riemannian metric onMr—are
useful for Riemannian line-search methods (Section 2.1.6) with fixed-rank ma-
trices. In particular, the retraction operator presented below is used in the algo-
rithms such as LRGeomCG [Van13], SVP (singular value projection) [JMD10],
IHT (iterative hard thresholding) [GM11], NIHT [TW13] and variants (e.g.,
CGIHT). The rest of this subsection is mainly based on [Van13, §2].

Retraction on Mr via metric projection

As mentioned in Section 2.1.6, in Riemannian optimization, the retraction (Def-
inition 2.1.26) is an operator that maps a point in the tangent space to the
manifold. Through the characterizations in its definition, any retraction oper-
ator is a (at least) first-order approximation of the exponential mapping on the
manifold.

Regarding Mr as a submanifold embedded in Rm×n, one can define the
following retraction, R : TXMr 7→ Mr, via metric projection ontoMr,

RX(ξ) = arg min
Z∈Mr

‖X + ξ − Z‖F, for all ξ ∈ UX , (2.18)

where UX ⊂ TXMr is a certain neighborhood of the zero matrix. The domain
of definition of R (2.18) needs only be a (sufficiently small) local neighborhood
since it suffices to obtain convergence for the Riemannian line-search methods.
The retraction mapping (2.18) can be obtained by the truncated SVD (r-SVD)
of X + ξ ∈ TXMr, i.e.,

RX(ξ) =

r∑
i=1

σiũiṽ
T
i , (2.19)

where (σi, ũi, ṽi) are the r leading singular values and vectors of X + ξ.
Note in particular that the singular value computations required by (2.19)

has a complexity that depends on the rank value r instead of the matrix di-
mensions (m,n), since the search direction ξ and thus X+ ξ are in the tangent
space TXMr. In fact, the matrix ξ ∈ TXMr in (2.18) is determined by a r× r
matrix A via the parametrization ξ = UAV T + CpV

T + UBT
p (see (2.14b)),

where U ,V ,Cp and Bp are the matrices in the parametrization of the given
matrix X, and it follows that

X + ξ = [U Up]

[
Σ +A Ir
Ir 0

]
︸ ︷︷ ︸

Σ̃∈R2r×2r

[V Vp]
T,

which shows that the SVD of X+ξ can be obtained via the SVD of Σ̃ ∈ R2r×2r,
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which costs only O
(
r3
)
.

Riemannian geometry on Mr

The Riemannian line-search methods (see Section 2.1.6) require access to search
directions in relation with the Riemannian gradients of f . This requires a
Riemannian geometry on the manifoldMr. By identifyingMr as a manifold
embedded in Rm×n, and considering the Euclidean inner product 〈·, ·〉 in the
tangent space TXRm×n ' Rm×n, for a matrix X ∈ Mr, one can define the
following metric gX through the restriction of 〈·, ·〉 to TXMr:

gX(ξ, η) = 〈ξ, η〉 := tr(ξTη), (2.20)

for all ξ, η ∈ TXMr. From the definition (2.20), the inner product gX does not
depend on the location of X on Mr, hence, naturally, (X, ξ, η) 7→ gX(ξ, η)
varies smoothly on the tangent bundle TMr. Therefore, (Mr, g) forms a
Riemannian manifold; see Definition 2.1.21. Subsequently, combining Defi-
nition 2.1.22 and (2.20), the Riemannian gradient of f is computed through
the identification

gX(gradf(X), ξ) = Df(X)[ξ], for all ξ ∈ TXMr.

Details about the low-rank parametrization and computation of the Rieman-
nian gradient gradf(X) can be found in [Van13, §3].

2.3 Graphs

Graphs are an omnipresent data structure. Intuitively, a graph is a set of
objects that are connected with each other through a certain relation. In
this section, we give a formal description of graphs and some fundamental
properties. These properties are background knowledge needed in many graph-
related problems and are useful for the development of graph-based techniques.
In this thesis, the graph-regularized matrix and tensor completion problems are
examples where the graph data structure is used; see Chapters 4 and 6. We also
refer the interested reader to [Ham20, §1-2] for an overview of graph-related
machine learning problems.

A graph is a pair of sets, denoted as G = (V, E), where V is a set of nodes
(or vertices) and E is a set of edges E betweens these nodes. Each edge in E
represents the connection between a pair of nodes, (i, j) ∈ V × V. By default,
we consider graphs that do not contain loops; in other words, the element (i, i),
for any i ∈ V, is not considered as an edge. Therefore, the set of edges E is such
that E ⊂ V ×V \ {(i, i) : i ∈ V}. The edges in E may be directed or undirected ,
depending on whether the elements (i, j) and (j, i) are distinguished or not. If
(i, j) and (j, i) are considered as equivalent, then, the edge connecting i and
j is undirected and is denoted by (i, j) or equivalently (j, i). The graph G is
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an undirected graph if its edges are undirected. In this thesis, by default, an
undirected graph is simply referred to as a graph.

The adjacency matrix of a graph G of n nodes is a square matrix A(G),
or simply A, that represents the set of edges E . For any undirected graph
G, the adjacency matrix A(G) is symmetric. The edges of G are unweighted
if the elements in V × V are represented by a binary variable. In this case,
the adjacency matrix can be represented by a (0, 1)-valued matrix, such that
Aij = 1 if and only if (i, j) ∈ E . On the other hand, weighted graph edges
are represented by a nonzero real variable. For a graph with nonnegative edge
weights, the adjacency matrix A is a real matrix such that Aij > 0 if (i, j) ∈ E ,
otherwise Aij = 0. The edge weight Aij , for (i, j) ∈ E , represents the intensity
of the connection between the nodes i and j; the larger the value of Aij , the
stronger the connection between these two vertices.

Definition 2.3.1 (Degree matrix). Given a graph G endowed with an adja-
cency matrix A(G) ∈ Rn×n, the degree matrix, denoted as D(G) or simply
D, is a diagonal matrix such that Dii =

∑
j∈V Aij. The i-th diagonal entry

di = Dii is referred to as the node degree of i.

Definition 2.3.2 (Graph Laplacian matrix). Given a graph G endowed with
an adjacency matrix A(G) ∈ Rn×n, the graph Laplacian matrix of G, or simply
the graph Laplacian, is denoted and defined as follows,

L = D(G)−A(G), (2.21)

where D(G) is the degree matrix and A(G) is the adjacency matrix of the graph.

From the graph spectral theory (e.g., [Chu97, Spi12]), any graph Laplacian
matrix is positive semi-definite and the smallest eigenvalue of a graph Laplacian
matrix is zero. In fact, the graph Laplacian satisfies the following property.

Proposition 2.3.3 (e.g., [Chu97, §1.4]). Given an undirected graph G of n
nodes endowed with a weighted adjacency matrix A, the graph Laplacian matrix
L(G) ∈ Rn×n defined in (2.21) satisfies

xTLx =
1

2

n∑
i,j=1

Aij (xi − xj)2 (2.22)

for all x ∈ Rn.

Proof. The degree matrix D of G is such that Dii =
∑n
j=1Aij , for i = 1, . . . ,n,

hence, from (2.21), it holds that xTLx =
n∑

i,j=1

(Aijx
2
i −Aijxixj). It follows that

xTLx =

n∑
i,j=1

(1

2
Aij(x

2
i + x2

j )−Aijxjxj
)

=
1

2

n∑
i,j=1

Aij(xi − xj)2, (2.23)
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where the first equality in (2.23) holds since the adjacency matrix of the undi-
rected graph G is symmetric, i.e., A = AT.

From Proposition 2.3.3, any graph Laplacian matrix (Definition 2.3.2) is
symmetric and positive semidefinite. By convention, we denote the eigenvalues
of a Laplacian matrix L(G) by {λi}i=1,...,|V| in increasing order, such that 0 =
λ1 ≤ λ2 ≤ · · · ≤ λ|V|.

Figure 2.2 shows the graph Laplacian matrix of a graph containing several
closely connected clusters along with some eigenvectors of the graph Laplacian.
One can see from the eigenvectors of the smallest eigenvalues (λ1 and λ2), in
Figure 2.2(b), that they exhibit pairwise similarities, which can be explained,
through Proposition 2.3.3, by the fact that the values of the quadratic form
xTLx is small on such eigenvectors.
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Figure 2.2: Eigenvectors of a graph Laplacian matrix. (a): the adjacency matrix of an
unweighted graph G of 50 nodes; (b): the eigenvectors of the graph Laplacian matrix L of G
corresponding to the eigenvalues λ1 (blue), λ2 (red) and λ40 (yellow) respectively.

2.4 Tensors: definitions and notation

In this section, we introduce the definitions and notation involved in the tensor
operations.

The term tensor refers to a multidimensional array. The dimensionality of a
tensor is described as its order. A kth-order tensor is a k-way array, also known
as a k-mode tensor. We use the term mode to describe operations on a specific
dimension (e.g., mode-k matricization). A real-valued order-k tensor is defined
as Z = [z`1,...,`k ] ∈ Rm1×m2×...×mk , where an element z`1,...,`k is accessed via
the k-dimensional index (`1, . . . , `j , . . . , `k), with `j ∈ JmjK := {1, 2, . . . ,mj}.
The following definitions are involved in the tensor computations.

Definition 2.4.1 (Kronecker product ⊗). The Kronecker product of vectors
u = [u`] ∈ Rm1 and v = [v`] ∈ Rm2 results in a vector u⊗ v ∈ Rm1m2 defined
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as

u⊗ v =


u1v
u2v
...

um1v

 .

More compactly, we have (u⊗ v)m2(`1−1)+`2
= u`1v`2 for `1 ∈ {1, . . . ,m1} and

`2 ∈ {1, . . . ,m2}.

Definition 2.4.2 (Khatri–Rao product �). The Khatri–Rao product U � V
of two matrices U = [u`,r] ∈ Rm1×R and V = [v`,r] ∈ Rm2×R with the same
column number is a matrix of size m1m2 ×R whose r-th column is u:,r ⊗ v:,r.

Definition 2.4.3 (Mode-` product ×`). The mode-` product of a given tensor
G ∈ Rr1×···×rk with a matrix U ∈ Rm×r` , denoted as G ×`U , is a tensor of size
r1 × · · · × r`−1 ×m× r`+1 · · · × rk, which has entries

[G ×` U ]i1,...,i`−1,j,i`+1,...,ik
=

r∑̀
p=1

Uj,pGi1,...,i`−1,p,i`+1,...,ik
.

Definition 2.4.4 (Hadamard product ?). The Hadamard product of two ma-
trices A and B of the same dimensions, denoted by A ? B, is a matrix of the
same dimensions by entrywise multiplications: [A ? B]ij = AijBij.

Definition 2.4.5 (Tensor matricization). The mode-i matricization Z(i) is
the unfolding of a tensor Z ∈ Rm1×m2×...×mk along its i-th mode of size mi ×(∏

j 6=imj

)
. The tensor element z`1,...,`k in Z is identified with the matrix

element
[
Z(i)

]
`i,ri

in Z(i), where

ri = 1 +

k∑
n=1
n 6=i

(`n − 1) In, with In =

n−1∏
j=1
j 6=i

mj . (2.24)

Definition 2.4.6 (Tucker decomposition). The Tucker decomposition of a ten-
sor [DLDMV00a, DLDMV00b, Tuc66] is defined as an approximation of a
core tensor C ∈ Rr1×···×rk multiplied by k (orthogonal) factor matrices U (i) ∈
Rmi×Ri , i = 1, . . . , k along each mode, such that

Z = C ×1 U
(1) ×2 · · · ×k U (k). (2.25)

Remark 2.4.7. A tensor Z admitting a Tucker decomposition form as in (2.25)
can be unfolded along its i-th mode as follows,

Z(i) = U (i)C(i)
(
U (i−1) ⊗ · · · ⊗ U (1) ⊗ U (k) ⊗ · · · ⊗ U (i+1)

)>
,
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Definition 2.4.8 (Tensor Tucker rank). Tensor Tucker rank or multilinear
rank [KM16], which is introduced earlier by Tucker [Tuc66] is defined as

rankTC (Z) =
(
rank

(
Z(1)

)
, . . . , rank

(
Z(k)

))
,

where rank
(
Z(i)

)
denotes the matrix rank.

Definition 2.4.9 (Rank-1 tensor). A tensor of the form

Z = u(1) ◦ . . . ◦ u(k) =
[
u

(1)
i1
. . . u

(k)
ik

]
i1,...,ik

,

where ◦ denotes the outer product, is said to be of rank one. It is also called a
simple tensor [Her10] or decomposable tensor [Hac12].

Definition 2.4.10 (CP decomposition). The Canonical Polyadic (CP) decom-
position [CC70, FBH03, Har70, Hit27a, Kie00] of a tensor Z is defined as

Z = JU (1), . . . ,U (k)K =

R∑
r=1

U (1)
:,r ◦ . . . ◦ U (k)

:,r ,

where U (i) ∈ Rmi×R for i = 1, . . . , k.

T

=

U(1)

G U(2)

U(3)

(a)

T ∈ Rm1×m2×m3

=

u1 ∈ Rm1

v1 ∈ Rm2

w1 ∈ Rm3

+ . . . +

uR ∈ Rm1

vR ∈ Rm2

wR ∈ Rm3

(b)

Figure 2.3: Tensor decompositions. (a): Tucker decomposition; (b): CP decomposition.

The CP decomposition can be considered as the “diagonalized” version of
the Tucker decomposition (Definition 2.4.6), in the sense that a tensor that
admits a rank-R CP decomposition also admits a Tucker decomposition with
a cubic core tensor of dimension r = (R, . . . ,R), which is composed of nonzero
values only on the cubic diagonal entries. The matricizations of a tensor in the
CPD form JU (1), . . . ,U (k)K can be written as

Z(i) = U (i)
(
U (k) � . . .� U (i+1) � U (i−1) � . . .� U (1)

)>
= U (i)

[
(U (j))�j 6=i

]>
,

where Z(i) is the mode-i matricization.

Definition 2.4.11 (Tensor CP rank). The tensor CP rank of a tensor Z is de-
fined as the minimum number of summations of rank-one tensors that generate
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Z [Hit27b, Kru77], i.e.,

rankCP (Z) = min

{
R ∈ Z+ : ∃

{
u(i)
r

}
, s.t. Z =

R∑
r=1

u(1)
r ◦ . . . ◦ u(k)

r

}
.



Chapter 3

Learning graphs from data

Graphs model the structure of a discrete space, for example, they incorporate
correlations or pairwise similarities between objects. Therefore, graphs are
a fundamental source of information for the analysis of structured data and
are at the basis of many signal processing and machine learning techniques
such as semi-supervised learning and spectral clustering. However, in many
graph-related problems, the graph structure does not exist in a natural way.
Typically, given a set of multivariate data samples, one needs to construct or
infer a graph from the data itself. While there is no unique way in defining a
graph that conforms to the hidden structures in the data, there are ways to
impose restrictions on the graph structure based on certain prior knowledge
about the data. A common approach to constructing graphs is to build graph
adjacency matrices using affinity graph models [ZCLG14] such as the k-nearest-
neighbor (k-NN) model, which can be obtained depending on an affinity matrix
associated with the data features.

A recent optimization-based approach, called graph learning [DTFV16,
Kal16, EPO16], infers a graph structure by minimizing a smoothness func-
tion given a set of multivariate data samples, under graph Laplacian-related
constraints. The graph learning problems proposed by [DTFV16] and [Kal16]
minimize an objective function with the graph Laplacian or graph adjacency
matrix variable as follows,

f(L) = tr(ĈL) +H(L) or f(W ) = tr(ẐW ) +H(W ), (3.1)

where Ĉ and Ẑ are the empirical covariance and the pairwise distance matrices
of the data samples respectively, and the regularization function H is designed
according to the prior knowledge about the graph, notably the properties of the
node degree distribution. The trace term in the cost function of (3.1) originates
from the maximum likelihood principle with the Gaussian Markov Random
Fields (GMRF) model [RH05, LW13] and the inverse covariance estimation
problem [FHT08, BED08, HBDR12, PHB17]. Given an empirical covariance

31
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matrix Ĉ(X), where the entries of X are i.i.d. samples of a GMRF model
N (0, Θ), the maximum-likelihood estimator of the inverse covariance matrix Θ
can be cast as the following problem (e.g., [FHT08, BED08]),

min
Θ�0

tr(ĈΘ)− log(det(Θ)) + λ‖Θ‖1, (3.2)

where the `1 norm ‖ · ‖1 is defined as ‖Θ‖1 :=
∑
ij |Θij |, and the parameter

λ is determined according to a certain model selection criterion. Graph learn-
ing is different from inverse covariance estimation in the sense that it searches
for a graph Laplacian matrix, and thus requires the variable to satisfy several
constraints according to the feasible set of all graph Laplacian matrices; the
Laplacian matrix variable is positive semi-definite by construction (see Propo-
sition 2.3.3). As a consequence, the search space of graph learning is substan-
tially different than that of (sparse) inverse covariance estimation. Moreover,
depending on specific prior knowledge (mainly on the distribution of node de-
grees) about the graph Laplacian matrix to be learned, various optimization
formulations are proposed.

The rest of this chapter is partly based on the conference paper [DAG18]
and is organized as follows. In Section 3.1, we give a description of the basic
definitions and notation used in this chapter, and present the background and
related work about graph learning. In Section 3.2, we present a new problem
formulation for graph learning and describe the proposed algorithms. Numer-
ical experiments with synthetic data and real-world applications are given in
Section 3.3. We conclude the chapter in Section 3.4 with discussions.

3.1 Preliminaries

In this section, we present the background of the graph learning problem, defi-
nitions and terminology involved in this topic. The notion of graphs and related
definitions are given in Section 2.3.

We consider an undirected graph G = (V, E) of m nodes and edges with
nonnegative weights. The graph adjacency matrix of G is represented by a real
symmetric matrix with nonnegative entries. Moreover, since the graph does
not contain loops, by default, the diagonal entries of the adjacency matrix are
zeros. Therefore, the graph adjacency matrices of these graphs form a set Wm

+

as follows,

Wm
+ :=

{
W ∈ Rm×m : W = WT, W ≥ 0, diag(W ) = 0

}
. (3.3)

The set Wm
+ (3.3) is the nonnegative cone of the vector space Wm of real

symmetric matrices, Wm :=
{
W : W = WT, diag(W ) = 0

}
. Note that Wm

is a linear space with dimension m(m−1)
2 . Indeed, the set sE of all possible

edges (i, j) between the m nodes in V has at most m(m−1)
2 elements. By

convention, (i, j) denotes an undirected couple of indices that represents the
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edge between the nodes i and j, i.e., (i, j) is equivalent to (j, i) for all i 6=
j ∈ {1, . . . ,m}, since the graph edges are undirected. The set of the m(m−1)

2
unit-norm symmetric matrices {E(i,j) = 1√

2

(
eiej

T + ejei
T
)

: (i, j) ∈ Ē}, form
an orthonormal basis of Wm, and any graph adjacency matrix W ∈ Wm

+ can
be written as W =

∑
(i,j)∈Ē

√
2WijE(i,j). Hence, W ∈ Wm

+ can be represented

by its half-vectorization in Rm(m−1)/2
+ , denoted and defined as

vecS(W ) :=
√

2[W1,2, . . . ,Wij , . . . ,Wm−1,m]
T
1≤i<j≤m, (3.4)

which is the stacked vector of the strict upper triangle of W (up to the scalar√
2); the subscript of vecS signifies that the vectorization above applies specif-

ically to symmetric matrices. Note that the linear application vecS : Wm
+ 7→

Rm(m−1)/2
+ is bijective, and its inverse, defined on Rm(m−1)/2

+ , is denoted as
vec−1

S .
Given a graph G = (V, E) endowed with an adjacency matrix W ∈ Wm

+ ,
the graph Laplacian matrix (see Definition 2.3.2) of G is L := D(G) −W =
Diag(W1)−W , where Diag(W1) denotes the diagonal matrix whose diagonal
is composed of the entries of W1 ∈ Rm. Hence, the graph Laplacian matrices
associated with the adjacency matrices in Wm

+ form the following set,

Lm = {L ∈ Rm×m : (∀i 6= j) Lij = Lji ≤ 0 and L1 = 0}, (3.5)

which is, similar to Wm
+ , a closed and convex subset of Rm×m. Any graph

Laplacian matrix L ∈ Lm is positive semi-definite. In fact, for any vector x ∈
Rm, the quadratic form x 7→ xTLx satisfies xTLx = 1

2

∑
i,jWij(xi − xj)2 ≥ 0,

where the equality holds if and only if x ∈ span(1m); see Proposition 2.3.3.
Hence, this quadratic form, denoted as

SG(x) := xTLx =
1

2

m∑
i,j=1

Wij(xi − xj)2, (3.6)

is positive semi-definite, and defines the square of a semi-norm on Rm. Let
x ∈ Rm be a non-zero vector, which can be interpreted as a signal defined on
the set V of m nodes, in the perspective of graph signal processing. In view of
Proposition 2.3.3, one has the following remark about SG .

Remark 3.1.1. The squared semi-norm SG(x) (3.6) is a measure of the overall
variations of x on the graph G, in the sense that SG(x) is small (up to the scale,
e.g., ‖x‖2) if the values of the signal x on any subset of connected nodes evolve
slowly/smoothly. �

From the remark above, if a graph signal x ∈ R|V| has a small squared
semi-norm SG(x), it is also qualified as a graph signal that exhibits pairwise
similarities on the graph G. Figure 2.2 (the blue and red signals) shows some
examples of graph signals that have pairwise similarities.
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3.1.1 Related work.

The problem of learning a graph Laplacian matrix from data samples, intro-
duced in [DTFV16], formulated via the maximum-likelihood of a graph-based
Gaussian Markov random fields model, is as follows

min
L∈Lm, tr(L)=θ

tr(XTLX) + β‖L‖2F , (3.7)

where X is the matrix of the given multivariate data samples, the feasible
set Lm is defined in (3.5), β ≥ 0 and θ > 0 is a constant parameter. The
equality constraint tr(L) = 1TW1 = θ in (3.7) ensures that the sum of all
vertex degrees remain constant, while the Frobenius norm of L is a penalty
term added to the objective function. The penalty term with β ≥ 0 controls
the trade-off between the minimizer of the pure data fitting term (for β = 0),
whose vertex degree distribution may be undesirable, and the fully connected
graph with equal weights (for extremely large β).

More recently, [Kal16] proposed to reformulate the graph Laplacian learning
problem (3.7) as optimization problems of the weighted adjacency matrix W ,
by using the following property.

Proposition 3.1.2 ([Kal16, §2]). Given a undirected graph G of m nodes,
endowed with an adjacency matrix W . Then, for any matrix X ∈ Rm×n,
tr(XTLX) = 1

2

∑m
i,j=1Wij‖Xi,:−Xj,:‖22 = 1

2 tr(ZW ), where Z is the Euclidean
distance matrix such that Zij = ‖Xi,: − Xj,:‖22 and L is the graph Laplacian
matrix of G.

As a result, the objective function of (3.7) is transformed into a function
in W , f(W ) = 1

2 tr(ZW ) + β‖W‖2F. The feasible set of W is Wm
+ , which

has fewer constraints than the feasible set of graph Laplacian matrices (3.5):
while both sets require the m(m− 1)/2 inequality constraints, the set L has m
additional equality constraints, i.e., L1 = 0. The equality constraint tr(L) = θ
in (3.7) is equivalent to 1TW1 = θ. Kalofolias [Kal16] considered relaxing this
equality constraint using instead a penalty term with the log barrier function
−∑m

i=1 log(di(W )). The proposed model in [Kal16] is as follows,

min
W∈Wm

+

1

2
tr(ZW )− α1T log (W1) + β‖W‖2F , (3.8)

where log(·) applies element-wisely to the vector W1 of node degrees. Unlike
the equality constraint of (3.7) on tr(L) (acting on the sum of all node degrees),
the log barrier-based penalty term forces all node degrees to be positive. This
improves the overall connectivity of the graph without compromising the spar-
sity of the solution, since only the node degrees are forced to be strictly positive
but not the individual coefficients of W .

The graph learning model (3.8) does not have the same statistical inter-
pretation as sparse inverse covariance estimation, and the choice of the regu-
larization parameters (α,β) depends on the application purpose for which the
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learned graph is used. Note that, for a given parameter α > 0, the model
selection of (3.8) in [Kal16] is conducted by searching for a value of β ≥ 0 via
grid search. Since all entries of the distance matrix Z are nonnegative, the
function tr(ZW ) in (3.8) acts as the sparsity promoting term, thus the smaller
β ≥ 0 (for β‖W‖2F ) is the more sparse is the solution supposed to be.

3.2 Fixed-scale graph learning

Given a data matrix X ∈ Rm×n, the goal of graph learning from the data is
to learn a graph Laplacian L or adjacency matrix W that represents the pair-
wise similarities between the rows (or columns) of X. From Proposition 2.3.3,
Remark 3.1.1 and Proposition 3.1.2, this goal amounts to the optimization of
tr(CL) or tr(ZW ), given an empirical covariance matrix C or a distance matrix
Z associated with the data matrix X.

3.2.1 Problem statement

In the existing graph learning formulations, given the data fitting functions
tr(CL) or tr(ZW ), the graph Laplacian matrix L or adjacency matrix W is
learned with respect to a certain restriction on the scale, which can be mea-
sured by, e.g., ‖W‖1, tr(L) or the Frobenius norms of these matrices. This scale
restriction is necessary, since otherwise the minimizer to tr(CL) or tr(ZW ) is
the zero matrix, for any covariance matrix C or distance matrix Z. Indeed,
the scale of W (or L), is irrelevant to the the pairwise relations encoded in this
matrix. In other words, the relations between the nodes are invariant to any
dilatation of the matrix coefficients, in the sense that two graph adjacency ma-
trices W ′ and W are equivalent if there exists c > 0 such that W ′ = cW . This
equivalence relation suggests that the graph learning problem has an inherent
fixed-scale constraint, and we take an interest in determining the fixed-scale
constraint using the Frobenius norm of W ; the `1 norm-based constraint, i.e.,
fixing ‖W‖1 to a constant, leads to the minimization of a nonlinear function
on the simplex, which does not belong to the focus of this work.

In this section, we propose to learn a graph adjacency matrix W in the
intersection of the unit-sphere and the nonnegative cone Wm

+ : ĎWm
+ = {W ∈

Rm×m : W = WT,W ≥ 0, ‖W‖F = 1}. Given this search space, we consider
minimizing the following objective function, in a manner similar to that used
for (3.8),

Fα(W ) :=
1

2
tr(Z̃W )− α1T log(W1), (3.9)

where the input matrix Z̃ is a distance matrix, which is to be determined
later depending on the data in X. Furthermore, since any matrix W ∈ ĎWm

+

is symmetric, we deal with the half-vectorization vecS(W ) (3.4) of W directly.
The feasible set of vecS(W ) for allW ∈ ĎWm

+ is, by construction, the nonnegative
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orthant of the unit-sphere in Rnm ,

Snm−1
+ = {w ∈ Rnm : w ≥ 0, ‖w‖2 = 1} , (3.10)

where the superscript, nm := m(m−1)
2 , denotes the dimension of the half vec-

torization vecS(W ). Hence, the fixed-scale graph learning has the following
formulation,

min
w∈Snm−1

+

fα(w) := wTvecS(Z̃)− α1T log(D(w)), (3.11)

where the objective function fα is defined such that fα(vecS(W )) = Fα(W )
in (3.9), which implies that D : Rnm 7→ Rm is the linear operator satisfying
D(w) = W1, where W = vec−1

S (w) ∈ Wm
+ . The feasible set of (3.11) is defined

in (3.10).
The rest of this section is organized as follows. Before Section 3.2.2, we

present a generalized way of generating the input data Z̃ for the graph learning
problem. In Section 3.2.2, we present the proposed algorithm for solving the
problem 3.11.

Distance matrix through kernels

Given a data matrix X ∈ Rm×n, the pairwise distance matrix with Zij =
‖Xi,: − Xj,:‖2F is generalized to a symmetric positive definite matrix depend-
ing on a given feature map Φ : Rn 7→ Rp. The feature mapping by Φ is
realized implicitly, as in kernel-based methods [Sch01], such that the inner
products in the feature space are encoded by a Gram matrix C̃ ∈ Rm×m, with
〈Φ(Xi,:), Φ(Xj,:)〉 := C̃ij . The matrix C̃ is defined via a given positive semi-
definite function K : Rn × Rn 7→ R, which is also called a kernel function,

C̃ij = K
(
Xi,:,Xj,:

)
. (3.12)

Hence, the properties of the features are determined by the given kernel function
K. In particular, the sample covariance estimate XXT corresponds to the case
where the kernel function K reduces to the Euclidean inner product K(x, y) =
xTy. In a similar way as done for Proposition 3.1.2, the following proposition
shows how to construct a generalized distance matrix Z̃ based on a given kernel
function K.

Proposition 3.2.1. Given a undirected graph G of m nodes endowed with an
adjacency matrix W , a Gram matrix C̃ ∈ Rm×m generated from a matrix
X ∈ Rm×n by (3.12), and a matrix Z̃ ∈ Rm×m be defined as

Z̃ = diag(C̃)1T + 1diag(C̃)
T − 2C̃, (3.13)

it holds that tr(C̃L) = 1
2 tr(Z̃W ), where L is the graph Laplacian matrix of G.

The proof is given in [DAG18, Appendix B].
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3.2.2 Constrained optimization on the sphere

In this section, we propose a gradient projection algorithm for solving the
problem (3.11) on the unit-sphere.

Interestingly, for the simple differential properties of the sphere, the projec-
tion onto this subset Sn−1

+ can be obtained using straightforward computations.
We consider the projection with respect to the Euclidean distance,

PSn−1
+

(x) = arg min
w∈Sn−1

+

‖w − x‖2, (3.14)

for all x ∈ Rn. The result below provides a closed-form expression for (3.14).

Proposition 3.2.2. For all x ∈ Rn,

PSn−1
+

(x) =

{
x+/‖x+‖2 if x /∈ Rn−
ei, with i = arg max{xi} otherwise,

(3.15)

where x+ = (max{xi, 0})i=1,...,n and Rn− = {x ∈ Rn : xi ≤ 0,∀i ∈ {1, . . . ,n}}.

Proof. We follow the same proof as for (Lemma 1 of [ZLWZ18]) which solves
minw∈Sn−1

+
bTw. It suffices to identify the projection in (3.14) as the case where

b = −x.

Although the projection of a point x ∈ Rn onto the nonconvex set Sn−1
+

may not be unique, the non-uniqueness happens in fact only if x ∈ Rn− and
if x admits multiple maximal coefficients. In this last case, one solution is
chosen arbitrarily. The computation for (3.15) is light. Based on the explicit
form (3.15) for the projection PSn−1

+
, we describe the projected gradient method

in Algorithm 3.2.1.
The backtracking line search (line 6) is a simplified form of the nonmonotone

line search in [BMR00]. However, for the graph learning problem (3.11), there is
no clear guarantee that the line search step always terminate. The initialization
step (line 1) corresponds to generating a random graph and initializing w0 with
the graph’s edge weights.

Similar to the algorithm of Kalofolias [Kal16], Algorithm 3.2.1 has a per-
iteration time complexity of O(|V|2). Note that even without any extra struc-
tural priors (other than the sparsity of graph edges) for learning the graph, this
basic algorithm has a much lower computational complexity than basic meth-
ods (e.g., [FHT08, BED08]) for sparse inverse covariance estimation, which
normally amount to O(|V|3).

Due to the special structure of the search space on the unit-sphere, Algo-
rithm 3.2.1 is an instance of nonconvex projected gradient methods whose con-
vergence properties are discussed in recent studies; see [JK17, §3] and [BH18]
for details.
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Algorithm 3.2.1 Projected gradient on Sn−1
+ (GL-SPH).

Input: fα (α > 0); σ,β ∈ (0, 1), M ,K ≥ 1.
Output: w ∈ Sn−1

+ .
1: Initialization: w = w0 ∈ Sn−1

+ .
2: for k ∈ {1, . . . ,K} do
3: if ‖PSn−1

+
(wk −∇fα(wk))− wk‖2 ≤ ε then

4: stop.
5: end if
6: Line search:

(6.a) Set the initial stepsize s0
k = 1,

(6.b) Find the smallest integer ` ≥ 0 such that for sk = s0
kβ

` and w+ =
PSn−1

+
(wk − sk∇fα(wk)),

fα(w+) ≤ max
0≤j≤min(k,M−1)

fα(wk−j) + σ 〈∇fα(wk),w+ − wk〉 . (3.16)

7: Update: wk+1 = w+.
8: end for

Computational details. In Algorithm 3.2.1, the calculation of the Eu-
clidean gradient ∇fα(w) is as follows. Recall that the objective function
is Fα(W ) = tr(Z̃TW ) − α

∑m
`=1 log(

∑m
j=1W`j) := tr(Z̃TW ) − αH(W ), for

any W ∈ Wm
+ . The gradient of Fα is ∇Fα(W ) = Z̃ − α∇H(W ), where

∇H(W ) :=
∑

(i,j)∈ sE ∂(i,j)H(W )E(i,j), is computed as follows. The partial
derivatives in ∇H(W ) with respect to the basis {E(i,j) : (i, j) ∈ sE} (see Sec-
tion 3.1), through the chain rule, can be written as

∂(i,j)H(W ) =

m∑
`=1

∂d` (log(d`(W ))) ∂(i,j) (d`(W )) ,

where d`(W ) :=
∑m
j=1W`j is the `-th node degree. Note that ∂d` (log(d`(W ))) =

1/d`(W ) and ∂(i,j) (d`(W )) reads

∂(i,j) [d`(W )] :=
d

dt
(d`(W + tE(i,j)))

∣∣∣∣
t=0

=

m∑
j′=1

δi`δjj′ + δj`δij′√
2

=
δi` + δj`√

2
.

Therefore, we have

∂(i,j)H(W ) =

m∑
`=1

1√
2d`(W )

(δi` + δj`) =
1√
2

(di(W )−1 + dj(W )−1). (3.17)

Through the identification fα(vecS(W )) = F (W ) and the linearity of the
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half vectorization operator, the gradient ∇fα(vecS(W )) = vecS(∇Fα(W )).

3.3 Numerical experiments

In the first part of this section, we evaluate the performance of our graph
learning method on fully observed synthetic data and compare it with the
state-of-the-art algorithm [Kal16]. In the second part, we apply graph learning
to several graph-dependent tasks in machine learning: (i) spectral clustering,
and (ii) semi-supervised learning.

3.3.1 Graph learning on synthetic data

In this part, a synthetic data matrix is generated using a graph-based model,
given a certain randomly generated graph. Therefore, the graph underlying
the synthetic data is considered as the ground truth or the reference graph
of the graph learning methods, and thus, we evaluate the learned graphs by
comparing directly to the reference graph. More precisely, the set of edges
of a learned graph matrix W , {(i, j) ∈ V × V : Wij > 0}, is considered as a
binary classification on V × V, and the quality of the learned graph is evalu-
ated by the following methods: (i) the ROC curve [Faw06], which shows the
true positive rate against the false positive rate of the learned edges; (ii) the
F-measure [vR79] or the F-score, which refers to the harmonic mean of the
precision and recall scores of the learned edges E in comparison with the edges
E? of the reference graph. In particular, the F-measure is computed from both
the hard classification result—with {1>0(W )}—and soft classification result—
with {1≥ε(W )}, for a small threshold ε > 0; and (iii) the relative error, which
is defined as ‖ W

‖W‖F −
W?

‖W?‖F ‖F (an error relative to the unit-norm), where W ?

is the adjacency matrix of the reference graph.

Graph-based data model

We generate synthetic data with the following low-rank matrix model, which
can be seen as a generalization of the model in [RYRD15, §5.1]. Let Gr :=
(Vr, Er,Lr) and Gc := (Vc, Ec,Lc) be the graphs that model the row-wise and
column-wise similarities of a data matrix X and let (U r, Λr) (resp. (U c, Λc)) de-
note the pair of matrices containing the eigenvectors and associated eigenvalues
of Lr (resp. Lc), the data matrix X is generated as follows,

X = ArZ(Ac)
T

, (3.18)

where Z ∈ Rm×n is a Gaussian matrix and the matrices Ar ∈ Rm×m and
Ac ∈ Rn×n are defined as follows,

Ar = U rg(Λr) and Ac = U cg(Λc), (3.19)
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where the function g : R 7→ R acts elementwise on the diagonal matrices, i.e.,
g(Λ) = Diag (g(λ1), . . . , g(λm)) for any diagonal matrix Λ. The function g
in (3.19) enables one to control the way in which the graph information in
Lr and Lc transforms the random matrix Z. In the literature of graph signal
processing [SNF+13], the function g is referred to as a graph spectral filter,
which is a graph analogue of filters in signal processing. In our experiments,
we set the function g as g(λ) = λ−p if λ > 0 and 0 if λ = 0, with p ≥ 1. The
spectral model (4.46) is a typical example of functions that are monotonically
non-increasing over R∗+, which have the effect of low-pass filters [SNF+13] in the
graph spectral domain [SRV16]. Other examples include (i) the Tikhonov filter
(e.g. [BMN04]) gγ(λ) = 1/

√
1 + γλ, and (ii) the diffusion operator [CLL+05,

CM06, ZH08] gτ (λ) = e−τλ.
The graph Laplacian matrices underlying the data model (3.18)–(3.19) are

generated from several common graph models randomly generated using the
GSP toolbox [PPS+14]. These graph types are as follows: (i) Community,
which refers to the type of graphs that have a clear partitioning pattern with
closely connected clusters or subgraphs. Every node has typically much more
connections with nodes of the same cluster than nodes of other clusters, (ii)
Sensor networks, which refer to the type of graphs where the set V of nodes is
embedded in the 2-dimensional square [0, 1]2 and uniformly distributed. The
edge weights are then defined by

Wij = Zij1≥ε(Zij), (3.20)

where Zij = exp
(
−‖Vi−Vj‖

2
2

2σ2

)
and (iii) the Erdős-Rényi random graph [Gil59]

model.
In the following experiments, the graph learning tests are conducted based

on input matrices Z̃ described as follows, depending on the sizem and the graph
type underlying the data model (3.18)–(3.19). Given a data matrix X ∈ Rm×n
generated by the model (3.18)–(3.19), the input matrix Z̃ for graph learning is
a generalized distance matrix associated with X, through (3.12)–(3.13). Note
that (3.12) corresponds to the inner products between the rows of X, which
is just a convention; it suffices to input XT if one needs to learn a graph on
the column index set. We set the kernel function K in (3.12) as the Euclidean
inner product.

Experiments and results

In the following experiment, we compare the performances of Algorithm 3.2.1
(with M = 10 in (3.16)) and a variant of it using a more standard line search
, i.e., monotone line search, which corresponds to setting the option M = 1 in
the line search criterion (3.16). We conduct graph learning on the synthetic
data matrix (3.18) using the two different line search methods, starting from
the same randomly generated initial graph matrix (with a graph edge sparsity
set at 0.05).

https://epfl-lts2.github.io/gspbox-html
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Figure 3.1: Non-monotone vs monotone line search. Graph size: m = 900. (c)–(d): graph
learning results with the two line search methods.
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The numerical results in Figure 3.1 illustrate the main improvement ob-
served in numerous repeated tests: the algorithm using the nonmonotone line
search avoids the stagnation issue that the monotone line search encounters,
and it terminates successfully in these tests under the sole standard stopping
criterion (Algorithm 3.2.1, line 3), for a tolerance parameter ε = 10−8 (which
corresponds to a gradient norm of f of around 10−7). The algorithm using
monotone line search, on the other hand, stagnates earlier than expected and
has to be terminated using extra stopping criteria. While the solutions given
by these two line search variants are similar, the elapsed time of the algorithm
using nonmonotone line search is significantly reduced. Therefore, we adopt the
nonmonotone line search procedure, with an optionM = 10, in all experiments
that follow.

Next, we focus on choice of the regularization parameter α of the graph
learning problem (3.11), which controls the trade-off between the data fitting
term and the regularization function H(vecS(W )) = −1T log(W1). In the fol-
lowing tests, we evaluate six trial values of α in {0.005, 0.01, 0.015, 0.02, 0.2, 2}
using Algorithm 3.2.1, with one (unique) randomly generated initial graph.

0 2 4 6 8 10 12 14 16

100

10−2

10−4

10−6

10−8
Time (sec.)

∆
k

γ = 2
γ = 0.2
γ = 0.02
γ = 0.015
γ = 0.01
γ = 0.005

(a)

0 5 10 15 20 25

100

10−2

10−4

10−6

10−8
Time (sec.)

∆
k

γ = 2
γ = 0.2
γ = 0.02
γ = 0.015
γ = 0.01
γ = 0.005

(b)

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(c)

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(d)

Figure 3.2: Performance of Algorithm 3.2.1 with Z̃ ∈ Rn×n from synthetic data. (a)–
(b): Iteration history in tests with n = 200 and n = 1000, respectively. ∆k =
‖PSq−1

+

(
wk −∇fγ(wk)

)
−wk‖2. (c)–(d): Accuracy of the learned graph edges with respect

to the reference graph.
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Figure 3.2 shows the graph learning results under several regularization pa-
rameters in terms of the ROC curve and time efficiency. We observe that the
proposed algorithm has faster convergence behavior when the regularization pa-
rameter is larger. On the other hand, from the accuracies of the graph learning
results, the optimal regularization parameter, among the tested values, is in the
middle of the range of all choices (in the log-scale), and the accuracy decreases
once the regularization parameter surpasses a certain magnitude. Such obser-
vations conform to the explanation above about the role of the regularization
parameter α.

In the following experiment, we evaluate the graph learning performances of
the proposed algorithm (Algorithm 3.2.1) in comparison to (i) the state-of-the-
art algorithm1 [Kal16] and (ii) a baseline method using the k-nearest-neighbors
(k-NN) graph model, for which the edge weights are defined using the radial
basis function kernel (RBF kernel). For all graph types, the number of nodes is
set to m = 300 and number of samples is n = 2000. The scores are obtained by
running 20 times the same experiment with parameter values selected through
grid search for each method.

Table 3.1 shows the performance of the graph learning results in comparison
to the reference graphs. On all three graph-based data types, the two graph
learning algorithms achieve similar relative errors (with respect to the reference
graph) and they all outperform the k-NN graph model. This is expected since
the objective function of (3.11) is not fundamentally different from the one pro-
posed in [Kal16]. The proposed algorithm also performs very well in the edge
classification evaluations, with the soft and hard-thresholded F-measures: On
two of the graph-based data types (with community graphs and Erdős-Rényi
graphs), the proposed algorithm and the state-of-the-art algorithm [Kal16] out-
perform the k-NN graph model by large margins, and the proposed algorithm
has an improvement over the state-of-the-art algorithm by several percentages,
in terms of the soft-thresholded F-measure.

More interestingly, in the hard-thresholded F-measures, the proposed algo-
rithm has significant improvements over the state-of-the-art algorithm; we ob-
serve that the result of the proposed algorithm (GL-SPH) has less false positives
than that of [Kal16]. Since we tested both algorithms with the same number
of trial parameter configurations, the improvement of the proposed algorithm
(for the model (3.11)) is likely due to fact that it required less parameter trials
than the model (3.8) [Kal16] in the parameter selection procedure.

3.3.2 Application to graph-dependent machine learning
tasks

In this subsection, we apply the graph learning methods in several real-data
applications. We focus on two well-known machine learning tasks that require
the knowledge of a graph. First, we consider an application to graph-regularized

1See GSPbox [PPS+14].
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Table 3.1: Evaluation of graph learning results on synthetic data

Graph type Evaluation k-NN [Kal16] GL-SPH

Community
Relative error 0.6490 0.4590 0.4861
F-measure (hard) 0.7710 0.1967 0.8860
F-measure (soft) 0.7710 0.8654 0.8860

Sensor
Relative Error 0.5919 0.3524 0.3330
F-measure (hard) 0.8209 0.2894 0.7399
F-measure (soft) 0.8209 0.5570 0.7399

Erdős-Rényi
Relative Error 1.1371 0.6863 0.7249
F-measure (hard) 0.3497 0.1563 0.7240
F-measure (soft) 0.3497 0.6874 0.7240

matrix completion [RYRD15, YRD16], where a graph Laplacian matrix is used
as a regularizer to enhance the matrix completion performance. Second, we
conduct semi-supervised learning [ZGL03, LWC12, HM14] on a dataset. In
this application, we evaluate performances of semi-supervised learning based
on several types of graphs, including graphs learned from the given dataset. In
both applications, the quality of the graphs learned by the proposed algorithm
is measured through the evaluation of the results given by the two graph-
dependent tasks respectively.

Semi-supervised learning

In this subsection, we consider the semi-supervised learning problem [ZGL03,
LWC12, HM14], which refers to the task of inferring the unknown labels of a set
of data objects given the known labels of a few other objects. More precisely,
assume that a set V = {Vi : i = 1, . . . ,m} of m objects can be divided into
a number of categories, the label of an object Vi, denoted by fi, refers to the
categorical value in which Vi belongs to. In addition, each object Vi has some
data attribute, or features, which can be represented by a vector φi ∈ Rp.

In the context of semi-supervised learning, one is faced with a collection of
labeled and unlabeled objects V = Vu∩V`, where the subscripts u and ` denote
the index sets of the “unlabeled” and “labeled” objects respectively. The goal
of semi-supervised learning is to infer the labels of the objects in Vu. This is
possible under the intuitive reason that objects with similar data features are
more likely to have the same label than those that are very different. Therefore,
the first step towards semi-supervised learning is to model the similarities of
the objects using a graph G = (V, E). This step consists in constructing a graph
adjacency matrix W ∈ Rm×m based on the features {φi : i = 1, . . . ,m}. In our
experiment, this step is similar to the methodologies (including graph learning)
described in the previous subsection.

Subsequently, the inference of the unknown labels is realized by solving the
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following problem,

min
y∈Rm,y|`=f|`

1

2

m∑
i,j=1

Wij(yi − yj)2. (3.21)

Note that, by the maximum principle of (discrete) harmonic functions [DS84,
ZGL03], the problem (3.21) admits an unique solution, which is either a con-
stant vector or a vector satisfying fj ∈ (0, 1) for all j ∈ Vu. Furthermore,
through Proposition 2.3.3, the solution to (3.21) must satisfy Ly = 0 and
y|` = f|`, where L is the graph Laplacian matrix associated with W . This
entails that the solution y satisfies yj = 1

dj

∑
i∼jWijyi, for all j, i.e., the label

of any object is an weighted average of the labels of its neighbors. Hence, the
solution to (3.21) admits the following expression,

ỹ|u = (Duu −Wuu)−1Wu`f|`, (3.22)

where D := Diag(W1) and the matrix notations with subscripts, Auu and Au`
for any A ∈ R|V|×|V|, denote the submatrices [Aij ]i∈Vu,j∈Vu and [Aij ]i∈Vu,j∈V`
respectively.

Experimental results. We test semi-supervised learning on the USPS hand-
written digits [Hul94]. The feature vector of each handwritten image Vi is the
vectorization, φi ∈ R256, of the gray-scale image itself, and the known labels
f = (fi)i∈V` f|` are sampled from the given labels (digit value in the handwrit-
ten image) of the images. We conduct semi-supervised learning on |V| = 500
images containing all 10 classes (“0”, “1”,. . . , “9”), among which 20% of the im-
ages are labeled. The 10 classes are uniformly distributed in the set of known
labels.

We build graphs from the features {φi : i = 1, . . . , |V|} of all images
using the proposed algorithm (Algorithm 3.2.1) and two graph construction
methods—the k-NN and the ε-NN graph (3.20) models; see Section 3.3.1.

Depending on the different choices of the parameters in each of the three
methods: the regularization parameter α for the graph learning algorithm, k for
the k-NN graph model and (ε,σ) for the ε-NN graph model (3.20), the sparsity
level of the resulting graphs are different. A fair comparison methodology is to
compare the graphs of these three methods according to a given sparsity level.
The comparison of the graphs is made through the evaluation of their tests in
the same semi-supervised learning problem. Therefore, in each of the obtained
graph sparsity levels, three semi-supervised learning tests are conducted, and
the evaluation of the label prediction results is measured by the misclassifica-
tion rate, defined as S(ỹ|Vu) :=

#{ỹj 6=fj :j∈Vu}
|Vu| , where ỹ is the semi-supervised

learning solution, according to (3.22), and f is the ground-truth labels of the
images.

The comparative results are shown in Figure 3.3. We observe that the
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Figure 3.3: Misclassification rates of semi-supervised learning tests based on graphs given
by (i) the k-NN model; (ii) the ε-NN graph model and (iii) the proposed graph learning
algorithm (Algorithm 3.2.1). The x-axis is the average node degree of the graph.

classification results on graphs given by the proposed algorithm outperform the
ε-NN graph model in most graph sparsity levels and they also outperform the k-
NN graph model when the average node degree is larger than 10. Interestingly,
this comparison reflects that graph learning is more flexible in terms of node
degree distribution than the k-NN model.

Graph-regularized matrix completion

We illustrate the use of graphs for in an application to matrix completion.
Given a data matrix M? that is known only on a subset of its entries, matrix
completion refers to the task of inferring the missing entries based on its known
entries. Low-rank matrix algorithms and regularizations are among the most
important topics in matrix completion. In brief, low-rank matrix completion
can be formulated as an optimization problem with an objective function of
the following form,

min
X∈M

F (X) := fΩ(X) + ψ(X), (3.23)

where Ω ⊂ {1, . . . ,m}×{1, . . . ,n} is the index set of the known entries of M?,
fΩ is a data fitting function and ψ is a regularization function. The matrix
candidate X in the formulation above is constrained in a set M of low-rank
matrices. The interested reader is referred to the literature of low-rank matrix
completion for topics related to the low-rank approach; also, the remaining
chapters of this thesis also discuss optimization with low-rank matrices in ma-
trix and tensor completion problems.

In this subsection, we focus on a graph-based regularization method, which
has received much attention following the recent advances (e.g., [RYRD15,
YRD16]) in this topic. In brief, the graph-based regularization refers to the
use of the following penalty function,

ψ(X) = tr(XTLX), (3.24)
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where X is the matrix completion candidate and L is a given graph Laplacian
matrix, which is expected to be conform to the pairwise similarities among the
entries of M?. Since the matrix M? is not fully known, the construction of
the graph Laplacian matrix L either requires certain side information—as is
demonstrated in [RYRD15]—or some prior knowledge about the data matrix.
In this experiment, we construct the graph Laplacian matrix using the proposed
graph learning algorithm, based on an approximation of the data matrix M?

itself.
Specifically, as a starting point, we consider applying the regularizer (3.24)

to the recent work [CA15] about robust matrix completion (RMC). RMC
formulates the data fitting function fΩ using the `1 norm-based loss func-
tion ‖PΩ(X − M)‖1 :=

∑
(i,j)∈Ω |Xij − Mij |. More precisely, [CA15] pro-

posed to design fΩ as a smooth approximation to the `1-norm based loss:
fΩ(X) =

∑
(i,j)∈Ω

√
δ2 + (Xij −Mij)2, for a small δ > 0, and minimize

F (X) =
∑

(i,j)∈Ω

√
δ2 + (Xij −Mij)2 + β‖PΩc(X)‖2F (3.25)

on the set of fixed-rank matrices Mr = {X ∈ Rm×n : rank(X) = r}. The
reason for considering the smooth approximation of the `1-norm is twofold: (i)
to make the data fitting function more robust to outliers in PΩ(M?), as is the
`1 norm-based data fitting function and (ii) to have a smooth and differentiable
objective function at the same time. The Riemannian conjugate gradient de-
scent algorithm (LRGeomCG [Van13]) is used to minimize fΩ(X,M?) over the
matrix manifoldMr. We refer to [CA15] for more details about this problem
and the algorithm.

By combining the graph-based penalty function (3.24) and the data fitting
function (3.25), we have the following graph-regularized matrix completion
problem,

min
X∈Mr

F (X) :=
∑

(i,j)∈Ω

√
δ2 + (Xij −Mij)2 + γ tr(XTLX), (3.26)

which can be solved by using the same Riemannian algorithm in [CA15]. Note
that, for solving the graph-regularized problem (3.26), the computation of the
gradient of the objective function is adjusted according to the additional reg-
ularization term (3.24). The graph Laplacian matrix L in the problem (3.26)
is obtained via graph learning. More precisely, the graph-regularized matrix
completion problem (3.26) is solved following the procedure described in Algo-
rithm 3.3.1.

Experimental results. We conduct graph-regularized matrix completion
tests on a PeMS traffic dataset from the UCI repository [Lic13, DG17]. The

http://pems.dot.ca.gov/
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Algorithm 3.3.1 Graph learning for graph-regularized matrix completion
(GL-RMC)

Input: Ω, PΩ(M?), rank value r, and parameters α, γ, β.
Output: Matrix completion result X.
1: Initialize X0 via r-SVD(PΩ(M?)).
2: Get input matrix Z̃ from X0 via (3.12)–(3.13).
3: Graph learning: (W ,L)← GL-SPH(Z̃,α). # Algorithm 3.2.1
4: X ← RMC(PΩ(M?), Ω, r,L,β, γ). # [CA15, Algorithm 1]

Traffic dataset2 contains a 963× 10, 560 matrix of traffic occupancy rates (be-
tween 0 and 1) recorded by m = 963 sensors placed along different car lanes
in the San Francisco bay area. The recordings are sampled every 10 minutes
covering a period of 15 months. The column index set corresponds to the time
domain and the row index set corresponds to the sensors, which is referred to as
the spatial domain. We are interested in learning graphs in the spatial domain.
Unlike data on social networks or any other kind with useful meta-data, there
is no obvious way to find any side information, in the case of the Traffic dataset,
that may help constructing a spatial-domain graph. This further motivates the
application of graph learning instead of existing graph models.

In the following matrix completion experiment, the data matrix is only ob-
served on a uniformly sampled index set Ω, given a sampling rate p = |Ω|

mn .
In addition to the graph-regularized approach (Algorithm 3.3.1), we also test
the performance of a graph-agnostic method (a method that does not use any
graph-based regularization term), using the original matrix completion algo-
rithm (RMC) [CA15, Algorithm 1]). The regularization parameters involved
in the graph learning and matrix completion algorithms, in Algorithm 3.3.1 and
[CA15, Algorithm 1], are selected after performing a grid search for (α,β, γ)
and β respectively.

Table 3.2: Matrix completion results on the PeMS Traffic data.

Evaluation |Ω|/mn RMC[CA15] GL-RMC

RMSE
(on all/test entries)

4% 0.0641 / 0.0653 0.0278 / 0.0281
6% 0.0476 / 0.0489 0.0254 / 0.0256
8% 0.0402 / 0.0415 0.0247 / 0.0249
10% 0.0394 / 0.0410 0.0243 / 0.0245
20% 0.0285 / 0.0298 0.0236 / 0.0237
30% 0.0259 / 0.0269 0.0235 / 0.0236
40% 0.0278 / 0.0305 0.0234 / 0.0236

The matrix completion outputs are evaluated by the Root Mean Squared
Error (RMSE) in comparison with the ground-truth matrix, on the test and
the whole index sets. Table 3.2 shows the RMSE scores of the two matrix
completion approaches under a number of sampling rates. We observe that for

2https://archive.ics.uci.edu/ml/datasets/PEMS-SF

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
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all sampling rates, the graph-regularized matrix completion outperforms the
graph-agnostic approach. The improvement in these matrix completion errors
is more significant for small sampling rates.

More experiments and results. We make additional experiments, in the
application of graph-regularized matrix completion, to compare the perfor-
mances of graphs via graph learning with those obtained by a more traditional
graph construction method.

We evaluate the matrix completion performances on the Traffic dataset,
using two variants of Algorithm 3.3.1 (the graph learning and matrix comple-
tion procedure), where the input graph Laplacian L (Algorithm 3.3.1, line 4)
is now the aforementioned Riemannian conjugate gradient algorithm LRGe-
omCG [Van13], with the graph-based regularizer (3.24) taken into account, and
the graph construction step (Algorithm 3.3.1, line 3) is realized by either of the
two following methods: (i) the proposed graph learning algorithm (GL-SPH,
Algorithm 3.2.1) or (ii) the ε-NN graph model (a type of k-nearest-neighbor
graph [CGS09]).

Table 3.3: Matrix completion results on the PeMS Traffic data. “Mean” refers to completing
the matrix with the average of the known entries and “MC” refers to the model (3.23) with
zero-valued regularization.

|Ω|/mn Mean MC εNN-LRgeomCG GL-LRgeomCG

RMSE
(test)

4% 0.0452 0.0403 0.0316 0.0312
6% 0.0453 0.0334 0.0313 0.0291
8% 0.0452 0.0302 0.0310 0.0282
10% 0.0452 0.0283 0.0308 0.0271
20% 0.0452 0.0255 0.0291 0.0249
30% 0.0452 0.0247 0.0277 0.0240
40% 0.0452 0.0235 0.0265 0.0233

The results in test RMSEs are given in Table 3.3. We observe that (i)
under all sampling rates tested, the graph-regularized matrix completion mod-
els outperform the naive imputations by mean values and the unregularized
matrix completion model; and (ii) based on the same optimization algorithm
(LRGeomCG), the model using graphs by graph learning (GL) has gained non-
negligible improvements over the one using the ε-NN graphs. Note that both
graph learning and εNN graph model require computations for a distance ma-
trix, the extra running time needed for the optimization step of graph learning
(by Algorithm 3.2.1) is worth the effort. Especially, in this matrix comple-
tion application with a relatively simple and limited parameter selection, it is
encouraging to see improvements for all tested sampling rates.
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3.4 Conclusion and discussion
In this chapter, we considered the problem of learning a graph matrix to model
the pairwise similarities in a given data matrix. The main contribution is the
fixed-scale graph learning algorithm. In the proposed fixed-scale approach,
the graph learning problem is constrained in nonnegative orthant of the unit
sphere. A projected gradient algorithm is proposed to solve this problem. Given
a range of appropriate values for the problem parameter, we have observed fast
convergence behaviors in experiments. In the experiments with synthetic data,
we compared the graph learning performances of the proposed algorithm with
one state-of-the-art algorithm and observed improvements in the results given
by the proposed algorithm. In the applications to semi-supervised learning and
graph-regularized matrix completion, we have observed that the graphs given
by the graph learning algorithm resulted in improvements in both applications.

As mentioned in the problem statement, the graph learning problem de-
pends on a given distance matrix. The definition of such a distance matrix
calls for tasks such as feature engineering or proper representation of the nodes,
which are as important as the optimization problem itself. Another feature of
the current graph learning problem is that the computation of the distance
matrix and the gradients of the graph learning objective function, both with a
complexity of O

(
n2
)
for a graph of n nodes, constitute a major bottleneck in

the computational cost of graph learning. This limits its application to graph-
dependent problems such as the aforementioned graph-regularized matrix com-
pletion. Therefore, future research directions to alleviate this computational
issue include: (i) developing variant algorithms using sparsity-inducing heuris-
tics and (ii) online learning techniques, i.e., accessing the distance matrix Z̃
incrementally instead of accessing it as a fully stored matrix. For related top-
ics about scalable graph learning algorithms, we refer the interested reader to
recent new advances in [KP17].



Chapter 4

Graph-regularized Matrix
Completion

Low-rank matrix completion arises in applications such as recommender sys-
tems, forecasting and imputation of data; see [NKS19] for a recent survey.
Given a data matrix with missing entries, the objective of matrix completion
can be formulated as the minimization of an error function of a matrix variable
with respect to the data matrix restricted to its revealed entries. In various
applications, the data matrix either has a rank much lower than its dimensions
or can be approximated by a low-rank matrix. As a consequence, restricting
the rank of the matrix variable in the matrix completion objective not only cor-
responds to a reasonable assumption for successful recovery of the data matrix
but also reduces the model complexity.

In certain situations, besides the low-rank constraint, it is useful to add
a regularization term to the error function, in order to favor other properties
related to the true data matrix. This regularization term can often be built
from side information, that is, any information associated with row and column
indices of the data matrix. Recent efforts in exploiting side information for
matrix completion include inductive low-rank matrix completion [XJZ13, JD13,
ZDG18] and graph-regularized matrix completion [ZSBS12, KBBV14, ZZHN15,
RYRD15, YRD16]. In particular, graph-regularized matrix completion involves
designing the regularization term using graph Laplacian matrices that encode
pairwise similarities between the row and/or column entities (see Section 4.5.3
and Appendix 4.B). Depending on the application, the graph information is
available through the connections between the data entities or can be inferred
from the data itself.

Rao et al. [RYRD15] addressed the task of graph-regularized matrix com-
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pletion by a low-rank factorization problem of the following form,

min
(G,H)∈Rm×k×Rn×k

1

2

∑
(i,j)∈Ω

(
(GHT )ij −M?

ij

)2

+λr tr(GTΘrG)+λc tr(HTΘcH),

(4.1)
where M? ∈ Rm×n is the data matrix to be completed, k is the maximal rank
of the low-rank model, Ω is the set of revealed entries and λr ≥ 0 and λc ≥ 0
are parameters. The matrices Θr := Im + Lr and Θc := In + Lc with given
graph Laplacian matrices Lr ∈ Rm×m and Lc ∈ Rn×n. The graph Laplacian
matrices Lr and Lc incorporate the pairwise correlations or similarities between
the columns or rows of the data matrix M?. Indeed, observe that the graph
Laplacian-based penalty terms in (4.1) in the form of tr(FTLF ) can be written
as

tr(FTLF ) =
∑
i,j

Wij‖Fi,: − Fj,:‖22, (4.2)

where W is the graph adjacency matrix such that L = Diag(W1) −W . The
right hand-side term above suggests that the graph Laplacian-based penalty
term promotes low-rank solutions that show pairwise similarities according to
the given graph. Rao et al. [RYRD15] related the graph-based regularization
term in (4.1) to a generalized nuclear norm (a weighted atomic norm [CRPW12])
and then found a close connection between the matrix factorization model (4.1)
and a convex optimization formulation involving the generalized nuclear norm
of the matrix variable X = GHT ∈ Rm×n. Moreover, they [RYRD15, §5] de-
rived an error bound for the generalized nuclear-norm minimization problem,
which can be smaller than that of the standard nuclear norm minimization
problem if the graph Laplacian matrices are sufficiently informative with re-
spect to the pairwise similarities between the columns/rows of M?. In this
previous work, an instance (GRALS) of the alternating minimization method
is developed for solving the problem (4.1).

In this chapter, we propose to solve the graph-regularized matrix factor-
ization problem (4.1) by using Riemannian gradient descent and conjugate
gradient methods. Our proposed algorithms are motivated by the following
consideration. Optimization methods on the matrix product space Rm×k ×
Rn×k for matrix factorization models have been observed to efficiently pro-
vide good quality solutions to matrix completion problems, in spite of the
nonconvexity of the cost function. Theoretical support for this observation
can be found in [SL16, GJZ17, MWCC18]. Unlike alternating minimization
(e.g. GRALS [RYRD15]), both Euclidean gradient descent and our proposed
algorithms update the two matrix factors simultaneously, and do not require
setting stopping criteria for subproblem solvers as in alternating minimization
methods. Furthermore, by exploiting non-Euclidean geometries of the set of
low-rank matrices in relation to the matrix product space Rm×k × Rn×k, our
algorithms use descent directions based on what can be seen as scaled gradi-
ents [MAS12, NS12] in the matrix product space. Moreover, as in [MAS12],



53 4.1. RELATED WORK

the particular structure of the objective function makes it possible to resort
to exact line minimization along the descent direction. We show that the re-
sulting gradient descent algorithms have an iteration complexity bound akin
to the Euclidean gradient method (see Theorem 4.4.5), and that faster con-
vergence behaviors are observed with these proposed algorithms, compared to
their counterparts that use the Euclidean geometry (see Section 4.5).

We test the graph-regularized matrix completion model for matrix recovery
tasks on both synthetic and real datasets. We compare our proposed algorithms
with a state-of-the-art method (GRALS [RYRD15]), a baseline alternating min-
imization (AltMin) method and Euclidean gradient descent and conjugate gra-
dient methods. We observe that the proposed algorithms enjoy faster or similar
convergence behaviors compared to the state-of-the-art method and faster con-
vergence behavior than the rest of the baseline methods tested. Moreover, the
convergence behavior of the proposed algorithms is observed to be more ro-
bust against balancing issues that may arise with the asymmetric factorization
model in (4.1), compared to their counterparts that use the Euclidean geometry.
For completeness, we also compare empirically the graph-regularized matrix
completion model with two low-rank matrix completion models: the matrix
factorization model without regularization and the maximum-margin matrix
factorization [SRJ05, RS05] in terms of recovery error. On both synthetic and
real datasets, when the graph Laplacian matrices are properly constructed from
features of the data matrix (with missing entries), the graph-regularized matrix
completion model is found to yield solutions with superior recovery qualities
compared to the other two models.

This chapter is based on the conference and journal papers [DAG19, DAG20].

4.1 Related Work

Matrix completion models. The graph-regularized matrix completion prob-
lem (4.1) is a generalization of the Maximum-Margin Matrix Factorization
(MMMF) problem [SRJ05, RS05],

min
(G,H)∈Rm×k×Rn×k

1

2

∑
(i,j)∈Ω

(
(GHT)ij −M?

ij

)2

+
λ

2

(
‖G‖2F + ‖H‖2F

)
. (4.3)

The MMMF problem (4.3) is related to the nuclear norm-based [CR08, RFP10,
CT10] convex program for low-rank matrix completion [MHE+10]

min
X∈Rm×n

1

2

∑
(i,j)∈Ω

(
Xij −M?

ij

)2
+ λ‖X‖∗ (4.4)

via the relation

‖X‖∗ = min
G,H:GHT=X

1

2

(
‖G‖2F + ‖H‖2F

)
.
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As shown by Hastie et al. [HMLZ15], any solution to (4.3) is also solution to the
convex program (4.4), provided that k ≥ rank(M?). Since the MMMF problem
searches for a pair of matrix factors of rank smaller than or equal to k, which
is usually much smaller than the matrix dimensions (m and n), its computa-
tional cost and memory requirements are significantly reduced compared to the
nuclear norm-based convex program (4.4).

Optimization methods in related work. To the best of our knowl-
edge, the state-of-the-art method for graph-regularized matrix completion is
the AltMin-type algorithm GRALS [RYRD15]. For an alternating minimiza-
tion method (e.g. [RYRD15]), one must deal with Sylvester-type equations for
solving the subproblem with respect to the low-rank factor G (respectively H)
when a graph-based regularization term trGTΘrG (respectively trHTΘcH)
appears in the objective function. Take the fully observed case in [RYRD15]
for example, the subproblem of (4.1) with respect to the factor H corresponds
to the following Sylvester equation

HGTG+ λcΘ
cH = M?G. (4.5)

In the matrix completion scenario, so solving the subproblem of (4.1) with re-
spect to the factor H corresponds to solving an equation similar to (4.5), where
the constant matrices involved in the equation depend on the positions of the
revealed entries in Ω. Equivalently, the subproblem can be rewritten as a linear
least-squares problem (in the form of (4.71) in Appendix 4.A.8) with respect
to the vectorization of the factor HT of dimension nk. The Hessian operator of
this least-squares problem is not block diagonal due to the fact that the original
subproblem corresponds to a Sylvester-type equation. Hence the least-squares
problem of each alternating minimization step for (4.1) cannot be decomposed
into m or n separate linear systems in dimension k. GRALS [RYRD15] ap-
proximately solves each of the two least-squares problems by using a linear
conjugate gradient (CG) solver.

AltMin-type algorithms have proven to be very efficient in solving bi-convex
problems, such as matrix factorization, nonnegative matrix factorization [WZ12,
XY13a], dictionary learning [OF97, MBPS10], low-rank matrix completion, and
in particular have also been proven to converge linearly for the low-rank matrix
completion problem (without regularization) [JNS13a, Har14]. On the other
hand, there are heuristic considerations with AltMin-like algorithms in prac-
tice. The parameters that control the stopping criteria of the solver for each
alternating least squares problem determines the trade-off between the accu-
racy of the solution and the time efficiency of the AltMin method, but there
is no apparent way to set them to achieve the best trade-off once and for all
kinds of data. This can be seen in one of our experiments (see Figure 4.3).
GRALS [RYRD15], as an instance of the AltMin method with well-tuned pa-
rameters and additional stopping criteria in its subproblem solvers, may suffer a
significant drop in efficiency when certain properties of the data matrix change:
a change of the “scale” of the data matrix, which can be measured by ‖M?‖F
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for example, changes significantly the performance of GRALS with a fixed set
of stopping-criteria parameters.

4.2 Notation, definitions and problem statement

For m ∈ N∗, we denote the set of integers {1, . . . ,m} by [[m]]. An undirected
graph G, which is determined by a set of nodes, V, a set of (undirected) edges
E ⊂ V × V and edge weights W ∈ R|V|×|V|, is denoted as G = (V, E ,W ). The
graph adjacency matrix W is symmetric because G is undirected. In addition,
we consider adjacency matrices with nonnegative coefficients:

Wi1,i2 = Wi2,i1

{
> 0 if (i1, i2) ∈ E
= 0 otherwise. (4.6)

Throughout this chapter, the graph Laplacian matrix of a graph G, denoted by
L, is defined as

L = diagW1−W . (4.7)

Thus we denote the graph as G = (V, E ,W ) or G = (V, E ,L). The graph
Laplacian matrix defined by (4.6)–(4.7) is positive semi-definite (e.g. [Chu97,
Spi12]). We denote by Λ = Diag

(
λ1, . . . ,λ|V|

)
the diagonal matrix containing

the eigenvalues of L in increasing order: 0 = λ1 ≤, . . . ,≤ λ|V|. For a matrix
M ∈ Rm×n, we model the row index set of M by a graph Gr = (Vr, Er,Lr),
where Vr = [[m]]. The superscript r of Gr signifies that the graph encodes row-
wise correlations. Similarly, the graph that models the column-wise correlations
ofM is denoted as Gc = (Vc, Ec,Lc). For a real-valued symmetric matrix Θ, the
symbols λmax(Θ) and λmin(Θ) denote the largest and smallest eigenvalues. The
notation Θ � 0 (respectively Θ � 0) signifies that Θ is positive semi-definite
(respectively positive definite). The largest and smallest singular values of a
matrix X are denoted by σmax(X) and σmin(X) respectively. The Euclidean
inner product and norm for the product space Rm×k × Rn×k, denoted as 〈·, ·〉
and ‖ · ‖ respectively, are defined as

〈x, y〉 = tr(GT
xGy) + tr(HT

xHy), (4.8a)

‖x‖ =
√
〈x,x〉, (4.8b)

for any pair of points x = (Gx,Hx), y = (Gy,Hy) ∈ Rm×k × Rn×k.
Problem statement. The purpose of this chapter is to solve (4.1), which

we reformulate as

min
(G,H)∈Rm×k×Rn×k

1

2
‖PΩ(GHT−M?)‖2F+

α

2

(
tr(GTΘrG) + tr(HTΘcH)

)
, (4.9)

where PΩ is the projection onto the subspace of sparse matrices with nonzeros
restricted to the index set Ω. The first term in (4.9) is an equivalent expression
of the first term of (4.1). The second term corresponds to the other terms
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of (4.1) with a parameterization that we find more convenient: we set λr and
λc of (4.1) by one scalar α, and Θr = Im + γrL

r and Θc = In + γcL
c. This

allows for more flexible settings of the weight of the Laplacian-based terms
over the Frobenius norms. Setting γr = 0 and γc = 0 turns off the graph
regularization, leaving us with the MMMF model (4.3). Setting α = 0 turns
off all regularization terms, leading to an unregularized matrix factorization
problem

min
(G,H)∈Rm×k×Rn×k

fΩ(G,H) :=
1

2
‖PΩ(GHT −M?)‖2F . (4.10)

The choice of the rank parameter k is a priori unknown for low-rank matrix
approximation problems such as (4.9). Common approaches include model
selection via cross-validation and rank adaptive methods [MMBS13, ZHG+16].
In this chapter, we focus on the setting where k is smaller than or equal to an
optimal rank.1 Observe that (4.9) is guaranteed to have a solution whenever
α > 0 since the objective function is continuous and coercive.

4.3 Optimization on Rm×k × Rn×k

In this section, we introduce Riemannian gradient descent and conjugate gra-
dient algorithms for problem (4.9). Since the search space Rm×k×Rn×k is just
a vector space, these methods can be interpreted as preconditioned gradient
methods. However, we call them “Riemannian” because the preconditioners are
inspired from known Riemannian metrics on the set of rank-k m-by-n matrices,
as we now explain.

In the main problem model (4.9), the product GHT is an m× n matrix of
rank smaller than or equal to k, and such matrices form the following nonlinear
matrix space

M≤k :=
{
X ∈ Rm×n : rank(X) ≤ k

}
.

In particular, when the regularization parameter α in (4.9) reduces to 0, the
model (4.9) can be directly identified with the following optimization problem
onM≤k via the matrix factorization model Rm×k ×Rn×k 7→ M≤k : (G,H) 7→
X = GHT,

min
X∈M≤k

1

2
‖PΩ(X −M?)‖2F . (4.11)

We refer to the model (4.11) and (4.10) as the unregularized matrix com-
pletion model, in contrast to the graph-regularized model (4.9). A recent
survey [UV20a] provides advances on optimization methods on the low-rank
matrix spaceM≤k.

1In real-world applications, it usually suffices to set up a rank value that is orders of
magnitude smaller than m and n in order to work with an “underestimated” rank, that is,
smaller than or equal to the optimal rank.
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In contrast, when the regularization parameter α in (4.9) is nonzero, the
model (4.9) does not induce an optimization problem on the Riemannian quo-
tient manifoldMk of fixed-rank matrices. This is because the equivalence class
of pairs (G,H) that represent the same X is {(GFT,HF−1) : F ∈ GL(k)} and
it is readily seen that the graph regularization term (4.9) is not constant on the
equivalence classes. This does not prevent us from drawing inspiration from
known Riemannian metrics on the set of rank-k matrices; see next.

Geometric elements on Rm×k × Rn×k. The tangent space at a point
x ∈ Rm×k × Rn×k is the Cartesian product of the tangent spaces of the two
element matrix spaces: Tx

(
Rm×k × Rn×k

)
' Rm×k × Rn×k.

Given two tangent vectors ξ, η ∈ Tx
(
Rm×k × Rn×k

)
at x, we consider the

following two Riemannian metrics on Rm×k × Rn×k,

� The right-invariant metric:

gx(ξ, η) = tr(ξTGηG
(
GTG+ δIk

)−1
) + tr(ξTHηH

(
HTH + δIk

)−1
); (4.12)

� The preconditioned metric:

gx(ξ, η) = tr(ξTGηG
(
HTH + δIk

)
) + tr(ξTHηH

(
GTG+ δIk

)
), (4.13)

where δ > 0 is a constant parameter. Both (4.12) and (4.13), gx are well-
defined inner products. The condition δ > 0 is required for (4.12) and (4.13)
to remain well defined and positive definite when G or H does not have full
column rank. Note that, if we set δ = 0 and restrict the search space to the
product space of full column-rank matrices Rm×k∗ ×Rn×k∗ , then (4.12) and (4.13)
reduce to known metrics that induce metrics on the Riemannian quotient man-
ifold Mk. Specifically, (4.12) reduces to the right-invariant metric proposed
in [MBS11, MMBS14], hence the name “right-invariant”. The metric (4.13)
reduces to a metric proposed by Mishra et al. [MAS12], which is specially
adapted to the matrix factorization loss function (4.10) using the precondition-
ing technique. To see this, it suffices to note that the diagonal blocks of the
Hessian (see Appendix 4.A.9) of fΩ in (4.10) correspond to the following linear
transformation

(ξG, ξH) 7→
(
PΩ(ξGH

T)H,PΩ(GξH
T)

T
G
)

. (4.14)

Definition 4.3.1. For a point x ∈ Rm×k ×Rn×k, the gradient of f at x is the
unique vector in Tx

(
Rm×k × Rn×k

)
, denoted as gradf (x), such that

gx(ξ, gradf (x)) = Df(x)[ξ], for all ξ ∈ Tx
(
Rm×k × Rn×k

)
. (4.15)

Based on the metric (4.12) and Definition 4.3.1, the gradient gradf (x),
denoted as Qrightinv, is

gradf (G,H) =
(
∂Gf (G,H) (GTG+ δIk), ∂Hf (G,H) (HTH + δIk)

)
. (4.16)
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Based on the metric (4.13) and Definition (4.3.1), the gradient of gradf (x),
denoted as Qprecon, is

gradf (x) =
(
∂Gf (G,H) (HTH + δIk)

−1
, ∂Hf (G,H) (GTG+ δIk)

−1
)

.

(4.17)

4.3.1 Algorithms

In this subsection, we introduce our algorithms and their elements such as
computation of the gradient of the objective function of (4.9) and stepsize
selection. We consider two basic algorithms (Algorithms 4.3.1 and 4.3.2) for
optimization on Rm×k × Rn×k. Computational details of these algorithms are
given in Appendices 4.A.1–4.A.6.

Algorithm 4.3.1 Riemannian Gradient Descent (RGD)

Input: Function f : Rm×k × Rn×k 7→ R, an initial point x0 ∈ Rm×k × Rn×k,
and tolerance parameter ε > 0.

Output: xt.
1: t← 0.
2: Compute gradient: gradf (xt) . # See (4.16) or (4.17)
3: while ‖gradf (xt) ‖ > ε do
4: For ηt = −gradf (xt) , find stepsize st such that (st, η

t) satisfy (4.22)
or (4.23)

# See Algorithm 4.A.4 for (4.22)
5: Update: xt+1 = xt + stη

t.
6: t← t+ 1.
7: Compute gradient: gradf (xt) .
8: end while

Initialization. A widely used initialization method is the so-called spectral
initialization (e.g. [KMO10, KO09, SL16]) to construct the initial low-rank
variable x0. This consists of computing (U0,S0,V0) by the k-SVD of PΩ(M?),
i.e., the matrix with all the unknown entries set to zero (the “zero-filled” matrix)
and then defining the initial point x0 := (G0,H0) as follows,

(G0,H0) = (U0S
1/2
0 ,V0S

1/2
0 ). (4.18)

In the case where the known entries are uniformly distributed, it is shown
(e.g., [KMO10]) that this method provides an initial point that is close enough
to the true hidden matrix. In other more general cases, more special ini-
tialization may be required. One alternative is to fill the unknown entries
with the mean value of PΩ(M?) before computing the k-SVD. Nevertheless,
note that the direction that points from the zero-filled matrix to the mean
value-filled matrix is likely to be highly aligned with the negative gradient of
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Algorithm 4.3.2 Riemannian Conjugate Gradient (RCG)

Input: Function f : Rm×k × Rn×k 7→ R, an initial point x0 ∈ Rm×k × Rn×k
and ε > 0.

Output: xt.
1: t← 0.
2: Compute gradient: gradf (xt) , ηt = −gradf (xt) . # See (4.16) or (4.17)
3: while ‖gradf (xt) ‖ > ε do
4: Compute the conjugate descent direction ηt by (4.20)

# See Algorithm 4.A.3
5: Find step size st such that (st, η

t) satisfy (4.22) or (4.23)
# See Algorithm 4.A.4 for (4.22)

6: Update: xt+1 = xt + stη
t.

7: t← t+ 1.
8: end while

X 7→ 1
2‖PΩ(X −M?)‖2F, because the mean-valued matrix constitute a major

rank-one improvement from the former. Hence, it is imaginable that the mean
value-filled matrix be close to the optimization path (between the zero-filled
matrix and the solution at termination), and the difference in the two instances
with these two different initial points would be indistinguishable after several
iterations.

Gradient and descent directions. The Euclidean gradient of the objec-
tive function of (4.9) at x := (G,H) ∈ Rm×k × Rn×k is computed as follows.
We have

Df(x)[ξ] = tr(ξG
TSH + ξH

TSTG) + α
(

tr(ξG
TΘrG) + tr(ξH

TΘcH)
)

,

where S = PΩ(GHT −M?). From the identity

Df(x)[ξ] = tr(ξG
T∂Gf (x)) + tr(ξH

T∂Hf (x)),

we deduce that the components of the Euclidean gradient ∇f(x) are

∂Gf (x) = SH + αΘr G, (4.19a)
∂Hf (x) = STG+ αΘc H. (4.19b)

Subsequently, the computation of the Riemannian gradient with respect to
the metric (4.12) (respectively (4.13)) is based on (4.16) (respectively (4.17))
and (4.19). Algorithms 4.3.1–4.3.2 are later referred to as Qrightinv RGD/RCG
and Qprecon RGD/RCG respectively. Detailed steps for these computations are
given in Algorithm 4.A.1.

In Algorithm 4.3.1, the descent direction at iteration t is the negative gra-
dient: ηt = −gradf (xt). In Algorithm 4.3.2, the conjugate descent direction is
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defined as
ηt = −gradf

(
xt
)

+ βtη
t−1 (4.20)

for t ≥ 1, where βt is determined by a nonlinear CG rule, such as the Fletcher-
Reeves rule

βt =
gxt (gradf (xt) , gradf (xt))

gxt−1 (gradf (xt−1) , gradf (xt−1))
, (4.21)

depending on the local geometry of Rm×k × Rn×k. A full description of the
computation of the RCG descent directions is given in Appendix 4.A.1; see
Algorithm 4.A.3.

Stepsize selection. In Algorithms 4.3.1–4.3.2, a stepsize st must be se-
lected at each iteration for the update step along a descent direction ηt ∈
Txt

(
Rm×k × Rn×k

)
. For this purpose, a common approach is to carry out a

line search procedure by using backtracking with respect to the Armijo condi-
tion,

f(xt)− f
(
xt + sηt

)
≥ σsgxt

(
−gradf

(
xt
)

, ηt
)

. (4.22)

Alternatively, one can estimate the stepsize st via line minimization (e.g. [MAS12,
Van13]): At a point x ∈ Rm×k ×Rn×k, we compute the stepsize defined as fol-
lows,

s∗t = arg min
s≥0

f(G+ sηG,H + sηH), (4.23)

for a given descent direction η ∈ Tx
(
Rm×k × Rn×k

)
. We use the stepsize (4.23)

for the numerical experiments in this chapter. The solution s∗t to (4.23) is
obtained by selecting the minimizer from the real positive roots of the derivative
of the quartic function of (4.23), which is a polynomial of degree 3 and can be
computed easily. The computational cost of this procedure is of the same order
as the computation of the Riemannian gradient (4.16) or (4.17). Computational
details of (4.23) are given in Appendix 4.A.4. In Section 4.4, we will show
convergence properties of Algorithm 4.3.1 using the stepsize (4.23).

4.3.2 The regularization parameters

In this section, we discuss how to choose suitable values for the parameters of
problem (4.9). Note that the model (4.9) with α > 0 and at least one strictly
positive value for γr and γc is referred to as a graph-regularized matrix com-
pletion (GRMC) model. When α > 0 and (γr, γc) = 0, model (4.9) reduces
to a MMMF model (4.3). When (α, γr, γc) = 0, model (4.9) reduces to the
unregularized matrix completion model (4.10), which is referred to as the MC
model. Depending on the properties of the data (synthetic and real datasets),
and for given graph Laplacian matrices Lr,Lc, we have two types of regular-
ization schemes: (i) fixed parameter values and (ii) two-phase regularization
scheme.

In the fixed-parameter scheme, we choose the parameter values following
a standard cross validation procedure (see, e.g., [JWHT13, §5.1.3]); see Ap-
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pendix 4.C for details. We first generate a collection of parameter settings
with random samples drawn from a range of values in Iα × Iγr

× Iγc
⊂ R3

+

with the uniform distribution in log scale, and then we select the parameter
setting that has the best mean validation score (in terms of the RMSE (4.43)
on the validation set). This regularization scheme is used later in Sections 4.5.2
and 4.5.3.

Algorithm 4.3.3 Two-phase matrix completion using graph-based regulariza-
tion (2-phase GRMC)

Input: Parameter α > 0; γr > 0 and/or γc > 0. Iteration budget T ,S > 0 for
the two phases. An initial point x0 ∈ Rm×k×Rn×k. A tolerance parameter
(for Phase 2) ε > 0.

Output: x∗ ∈ Rm×k × Rn×k.
1: Initialize with x0 ∈ Rm×k × Rn×k using (4.18).
2: Phase 1: x∗α = GRMC Solver(fα,x0,∞) for at most T iterations. # See

Algorithm 4.3.1 or 4.3.2.
3: Phase 2: start from x∗α and find x∗ = GRMC solver(fΩ,x∗α, ε) for at most
S iterations.

In the two-phase regularization scheme, shown in Algorithm 4.3.3, we set
α and at least one parameter in (γr, γc) to strictly positive values for Phase 1;
for Phase 2, all the regularization parameters are set to zero. In lines 2–3, the
GRMC Solver is chosen from one of our proposed algorithms, such as Qprecon
RGD (Algorithm 4.3.1 using the gradient (4.17)). In Phase 1, fα denotes the
objective function of (4.9) with the parameter value α. In Phase 2, the objec-
tive function reduces to fΩ in (4.10). The parameters (for Phase 1) in Algo-
rithm 4.3.3 are chosen in the same way as in the fixed-parameter scheme. This
two-phase regularization scheme is designed for sample-efficient exact recovery
of low-rank matrices and is used later in Section 4.5.2.

4.4 Convergence analysis
In this section, we analyze the convergence properties of Algorithm 4.3.1 with
step sizes selected by line minimization (4.23). We conduct the analysis as
follows: First, we show that the objective function of (4.9) is Lipschitz contin-
uously differentiable in the search space Rm×k ×Rn×k with respect to the Eu-
clidean geometry. Second, we show that the specially designed non-Euclidean
gradient descent directions, defined as Qrightinv (4.16) and Qprecon (4.17),
ensure sufficient decrease in the function value provided the step sizes are cho-
sen properly depending on the local geometry at each iterate. We show that
the line minimization approach (4.23) finds such step sizes. Based on these re-
sults, we show the convergence behavior of the proposed RGD algorithm based
on a generic convergence result given by Boumal et al. [BAC19]. We assume
throughout this section that α > 0 in (4.9). Recall that the inner product 〈·, ·〉
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and the norm ‖ · ‖ throughout this chapter are defined in (4.8) with respect to
the Euclidean geometry on Rm×k × Rn×k.

Note that the convergence rate estimation given later can be improved under
more specific assumptions on the true hidden matrix M? and the sample set
Ω, which are used in recent works on statistical guarantees for exact recovery
via matrix completion [SL16, GLM16, ZL16]. In [SL16], the local convergence
behaviors of various algorithms (e.g. AltMin and gradient descent) are studied
and the local convergence rate is proved to be linear under assumptions on Ω
and M?. The settings of those matrix recovery results, however, do not apply
directly to the graph-regularized problem of this chapter (due to the fact that
the graph-based regularization term induces a bias in the solution vis-a-vis
the training data PΩ(M?)). Therefore, we only study the global convergence
without specific assumptions on Ω or M?.

In the presence of the regularization term, the Euclidean gradient ∇f in
the sublevel set (with respect to a point x0 ∈ Rm×k × Rn×k):

S(x0) =
{
x ∈ Rm×k × Rn×k : f(x) ≤ f(x0)

}
(4.24)

is Lipschitz-continuous. We show this in the following lemma, along with a
consequence known as the descent lemma.

Lemma 4.4.1. Given a point x0 ∈ Rm×k × Rn×k, the Euclidean gradient ∇f
is Lipschitz continuous in the sublevel set S(x0) (4.24). As a corollary, there
exists a Lipschitz constant L0 > 0 such that for any x, y ∈ S(x0),

f(y)− f(x) ≤ 〈∇f(x), y − x〉+
L0

2
‖y − x‖2. (4.25)

Proof. The objective function of (4.9) is coercive since α > 0. Hence S(x0) is
bounded. Let B be a closed ball that contains S(x0). Since f is C∞, it follows
that it is Lipschitz continuously differentiable in B. The result follows by a
classical argument (see for example [Nes04, Lemma 1.2.3]).

Based on Lemma 4.4.1, we get the following sufficient decrease property.

Lemma 4.4.2. At any iterate xt = (Gt,Ht) produced by Algorithm 4.3.1 before
termination, the following sufficient decrease property holds, provided that the
step size s satisfies 0 < s < 2Σt/L0, for a strictly positive value Σt > 0,

f(xt+1)− f(xt) ≤ −Ct(s)‖gradf
(
xt
)
‖2, (4.26)

where Ct(s) = s(Σt− L0s
2 ) > 0. Under the gradient setting Qrightinv (4.16),

Σt = min

(
1

δ + σ2
max(Gt)

,
1

δ + σ2
max(Ht)

)
, (4.27)



63 4.4. CONVERGENCE ANALYSIS

and under the gradient setting Qprecon (4.17),

Σt = δ + min
(
σ2

min(Gt),σ2
min(Ht)

)
. (4.28)

Proof. At the t-th iteration in Algorithm 4.3.1, the descent direction is ηt =
−gradf (xt). Let s > 0 denote the step size for producing the next iterate:
xt+1 = xt + sηt. In the gradient setting Qprecon where gradf (x) is defined
by (4.17), the partial differentials are

∂Gf(x) = ηG(HTH + δIk) and ∂Hf(x) = ηH(GTG+ δIk). (4.29)

From Lemma 4.4.1, we have

f(xt+1)− f(xt) ≤ 〈∇f̄(xt),xt+1 − xt〉+
L0

2
‖xt+1 − xt‖2 (4.30)

≤ −s‖ηt‖2
(
δ + min

(
σ2

min(Gt),σ2
min(Ht)

))
+
L0s

2

2
‖ηt‖2 (4.31)

= −Ct(s)‖gradf
(
xt
)
‖2,

where Ct(s) = s(Σt − L0s
2 ) and Σt = δ + min

(
σ2

min(Gt),σ2
min(Ht)

)
. The in-

equality (4.31) is obtained by using (4.29) as follows,

〈∇f̄(xt),xt+1 − xt〉 = −s 〈∇f̄(xt), gradf
(
xt
)
〉

= −s
(
tr ηT

GηG(HTH + δIk) + tr ηT
HηH(GTG+ δIk)

)
≤ −s

(
δ‖ηt‖2 + σ2

min(H)‖ηG‖2F + σ2
min(G)‖ηH‖2F

)
,

where the superscript of the element matrices (G,H) = xt and (ηG, ηH) = ηt

are omitted for brevity. Similarly, the same result applies to the gradient setting
Qprecon (4.16), with the quantity Σt determined by (4.27).

Next, we prove that Algorithm 4.3.1 with step sizes selected by line mini-
mization (4.23) ensures sufficient decrease at each iteration.

Lemma 4.4.3. The iterates produced by Algorithm 4.3.1, with step sizes se-
lected by line minimization (4.23), satisfy the following sufficient decrease prop-
erty,

f(xt+1)− f(xt) ≤ −
(
Σ2
t/2L0

)
‖gradf

(
xt
)
‖2. (4.32)

Proof. In Algorithm 4.3.1, let η = −gradf (xt) denote the Riemannian gradient
descent direction at iteration xt ∈ Rm×k × Rn×k. From Lemma 4.4.1 and
Lemma 4.4.2, we have

f(xt + sη) ≤ f(xt)− Ct(s)‖gradf
(
xt
)
‖2,

for s ∈ [0, 2Σt/L0], with Σt defined in (4.28) and (4.27). One the other hand,
let s̄ be the stepsize determined by (4.23), then by definition, the next iterate
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xt+1 = xt+ s̄η is the minimum of f along the direction η: f(xt+1) ≤ f(xt+sη),
for all s ≥ 0. Hence

f(xt+1) ≤ min
s∈[0,2Σt/L0]

f(xt + sη) (4.33)

≤ min
s∈[0,2Σt/L0]

f(xt)− Ct(s)‖gradf
(
xt
)
‖2 (4.34)

= f(xt)−
(
Σ2
t/2L0

)
‖gradf

(
xt
)
‖2. (4.35)

In both Lemma 4.4.2 and Lemma 4.4.3, the sufficient decrease quantity
depends on the local information Σt. The quantity Σt is useful only when it is
a strictly positive number. We address this point in Proposition 4.4.4 for two
gradient settings Qrightinv (4.16) and Qprecon (4.17).

Proposition 4.4.4. Under the same settings as in Lemma 4.4.2 and 4.4.3,
there exist positive numerical constants Σ∗ > 0 such that the quantities Σt (4.27)
and (4.28) are lower-bounded,

inf
t≥0

Σt ≥ Σ∗. (4.36)

Proof. In the case of gradient setting Qrightinv (4.16),

Σt = min

(
1

δ + σ2
max(Gt)

,
1

δ + σ2
max(Ht)

)
.

First, we prove that there exists D0 > 0 such that the norm of the iterate in
Rm×k × Rn×k is bounded:

‖xt‖ ≤ D0 (4.37)

for all t ≥ 0. It suffices to note that the whole sequence (xt)t≥0 belongs to the
sublevel set S0 (4.24) and that f is coercive. Second, for any x = (G,H) ∈
Rm×k×Rn×k, the maximal singular values σmax(G) and σmax(Ht) are bounded
by the norm as follows,

‖xt‖2 = trGTG+ trHTH ≥ σ2
max(G) + σ2

max(H). (4.38)

The result (4.36) can be deduced by taking the numerical constant Σ∗ :=
1/(δ +D2

0) and combining (4.37) and (4.38).
In the case of gradient setting Qprecon (4.17),

Σt = δ + min
(
σ2

min(Gt),σ2
min(Ht)

)
≥ δ > 0,

and the result (4.36) can be ensured by Σ∗ := δ.

We are now ready to conclude in a manner similar to that in [BAC19,
Theorem 2.5]. A minor difference, however, is that the norm in [BAC19] is the
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Riemannian norm, whereas our search space is a vector space and we use the
Euclidean norm (4.8b). It is possible to use the Riemannian norms induced
by (4.12) and (4.13) if the iterates stay on a fixed-rank manifold, but in all
cases it suffices to use the Euclidean norm in the development of our results.

Theorem 4.4.5. Under the problem statement (4.9), for a given initial point
x0 and the gradient settings Qrightinv (4.16) and Qprecon (4.17), the se-
quence generated by Algorithm 4.3.1 with the stepsize (4.23) converges and the
decay of the gradient norm satisfies

‖gradf
(
xN
)
‖ ≤

√
2L0(f(x0)− f?)

Σ∗N
(4.39)

after N iterations, where L0 > 0 is the Lipschitz constant mentioned in Lemma 4.4.1,
the numerical constant Σ∗ > 0 is given in Proposition 4.4.4 and f? is a lower
bound2 of the function value of (4.9).

Proof. The convergence of the sequence (xt)t≥0 is a direct result of the sufficient
decrease property (4.26) in Lemma 4.4.2 and the boundedness of the sequence
of function values (f(xt))t≥0. See Theorem 2.5 of [BAC19].

Let N ≥ 1 denote the number of iterations needed for getting to an iterate
xN such that ‖gradf

(
xN
)
‖ ≤ ε, for a tolerance parameter ε > 0.

Since our algorithm (Algorithm 4.3.1) does not terminate at t ≤ N − 1, the
gradient norms ‖gradf (xt) ‖ > ε, for all t ≤ N − 1. By summing the right
hand sides of (4.32) for t = 0, . . . ,N − 1, we have

f(xN )− f(x0) ≤ −
N−1∑
t=0

(Σ2
t/2L0)‖gradf

(
xt
)
‖2 (4.40)

≤ −(ε2/2L0)

N−1∑
t=0

Σ2
t (4.41)

= − (Σ∗/2L0) ε2N (4.42)

Hence the number of iterations

N ≤ 2L0(f(x0)− f(xN ))

Σ∗ε2
≤ 2L0(f(x0)− f?)

Σ∗ε2
.

In other words, the iterate produced by the algorithm afterN iterations satisfies

‖gradf
(
xN
)
‖ ≤

√
2L0(f(x0)− f?)

Σ∗N
.

2One can take f? := 0 since the objective function of (4.9) is nonnegative.
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4.5 Numerical Experiments

In this section, we evaluate the performance of the proposed algorithms for solv-
ing the graph-regularized matrix completion problem (4.9). The experimental
tests are based on both synthetic and real-world datasets. The synthetic data
are generated using a low-rank matrix model with graph information, and the
graph Laplacian matrices underlying this graph-related data model are then
used in the regularization term of (4.9). This synthetic experimental setting
corresponds to an ideal situation where the graph Laplacian matrices in the
regularization term are perfectly conform with the pairwise similarities between
the matrix entries. In the tests on real-world data, a graph Laplacian matrix
is constructed using basic graph proximity models based on pairwise distances
between the rows (or columns) of an initial estimation of the data matrix.

4.5.1 Preliminaries

On both synthetic and real-world data, we compare the time efficiency of our
proposed methods with several baseline methods: Euclidean gradient descent
on the product space Rm×k × Rn×k, alternating minimization and a state-of-
the-art method GRALS [RYRD15] (also an alternating minimization method).
Note that by time efficiency, we mean the amount of time that an iterative
method takes to arrive at an iterate of a certain recovery accuracy, and this
mainly depends on the convergence behavior and the computational cost per-
iteration of the method. We also compare the graph-regularized (GRMC)
model (4.9) with two other matrix completion models in terms of matrix re-
covery errors: (i) unregularized matrix completion (MC) via the factoriza-
tion model (4.10) and (ii) the maximum-margin matrix factorization (MMMF)
model (4.3). The following list gives detailed description of the methods in-
volved in the experiments.

� Qprecon RGD and Qprecon RCG correspond to the Riemannian gradi-
ent (Algorithm 4.3.1) and conjugate gradient descent (Algorithm 4.3.2)
using the gradient Qprecon (4.17). Similarly, Qrightinv RGD and
Qrightinv RCG correspond to Algorithm 4.3.1 and Algorithm 4.3.2 us-
ing the gradient Qrightinv (4.16). By default, the step sizes in all
these algorithms are selected via line minimization (4.23), with a label
(linemin). Since we focus on the application of (4.9) in the low rank
setting, we set the rank parameter k by an underestimated value, that is,
smaller or equal to the rank of the true hidden matrix, in all experiments.
In such case, we set the parameter δ in the definition of Qprecon (4.17)
and Qrightinv (4.16) to zero without any numerical issue (e.g. having
rank deficient factor matrices). We show in Figure 4.10 (Appendix 4.A.5)
that the convergence behavior of the so-tested algorithms is almost the
same as their counterparts in the theoretical setting (with a presumably
δ > 0) analyzed in Section 4.4.
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For consistency, Euclidean GD and Euclidean CG (see Appendix 4.A.7)
stand for the gradient descent and nonlinear conjugate gradient descent
algorithms respectively, in which the descent directions (such as the Eu-
clidean gradient) are computed with respect to the Euclidean geometry
on Rm×k × Rn×k. The step sizes in all these algorithms are selected via
line minimization (4.23).

� AltMin: An alternating minimization algorithm ((4.70a)–(4.70b)), where
each of the two graph-regularized least-squares subproblems is solved by
the linear CG routine Algorithm 4.A.6. AltMin1 is an instance of AltMin
that has accuracy parameter ε = 10−14 and nmax

CG = 500. AltMin2 has
accuracy parameter ε = 10−6 and nmax

CG = 500. Note that the parameter
nmax

CG can also be set to even larger values: Since each of the two sub-
problems in the alternating minimization are initialized with the latest
iterate (warm-started), the number of iterations required for each sub-
problem solver to obtain a solution with an accuracy ε usually does not
exceed nmax

CG preset here. Hence, the active parameter for controlling the
stopping behavior of the subproblem solvers in the experiments is ε.

� GRALS: An alternating minimization algorithm implemented by Rao et
al. [RYRD15] that is available on line3. GRALS1 denotes the GRALS
algorithm with the accuracy parameter ε = 10−10 and nmax

CG = 500.
GRALS differs from AltMin in that the linear CG solver for the sub-
problems (4.70a)–(4.70b) has an additional stopping criterion4 compared
to AltMin, which could trigger early termination and hence provide in-
exact solutions to the subproblems (4.70a)–(4.70b) under certain circum-
stances.5

To assess the approximation performance for the matrix completion task, we
use the root mean-squared-error (RMSE). Given M? ∈ Rd and an index set
Ω ⊂ [[m]]× [[n]], the RMSE of X ∈ Rd on Ω is defined as

RMSE (X; Ω) =

√ ∑
(i,j)∈Ω

(Xij −M?
ij)

2/|Ω|. (4.43)

All numerical experiments are performed on a workstation with 8-core Intel
Core i7-4790 CPUs and 32GB of memory running Ubuntu 16.04 and MATLAB
R2015a. The source code is available on https://gitlab.com/shuyudong.
x11/grmc.

3Link: https://github.com/rofuyu/exp-grmf-nips15.
4A stopping criterion that restricts the subproblem update to a region of radius depending

on the norm of the partial gradients of f .
5This feature is one of reasons that make the convergence behavior of GRALS different

from that of AltMin, and in several applications, faster than the latter.

https://gitlab.com/shuyudong.x11/grmc
https://gitlab.com/shuyudong.x11/grmc
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4.5.2 Synthetic Data

We generate synthetic data with the following low-rank matrix model, which
is a generalization of the model in [RYRD15, §5.1]. Let Gr := (Vr, Er,Lr) and
Gc := (Vc, Ec,Lc) be the graphs modeling the row-wise and column-wise simi-
larities ofM? and let (U r, Λr) (respectively (U c, Λc)) denote the pair of matrices
containing the eigenvectors and associated eigenvalues of Lr (respectively Lc).
A low-rank data matrix X? is generated as follows,

Z? = F ?Q?T , (4.44a)
X? = ArZ?(Ac)T, (4.44b)

where (F ?,Q?) ∈ Rm×r? × Rn×r? are composed of columns that are i.i.d.
Gaussian vectors and the matrices Ar ∈ Rm×m and Ac ∈ Rn×n are defined
below with respect to a function g : R 7→ R acting element-wisely on a diagonal
matrix:

Ar = U rg(Λr),Ac = U cg(Λc). (4.45)

More precisely, g(Λ) = Diag (g(λ1), · · · , g(λm)) for any diagonal matrix Λ.
The function g in (4.45) enables one to control the way in which the graph
information in Lr and Lc transforms the low-rank random Gaussian matrix
Z?. In the literature of graph signal processing [SNF+13], the function g is
referred to as a graph spectral filter, which is a graph analogue of filters in
signal processing. In our experiments, the function g is

g(λ) =

{
λ−p if λ > 0,
0 λ = 0,

(4.46)

for p ≥ 1. The spectral model (4.46) is a typical example of functions that
are monotonically non-increasing over R∗+ and that have the effect of low-pass
filters [SNF+13] in the graph spectral domain [SRV16]. Other examples include
(i) the Tikhonov filter (e.g. [BMN04]) gγ(λ) = 1/

√
1 + γλ, and (ii) the diffusion

operator [CLL+05, CM06, ZH08] gτ (λ) = e−τλ.

Remark 4.5.1. In order for model (4.44) to cover the graph-agnostic setting
as a special case, we define by convention that Ar = Im when Lr = 0 and
Ac = Im when Lc = 0.

The model (4.44) is of particular interest for experiments on synthetic data
because it models a wide range of real data matrices whose entries present
pairwise similarities: Due to the non-increasing nature of the function g on
(0,∞) in (4.45), the transformations in (4.44b) with the matrices Ar and Ac

return a data matrixX? such that the graph-based regularization terms of (4.9)
are reduced compared to that before the transformation (see Appendix 4.B for
details). This translates to the observation that the entries of X? present
pairwise similarities that agree with the graph (Vr,Lr) and/or (Vc,Lc), unlike
the structureless entries in Z? (4.44a). Figure 4.1 shows the difference between
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Figure 4.1: A data matrix Z from the Gaussian random model (4.44a) and X = ArZ from
the graph-based model (4.44b). The Laplacian matrix Lr involved in (4.44b) is generated
with the prototypical graph model Community using GSPbox [PPS+14]. Comparison in the
data entries and in the graph spectral domain. Top: A randomly chosen column (a): y = Z:,j

and (b): y′ = X:,j . Bottom: Average amplitude of graph Fourier coefficients (c): Ẽ|ŷ(λl)|
and (d): Ẽ|ŷ′(λl)| from low (small eigenvalue λl(Lr)) to high graph vertex frequencies.

Z? and X? := ArZ? regarding this property.

Matrix completion from noiseless observations

In this subsection, the ground-truth data matrix M? is generated by (4.44) for
r? � min(m,n) and is partially observed without any noise. The index of the
revealed entries are i.i.d. sampled according to the Bernoulli model

(i, j) ∈ Ω with probability ρ, for any (i, j) ∈ [[m]]× [[n]]. (4.47)

For simplicity, we let Lc = 0 such that Ac = In (see Remark 4.5.1). Hence
the graph information is incorporated in M? row-wisely by Ar with respect
to (4.45). For this purpose, a graph Laplacian matrix Lr is generated with
the prototypical graph model Community using the GSPbox [PPS+14]. The
function g in this model is (4.46) with p = 2.

For the matrix completion model (4.9), we set the rank parameter by
k := rank(M?). Note that in this case, M? belongs to M≤k, and any point
(G∗,H∗) ∈ Rm×k ×Rn×k such that G∗H∗T = M? exactly recovers the hidden
matrix M?. We refer to the search for such a point (G∗,H∗) as exact recovery



CHAPTER 4. GRAPH-REGULARIZED MATRIX COMPLETION 70

of the data matrix. In the literature of matrix completion, exact recovery of a
low-rank matrix M? by a factorization model such as (4.10) is possible under
conditions on the extent of incoherence [CR09a] of the singular subspaces of
M? and the observation model Ω. Specifically, several sample complexity lower-
bounds for ρ ≈ |Ω|/mn are proved with both regularized ([SL16, GJZ17]) and
unregularized (implicitly regularized [MWCC18]) matrix factorization models.

In the experiments of this subsection, we carry out tests for recovering the
hidden matrix M? with our proposed two-phase (2-phase GRMC) regulariza-
tion scheme (Algorithm 4.3.3). Note that this 2-phase regularization scheme is
specially adapted to the exact recovery of the hidden matrixM? since it disables
the regularization terms in its last phase (avoiding any bias in the solution).
The unregularized matrix completion (MC) model (4.10), which corresponds
to the special setting of (4.9) for (α, γr, γc) = 0, is also tested. The label “MC
(GRALS)” in Figure 4.2(a) corresponds to the result of unregularized matrix
completion using GRALS, which reduces to a simple “ALS” algorithm since all
regularization parameters are set to zero for the (unregularized) MC model.
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Figure 4.2: Matrix completion from noiseless observations. M? is generated with non-trivial
graph information with the model (4.46) and is partially observed without any noise. The
rank parameter k := rank (X)M?. (a): Percentage of successful recoveries under various
sampling rates. The solutions are given by the two different matrix completion models (MC
and GRMC). Matrix size m = 500, n = 600, rank r? = 12. (b): Results per iteration by
2-phase GRMC (Algorithm 4.3.3) at sampling rate |Ω|/mn = 10.0%: matrix size m = 800,
n = 900, rank r? = 12.

First, we compare empirically the sample complexities of (i) the unregu-
larized matrix completion model (MC) and (ii) the graph-regularized matrix
completion model (4.9) through the 2-phase GRMC scheme described above.
Under the experimental settings described in the beginning of this Section,
for m = 500, n = 600 and r? = 12, we carry out repeated tests at various
sampling rates |Ω|/mn ranging from 5% to 28%. At each sampling rate, we
compute the percentage of successful recoveries among Ntests = 20 repeated
tests. Each test is counted as successful if the RMSE (4.43) on test entries
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is smaller than 10−12.6 In particular, at each sampling rate, the parameters
(α, γr) in the GRMC model (4.9) (for Phase 1 of Algorithm 4.3.3) are selected
with respect to the test RMSE of the final solution, among NCONFIGS = 5
randomly generated parameter configurations (see the paragraph of the fixed-
parameter scheme of Section 4.3.2 for details). Here the configurations for
(α, γr) are generated with the uniform distribution (in the log scale) in the
2-dimensional box [10−4, 1]× [10−2, 5].7

As shown in the 2-phase GRMC scheme (Algorithm 4.3.3), the whole algo-
rithm is stopped by either the accuracy parameter ε (see Algorithms 4.3.1, 4.3.2),
when the iterate becomes an ε-stationary point or by the iteration budget pa-
rameter S, which is tuned to a sufficiently large value for both successful and un-
successful recovery scenarios. Experimental results are shown in Figure 4.2(a):
These results show empirically that the 2-phase GRMC method has a lower
sample complexity than unregularized matrix factorization.

Second, we compare the time efficiency of the proposed algorithms with
their counterparts under the Euclidean geometry. Figure 4.2(b) shows results
per iteration under a sampling rate that is sufficiently large for 2-phase GRMC.

In particular, when the sampling rate ρ is sufficiently large, it is possible
to exactly recover the hidden matrix M? without any regularization (see Fig-
ure 4.2(a) at sampling rates larger than 15%). Therefore, we test our algorithms
for this special case, with the problem parameter α set to zero in (4.9). In this
special regime, we compare the time efficiency of our proposed algorithms with
the several other methods in two different settings for the initialization point
x0 ∈ Rm×k × Rn×k: In the first test, each method is initialized at a point
x0 = (G0,H0) given by (4.18). In this case, the two factors G0 and H0 are
balanced, in the sense that their matrix norms are equal. In the second test,
we test the same methods with an unbalanced initial point

y0 = (λG0,H0/λ), (4.48)

for λ = 5. The comparative results are given in Figure 4.3.
From the results in Figure 4.2 and Figure 4.3, we have the following obser-

vations:

� Our algorithms (Qprecon RGD, RCG) are faster than their Euclidean geometry-
based counterparts (Euclidean GD, CG) in every experimental setting.

� Our algorithms are faster than the baseline alternating minimization
methods AltMin1, AltMin2.

� Qprecon RCG is faster than GRALS1 and this comparison becomes much
6This is an attainable accuracy level in the exact recovery scenario, based on preliminary

tests.
7In the exact recovery scenario, the Phase 1 of our 2-phase algorithms does not need very

fine-tuned parameters and the 2-dimensional box was also already narrowed after preliminary
tests. A selection from 5 parameter configurations was enough to get the improvements shown
in Figure 4.2(a).
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Figure 4.3: Results per iteration. Experimental settings: m = 1000,n = 900, r = r? =
10, |Ω|/mn = 20.0%. M? is generated with the model (4.46) and is partially observed
without any noise. (a): Each method is initialized at x0 by (4.18). (b): Each method is
initialized at y0 by (4.48).

more evident when the initialization point is unbalanced than when it is
balanced. Similarly, Qprecon RGD is as fast as GRALS1 in the balanced
initialization setting and much faster than the latter in the unbalanced
case.

� In relation to the remark above, the baseline methods Euclidean GD,
Euclidean CG and GRALS1 are significantly slower when the initialization
point is unbalanced.

Matrix completion from noisy observations

In this subsection, we assume that the partially observed data matrix M? is
composed of noisy observations from a low-rank matrix X?,

M? = X? + E, (4.49)

where Eij
i.i.d.∼ N (0,σ2

N ) for all (i, j) ∈ [[m]]× [[n]] and X? ∈ Rm×n is generated
using the model (4.44) with rank r? � min(m,n). For simplicity, we let Lc = 0
and only incorporate row-wise similarities in X? through Lr ∈ Rm×m with
respect to (4.45). For this purpose, a graph Laplacian matrix Lr is generated
with the prototypical graph model Community using the GSPbox [PPS+14].
The function g in this model is (4.46) with p = 2. Figure 4.4 shows the
singular values of M? generated with (4.49), where the true low-rank matrix
X? is generated with (4.44), and the noise level of E is determined by a signal-
to-ratio parameter SNR = 20.

For the matrix completion problem (4.9), the rank parameter k is set to
be smaller than rank(X?) and its values will be specified later. We test our
algorithms, the baseline algorithms and the state-of-the-art algorithm GRALS
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Figure 4.4: Singular values of M? generated with (4.44) and (4.49), where the noise level is
set by a signal-to-ratio parameter SNR = 20.

[RYRD15] for solving the problem (4.9) with fixed parameter values α ≥ 0 and
γr ≥ 0.

First, we compare the recovery quality of the solutions to the three types
of matrix completion models, that is, the unregularized matrix completion
(MC), the graph-regularized matrix completion (GRMC) model (4.9) and the
maximum-margin matrix completion (MMMF) in (4.3). For the unregularized
problem model (MC), the parameter setting is α = 0. For the MMMF model
(α > 0 and γr = 0), the parameter setting is selected among a collection of
NHP randomly generated values in a reasonable range, (αi)i=1,...,NHP . For the
GRMC model (α > 0 and γr > 0), the parameter setting is selected among a
collection of NCONFIGS = 10 uniformly distributed (in log-scale) values in a 2-
dimensional box [10−4, 1]× [10−2, 5]. The criterion for the parameter selection
is the test RMSE (4.43). At each sampling rate and once the parameters
are selected for MMMF and GRMC, the recovery score of each of the three
matrix completion models, using a given algorithm (ours as well as the baseline
methods) corresponds to the average score after Ntests training instances based
on (M?, Ωs)s=1,...,Ntests , where the observation sets Ωs are generated according
to (4.47) with the given (fixed) sampling rate. All methods tested are stopped
by either the accuracy parameter ε (see Algorithms 4.3.1, 4.3.2), when the
iterate becomes an ε-stationary point or by an iteration budget parameter,
which is set to a sufficiently large value for all methods. Figure 4.5 shows the
recovery scores of each of the three problem models under different sampling
rates. From Figure 4.5, we can see that at various sampling rates, the GRMC
model (4.9) provide solutions with superior recovery qualities than the other
two graph-agnostic models. Naturally enough, the improvement on recovery
qualities via GRMC is significant at small sampling rates.

Second, we compare the time efficiency of the proposed algorithms with the
baseline methods. The methods are tested in two slightly different experimen-
tal settings. Based on the data generation method described in the beginning
of this subsection, the data matrix in each of these two experiments is rescaled
with respect to a given constant value: We set the constant scalar such that
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Figure 4.5: Average test RMSE of the three matrix completion models from noisy obser-
vations. M? is generated with non-trivial graph information with the model (4.46) and is
partially observed with additive noise (SNR = 20). The rank parameter k = 10. Recov-
ery score of solutions to MC, MMMF and GRMC at various sampling rates. Matrix size:
m = 500, n = 600, rank r? = 12. The sampling rate |Ω|/mn ranges from 1.0% to 18.0%.

E
[
|M?

ij |
]

= 1 in the first setting and E
[
|M?

ij |
]

= 10−3 in the second one. Fig-
ure 4.6 shows the time efficiency of the tested methods in these two experiments
in terms of the RMSE score per iteration. Note that the tests for producing
Figure 4.5 are conducted under the data setting E

[
|M?

ij |
]

= 1, without loss of
generality. In particular, for the second data setting, with E

[
|M?

ij |
]

= 10−3,
we show in Figure 4.7 the recovery qualities of the iterates under the unregu-
larized (MC) and the graph-regularized (GRMC) models, for a relatively low
sampling rate. Given the graph Lr underlying the synthetic data model (4.44),
the GRMC model corresponds to one randomly generated set of parameters
(α > 0, γr > 0), where α is randomly generated in the range (10−6, 10−3)
and γr randomly generated in the range (10−2, 5). We can see that for all the
tested methods, the recovery qualities of the iterates under the GRMC model
outperforms those of the unregularized matrix completion model.

From the results in Figure 4.6 and Figure 4.7, we have the following obser-
vations:

� Our algorithms (Qprecon RGD, RCG) are faster than their counterparts
under the Euclidean geometry (Euclidean GD, CG).

� Our algorithms are faster than the baseline alternating minimization
methods AltMin1, AltMin2.

� Qprecon RCG is either faster than GRALS1 or as fast as the latter in various
settings.

� In relation to the previous remark. The time efficiency of GRALS changes
significantly when there is a simple change in the scale of the data ma-
trix, as shown in Figure 4.6, since it has an additional stopping crite-
rion that restricts the search of the solution to the least-squares sub-
problem (4.70a) (resp. (4.70b)) to a region of radius ‖∂Gf(Gt−1,Ht−1)‖
(respectively ‖∂Hf(Gt,Ht)‖). This restricted-region criterion depends
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Figure 4.6: Test RMSE per-iteration on sythetic data. The data matrix M? is generated
via (4.44) and (4.49). Matrix size: m = 1000,n = 900, rank r? = 12. The rank parameter
k = 8. Subplots (a-b): The data matrix M? is rescaled by a scalar constant such that
E
[
|M?

ij |
]

= 1; (a): the sampling rate |Ω|/mn = 11.5%, (b): |Ω|/mn = 18.0%. Subplots

(c-d): The data matrix M? is rescaled by a scalar constant such that E
[
|M?

ij |
]

= 10−3; (c):
the sampling rate |Ω|/mn = 11.5%, (d): |Ω|/mn = 18.0%.
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Figure 4.7: Test RMSE per iteration on synthetic data. The data matrix M? is rescaled
by a scalar constant such that E

[
|M?

ij |
]

= 10−3. Matrix size: m = 1000, n = 900, rank
r? = 12. The rank parameter k = 8. (a)–(c): the sampling rate |Ω|/mn is 3.5%, 5% and
10% respectively. The dashed lines with a label “(MC)” corresponds to methods for solving
the (unregularized) MC problem.
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however, both on properties of the data matrix (such as the scale of the
data) and the iterate.

� As illustrated in Figure 4.5, the recovery performances of all tested meth-
ods for GRMC are better and more stable than those for (unregularized)
MC, when the sampling rate |Ω|/mn is insufficient; see Figure 4.7(a)–(b).

4.5.3 Real Data

In this subsection, we conduct experiments on real-world datasets. An essential
difference between these experiments and experiments on synthetic data is
that there is no reference graph associated with the data matrices in a real-
world application. Since the data matrix in a real-world application often
present pairwise similarities between its entries, we build the graphs Lr and Lc

based on the given data before the graph-regularized matrix completion task.
Subsequently, we conduct tests with the graph-regularized and graph-agnostic
matrix completion models using all the methods involved, and compare their
time efficiency. The real-world data used for these tests are from the PeMS
Traffic occupancy and MovieLens datasets.

Methodology for graph construction

In the existing work on matrix completion using graph-based regularization,
there are two main approaches to constructing the graph Laplacian matrices:
(i) build the graph Laplacian matrix from the data M? ∈ Rd itself by using
a certain graph node proximity model, e.g., [KBBV14], and (ii) build a simi-
larity graph Lr (and/or Lc) from side information [RYRD15, YRD16], that is,
information related to the entities of the row (and/or column) indices of M?.

In our experiments, we adopt the first approach. Note that in [KBBV14],
the computation of the graph proximity parameters is based on pairwise dis-
tances using only the revealed entries inM?. In contrast, we compute the graph
proximity parameters based on a low-rank approximation of the partially re-
vealed matrix. More precisely, we propose to use a rank-r approximation ofM0

as the features for constructing the graph. Let (U0,S0,V0) denote the r-SVD of
the zero-filled matrix M0 := PΩ(M?) ∈ Rd and let M̃0 := U0S0V

T
0 . Next, the

computation of the graph edge weight parameters based on the given matrix
M := M̃0 can be realized by using various node proximity methods such as K-
Nearest Neighbors (K-NN) and ε-graph models [Cha83, BN03, HN04, CGS09],
which boils down to computing a certain distance matrix between the rows (re-
spectively columns) of M . Let Zr(M) ∈ Rm×m denote the row-wise distance
matrix of M defined as follows,

Zij(M) = d (Mi,:,Mj,:) , for i, j ∈ [[m]], (4.50)

where d : Rn × Rn 7→ R+ is a distance on the n-dimensional vector space.
Subsequently, we build a Gaussian ε-graph by computing the node proximity
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weights as follows

[Wε(M)]ij = exp
(
−Zij(M)/ε2

)
, for i, j ∈ [[m]], (4.51)

where ε ∈ R is a hyperparameter of the graph model. Furthermore, a sparse
graph adjacency matrix is more preferable than a dense in a computational
point of view, as the per-iteration cost for computing the gradient (as well as
the function value) in (4.19) depends partly on nnz(Lr) and nnz(Lc), hence the
sparsity of the row-wise (resp. column-wise) graphs. For simplicity, we sparsify
the graph adjacency matrix defined in (4.51) by the following thresholding
operation

[Wε,σ(M)]ij = 1≥σ
(
exp

(
−Zij(M)/ε2

))
, for i, j ∈ [[m]], (4.52)

where 1≥σ is the hard threshold function 1≥σ(z) =

{
z if z ≥ σ
0 otherwise.

In the graph model (4.52), the parameter ε is tuned according to the vari-
ance of (Zij)i,j=1,...,m. In the following experiments, we set ε := Var((Zij)ij)/5
and find that this setting gives satisfactory improvements on the final recovery
performances. The parameter σ is chosen according to a preset sparsity level
s � 1 for the edge set associated with Wε,σ such that |E(Wε,σ)|/m2 ≤ s. We
set s := 8% and find that it is an appropriate trade-off between the amount
of similarity graph edges and the additional computational cost required by
matrix multiplications with the graph Laplacian.

The Traffic Data

The PeMS Traffic occupancy data8 is a matrix with dimensions 963 × 10 560
containing traffic occupancy rates (between 0 and 1) recorded across time by
m = 963 sensors placed along different car lanes of the San Francisco Bay area
freeways. The recordings are sampled every 10 minutes covering a period of 15
months. The column index set corresponds to the time domain and the row
index set corresponds to geographical points (sensors), which are referred to
as the spatial domain. Unlike the case with data from social networks or any
other kind with useful meta-data, there is no straightforward way to find any
side information for the Traffic dataset that may help constructing a spatial-
domain graph. Hence we construct a sparse row-wise similarity graph with the
Gaussian ε-graph model (4.52).

The parameter selection is similar to the methodology described in Sec-
tion 4.5.2. In the following experiment, a set H = {(αi, γir)} of NCONFIGS= 20
parameter configurations are sampled in a box region [10−2, 10]× [10−2, 2] with
the uniform distribution (in the log scale). Then, for each sampling rate, the
best choice in H is selected via the 5-fold cross validation (Appendix 4.C) and
is shown in Table 4.1. Based on these parameters, we compare the matrix re-

8https://archive.ics.uci.edu/ml/datasets/PEMS-SF
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covery qualities of GRMC and the other two graph-agnostic matrix completion
models. The results are shown in Table 4.2.

Table 4.1: GRMC tests on the Traffic dataset: selected parameters under sampling rates
1%, 5% and 20%.

SR=1% SR=5% SR=20%
Algorithm α αγr α αγr α αγr
GRALS1 2.90e-1 3.57e-3 3.74e-1 6.42e-3 6.95e-1 1.34e-1
AltMin1 2.90e-1 3.57e-3 3.74e-1 6.42e-3 6.95e-1 1.34e-1
Qprecon RGD 2.90e-1 3.57e-3 3.74e-1 6.42e-3 6.95e-1 1.34e-1
Qrightinv RGD 2.90e-1 3.57e-3 3.74e-1 6.42e-3 6.95e-1 1.34e-1

Table 4.2: Recovery scores (test RMSE) of the three matrix completion models under various
sampling rates (SR): the unregularized matrix completion (MC), maximum-margin matrix
factorization (MMMF) and graph-regularized matrix completion (GRMC).

SR=1% SR=5% SR=20%
Method MC MMMF GRMC MC MMMF GRMC MC MMMF GRMC
GRALS1 0.0453 0.0351 0.0343 0.0778 0.0291 0.0272 0.0371 0.0246 0.0232
AltMin1 0.1218 0.0356 0.0344 0.0455 0.0332 0.0280 0.0317 0.0249 0.0244
AltMin2 0.1217 0.0352 0.0343 0.0455 0.0308 0.0275 0.0317 0.0247 0.0238
Euclidean GD 0.0455 0.0352 0.0343 0.0399 0.0299 0.0276 0.0261 0.0253 0.0241
Euclidean CG 0.0472 0.0350 0.0343 0.1443 0.0289 0.0272 0.0360 0.0246 0.0232
Qprecon RGD 0.0553 0.0351 0.0344 0.0477 0.0293 0.0273 0.0297 0.0246 0.0232
Qprecon RCG 0.0514 0.0350 0.0343 0.1875 0.0291 0.0271 0.0570 0.0246 0.0232
Qrightinv RGD 0.0454 0.0452 0.0349 0.0329 0.0326 0.0326 0.0300 0.0299 0.0300
Qrightinv RCG 0.0454 0.0452 0.0343 0.0812 0.0295 0.0273 0.0261 0.0254 0.0241

Figure 4.8 shows the time efficiency of the methods tested in terms of the
RMSE score per iteration.
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Figure 4.8: Test RMSE per iteration on the Traffic dataset (m = 963, n = 10560). The
rank chosen is for the model (4.9) is k = 18. (a): the sampling rate |Ω|/mn = 1.0%, (b):
|Ω|/mn = 5.0%, (c): |Ω|/mn = 20.0%. In particular, the label (ls) of the dashed line refers
to the method using backtracking-Armijo line search (Algorithm 4.A.4).
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MovieLens dataset

The MovieLens 100K 9 dataset [HK15] consists of 10 000 ratings (1 to 5) from
943 users on 1 682 movies. Each user has rated at least 20 movies. The data
was collected through the MovieLens web site (movielens.umn.edu) during
the seven-month period from September 19th, 1997 through April 22nd, 1998.
This data has been cleaned up—users who had less than 20 ratings or did not
have complete demographic information were removed from this data set. For
the graph-regularized matrix completion model, we construct a sparse row-wise
similarity graph (on the set of users) with the Gaussian ε-graph model (4.52).

Based on the same methodology for parameter selection using K-fold cross
validation (with K = 5) as described in Section 4.5.2, we compare the matrix
recovery qualities of GRMC and the other two graph-agnostic matrix comple-
tion models. The results are shown in Table 4.3. The RMSE scores of the
GRMC model, returned by the methods tested using the selected parameter
setting, are around 0.957, which is close to the RMSE score of 0.945 given
by the graph-regularized method in [RYRD15] and is better than the scores of
all other methods reported in [RYRD15]. Note that (i) the rank value chosen
in the present experiment is the same as that in [RYRD15] and (ii) the graph
Laplacian matrix used by Rao et al. [RYRD15] comes from side information,
while the graph Laplacian matrix in the present experiment is constructed with
the sparse ε-graph model (4.52), and (iii) in our experiment, the training set is
80% of the data entries in the ML100k dataset, while Rao et al. [RYRD15] used
90% of the available data. To achieve even better recovery scores under the
GRMC framework, one needs to refine the construction of the graph Laplacian
matrix either with models that are more adapted to the features of the data
matrix or using more sensible user/movie-related information.

Table 4.3: Matrix completion score (RMSE on test entries) of solutions to the three types of
problem models: unregularized matrix completion (MC), Maximum-margin matrix factor-
ization and Graph-regularized matrix completion (GRMC).

Methods MC MMMF GRMC
GRALS1 2.076 0.984 0.957
GRALS2 1.203 0.983 0.957
Euclidean CG 1.411 0.986 0.957
AltMin1 4.069 0.984 0.956
AltMin2 4.018 0.984 0.956
Qprecon RGD 1.083 0.986 0.957
Qprecon RCG 1.917 0.984 0.959

We also compare the time efficiency of the methods tested in terms of the
RMSE score per iteration. Results are shown in Figure 4.9.

9https://grouplens.org/datasets/movielens/100k/
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Figure 4.9: RMSE per iteration on the MovieLens100k dataset (m = 943, n = 1682). Rank
parameter k = 10. The number of revealed entries is 80% of the 100k available ratings and
the effective sampling rate |Ω|/mn ≈ 5.05%. In particular, the label (ls) of the green line
refers to the method using backtracking-Armijo line search (Algorithm 4.A.4).

Discussion of real-data experiments

From both Table 4.2 and Table 4.3, we observe that the matrix recovery quality
of solutions to the GRMC model (4.9) is superior to those of the other two
graph-agnostic matrix completion models. From Figure 4.8 and Figure 4.9, we
have the following observations:

� Our algorithms (Qprecon RGD, RCG) are faster than Euclidean GD and
the baseline alternating minimization methods AltMin1, AltMin2.

� The time efficiency of Qprecon RCG and the state-of-the-art method GRALS1
are similar on the two real datasets tested. Observe that both Qprecon
RCG and GRALS1 are considerably faster than the two AltMin methods,
though GRALS1 and AltMin are based on the same alternating minimiza-
tion strategy. This can be due to the programming language (C++ for
GRALS1 and MATLAB for AltMin) and to GRALS’s above-mentioned
additional stopping criterion for the subproblem solver.

� The stepsize by line minimization (4.23) yields faster convergence be-
havior than backtracking line search (with respect to the Armijo rule,
starting from an arbitrary guess s0 = 1 for the initial stepsize).

4.6 Conclusion
In this chapter, we focused on a graph-regularized matrix factorization prob-
lem for matrix completion. We proposed efficient algorithms for the underlying
optimization problem on the product space Rm×k × Rn×k. Our proposed gra-
dient descent and conjugate gradient methods are based on specially designed
Riemannian metrics on Rm×k × Rn×k that are inspired from metrics on the
Riemannian quotient manifold of fixed-rank matrices. Moreover, we focused
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on a stepsize selection method by exact line minimization, which results in
a superior time efficiency compared to the approach using back-tracking line
search. We provided rigorous theoretical analysis of the convergence property
of the proposed Riemannian gradient descent algorithm.

We have investigated the matrix recovery qualities of various matrix com-
pletion models under various sampling rates: we found that the graph-based
regularization does provide improvement for the matrix recovery quality com-
pared to graph-agnostic matrix completion models, especially for relatively low
sampling rates.

We have also conducted extensive experiments on synthetic data: we ob-
served that our approach achieves significant speedup compared to several base-
line methods, including a state-of-the-art method (GRALS) using alternating
minimization, on various experimental settings. Moreover, we have shown via
several tests that the proposed algorithms are much less influenced by changes
in the initialization point or the scale of the data matrix. In our experiments
on real-world data, we found that our methods produce solutions to the graph-
regularized matrix completion model in comparable or less time than the base-
line and the state-of-the-art methods.
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Appendix

4.A Algorithms

4.A.1 Computation details of Algorithms 4.3.1–4.3.2 with
line minimization

Algorithm 4.A.1 Computation of the Riemannian gradient

Input: x = (G,H) ∈ Rm×k × Rn×k,PΩ (M?) ∈ Rd, Ω, Θr ∈ Rm×m, Θc ∈
Rn×n, and the parameter α.

Output: Riemannian gradient ξ = (ξG, ξH) ∈ Tx
(
Rm×k × Rn×k

)
.

1: Compute the residual S = PΩ

(
GHT −M?

)
. # (2k + 1)|Ω| flops

2: Compute

∂Gf(x) = SH + αΘrG, ∂Hf(x) = STG+ αΘcH.

# 4(|Ω|+ nnz (Θr) + nnz (Θc))k flops
3: Compute

ξ =
(
∂Gf(x)(GTG+ δIk), ∂Hf(x)(HTH + δIk)

)
w.r.t. (4.16)

# 4(m+ n)k2 flops
or

ξ =
(
∂Gf(x)(HTH + δIk)−1, ∂Hf(x)(GTG+ δIk)−1

)
w.r.t. (4.17)

# 4(m+ n)k2 + 2Ccholk
3 flops, see (4.53)

Computing the Riemannian gradient. Detailed steps and their respec-
tive computational costs for computing the Riemannian gradient are given in
Algorithm 4.A.1. In the case of computing Qprecon (4.17): For the matrix
inversion-related computations in the form of AB−1, with A := ∂Gf(x) ∈ Rm×k
and B := (GTG + δIk) ∈ Rk×k, a typical approach is to first take (once) a
Cholesky decomposition of B, whose cost is Ccholk

3, and then compute the
forward-and-backward substitution to get each of the m rows of AB−1, which

83
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costs 2mk2. In brief, the flop counts of this line consists of

� Computing (GTG+ δIk) and (HTH + δIk): 2(m+ n)k2 flops,

� Computing the Cholesky decomposition of (GTG+δIk) and (HTH+δIk) :
2Ccholk

3, where Cchol = 1/3.

� Forward-and-backward substitutions: 2(m+ n)k2,

which sum to
4(m+ n)k2 + 2Ccholk

3. (4.53)

The dominant term in (4.53) is 4(m+n)k2 when k � min(m,n), which is the
case for low-rank matrix approximation problems with a small rank parameter
k and large data matrices.

The total number of flops needed for Algorithm 4.A.1 is either of the fol-
lowing

(6k + 1)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2, (4.54a)
(6k + 1)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2Ccholk

3, (4.54b)

where (4.54a) is for computing Qrightinv (4.16) and (4.54b) is for computing
Qprecon (4.17). The dominant cost in Algorithm 4.A.1 is for the computa-
tions in lines 1 and 2, which is

O ((|Ω|+ nnz (Θ))k) ,

where we use the term nnz (Θ) := nnz (Θr)+nnz (Θc) to denote the sum on the
right-hand side, for simplicity. Indeed, when k � min(m,n) and the sampling
rate ρ is of the order of 10%, the terms (m+n)k ≤ (m+n)k2 � |Ω|k = ρmnk.

Computing the cost function. For the algorithms with the line search
procedure (Algorithm 4.A.4), the evaluation of the cost function is needed.

Algorithm 4.A.2 Computation of the cost function (4.9)

Input: x = (G,H) ∈ Rm×k × Rn×k,PΩ (M?) ∈ Rd, Ω, Θr ∈ Rm×m, Θc ∈
Rn×n, and the parameter α.

Output: Function value f(x) in (4.9).
1: Compute the residual S = PΩ

(
GHT −M?

)
. # (2k + 1)|Ω| flops

2: Compute fΩ(x) := 1
2‖S‖2F , # 2|Ω| flops

3: Compute Reg(x) := trGTΘrG+ trHTΘcH,
# 2nnz (Θ) k + 2(m+ n)k flops

4: Return f(x) = fΩ(x) + α
2Reg(x).

Hence, the cost for evaluating once the objective function (4.9) is

FLOPSfobj = (2k + 3)|Ω|+ 2nnz (Θ) k + 2(m+ n)k. (4.55)
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To see the order of magnitude of the total cost: the dominant costs of Al-
gorithm 4.A.2 are O ((|Ω|+ nnz (Θ))k). The total cost of Algorithm 4.A.2 is
O ((|Ω|+ nnz (Θ))k) .

Computing the conjugate gradient direction. The following Rieman-
nian conjugate gradient schemes, labeled by PR, HS+ and FR respectively,
are adapted from the classical nonlinear CG schemes—Polak–Ribière [PR69],
Hestenes–Stiefel [HS52] and Fletcher–Reeves [FR64]—for computing the CG
step parameter βt in (4.20):

(PR) β = max

(
0,
gxt

(
ξt − ξt−1, ξt

)
gxt (ξt−1, ξt−1)

)
(4.56a)

(HS+) β = max

(
0,

gxt

(
ξt − ξt−1, ξt

)
gxt (ξt − ξt−1, ηt−1)

)
(4.56b)

(FR) β =
gxt (ξt, ξt)

gxt (ξt−1, ξt−1)
. (4.56c)

A survey on nonlinear conjugate gradient can be found in [HZ06]. Imple-
mentation of these schemes (4.56) can be found in the Riemannian optimiza-
tion toolbox Manopt [BMAS14]. In our experiments, we choose the modified
Hestenes-Stiefel (HS+) rule. The flop counts for the HS+ rule is 5(m+ n)k.

Algorithm 4.A.3 Computation of the conjugate gradient direction

Input: iterates xt−1,xt ∈ Rm×k × Rn×k, gradients ξt ∈ Tx
(
Rm×k × Rn×k

)
,

ξt−1 ∈ Txt−1

(
Rm×k × Rn×k

)
, previous CG direction ηt−1 ∈

Txt−1

(
Rm×k × Rn×k

)
.

Output: CG direction ηt ∈ Tx
(
Rm×k × Rn×k

)
.

1: Compute: CG step parameter βt with one of the schemes in (4.56) and
then
ηt = −ξt + βtη

t−1. # 7(m+ n)k flops
2: Compute the angle between the CG direction and the gradient:
θ = 〈ηt, ξt〉 /‖ηt‖‖ξt‖. # 6(m+ n)k flops

3: Reset to gradient if desired: ηt = ξt if θ < 0.1.

From Algorithm 4.A.3, the total flop counts for computing once the Rie-
mannian CG direction, given two consecutive Riemannian gradients, is

13(m+ n)k. (4.57)

Computational cost of the line minimization (4.23). This corresponds
to the computations for c1, .., c4 in (4.62b)–(4.62d), which sums to (6k+11)|Ω|+
2nnz (Θ) k + 4(m+ n)k. Details are in Appendix 4.A.4.
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4.A.2 Computational cost of RGD (linemin)

Each iteration of RGD (linemin) consists of (i) computing the stepsize by line
minimization (4.23), the cost of which is in (4.63), (ii) conducting the descent
step, the cost of which is (m+ n)k flops, (iii) computing the new gradient, the
cost of which is in (4.54), and (iv) computing the norm of the gradient, the cost
of which is 2(m+n)k flops. Note that since the step size st is obtained by (4.23),
which guarantees a sufficient decrease, there is no need for any additional line
search steps. Therefore, the total flop counts for one iteration of Algorithm 4.3.1
is

12(k + 1)|Ω|+ 6nnz (Θ) k + (m+ n)(4k2 + 7k). (4.58)

4.A.3 Computational cost of RCG (linemin)

RCG (linemin) needs to compute the nonlinear CG direction via Algorithm 4.A.3,
and its flop counts is larger than that of RGD (linemin) (4.58) by exactly that
in (4.57). The total cost is

12(k + 1)|Ω|+ 6nnz (Θ) k + 4(m+ n)(k2 + 5k). (4.59)

4.A.4 Stepsize computation via line minimization

Computing the stepsize (4.23) requires minimizing

f(G+ sηG,H + sηH)− f(G,H)

for s ≥ 0.

We have f(G+ sηG,H + sηH)− f(G,H) = A+B, where

A =
1

2
‖PΩ

(
s(GηH

T + ηGH
T) + s2ηGηH

T
)
‖2F+〈

PΩ(GHT −M),PΩ(s(GηH
T + ηGH

T) + s2ηGηH
T)
〉

(4.60)

and

B =
1

2
tr
( (
sGTLrηG + sηG

TLrG+ s2ηG
TLrηG

)
+(

sHTLcηH + sηH
TLcH + s2ηH

TLcηH
) )

. (4.61)

These two equations lead to the following quartic polynomial form A+B =
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∑4
j=1 cjs

j , where

c1 =
〈
PΩ(GHT −M),PΩ(GηH

T + ηGH
T)
〉

(4.62a)

+ tr(ηG
TLrG+ ηH

TLcH),

c2 =
1

2
‖PΩ(GηH

T + ηGH
T)‖2F +

〈
PΩ(GHT −M),PΩ(ηGηH

T)
〉

+
1

2
tr(ηG

TLrηG + ηH
TLcηH), (4.62b)

c3 = 〈PΩ(GηH
T + ηGH

T),PΩ(ηGηH
T)〉 , (4.62c)

c4 =
1

2
‖PΩ(ηGηH

T)‖2F . (4.62d)

The solution to s∗ is selected from the real positive roots of the derivative
of this quartic function, which is the polynomial of degree 3, (A + B)′(s) =∑4
j=1 cjs

j−1, the roots of which are easily computed.

Computational costs. In Algorithms 4.3.1–4.3.2, whenever the line mini-
mization (4.23) is required, it always follows the computation of a Riemannian
gradient, during which we have stored the following intermediate matrices (i)
S = PΩ(GHT −M?) ∈ Rm×n and (ii) ΘrG ∈ Rm×k, ΘcH ∈ Rn×k. Hence, in
the following list of flop counts, the computations related to the items above
need not be counted:

� For c1 in (4.62b): (4k + 3)|Ω| + 2(m + n)k flops. Information stored:10
PΩ(GηH

T) and PΩ(ηGH
T).

� For c2 in (4.62b): (2k+4)|Ω|+2nnz (Θ) k+2(m+n)k flops. Information
stored: PΩ(ηGηH

T).

� For c3 in (4.62c): 2|Ω| flops.

� For c4 in (4.62d): 2|Ω| flops.

These sum up to

(6k + 11)|Ω|+ 2nnz (Θ) k + 4(m+ n)k. (4.63)

4.A.5 The constant parameter δ in the definition of gra-
dients

In all the experiments in Section 4.5, the gradients defined in (4.16) or (4.17)
are used with a parameter δ = 0. In this setting, the underlying metric (4.12)
is not guaranteed to be positive definite and the metric (4.17) is not always
well-defined at any iterate x ∈ Rm×k × Rn×k. The convergence analysis does
not cover the case where δ = 0 in (4.16)–(4.17). Nevertheless, we note that

10The information is stored only inside the current iteration.
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the convergence behavior of our proposed algorithms so far tested agrees with
the theoretical results presented in Section 4.4. In fact, in all our experimental
settings, the problem parameters (α, γr, γc) and the largest rank value k are
chosen properly, especially that the rank parameter k is set to an underesti-
mated value. Therefore, we did not observe any singularity in all the results
presented in Section 4.5.

Figure 4.10 shows that the iterative results of the proposed RGD algorithms
using a strictly positive δ (for δ set to 10−4) and those using δ = 0 are almost
the same. The experimental setting for this illustration is the same as in
Section 4.5.2.
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Figure 4.10: RMSE per iteration on synthetic data. The data matrix M? is generated
via (4.44) and (4.49): Matrix size m = 1000, n = 900, rank r? = 12. The rank parameter
k = 8. The sampling rate |Ω|/mn = 5%. The results returned by the RGD algorithm using
gradients defined by the two metrics with δ = 10−4 (labeled with “-d”) and δ = 0 respectively.
The convergence behaviors of the algorithms with δ = 0 and with a small δ > 0 are almost
same.

4.A.6 Computation details of Algorithms 4.3.1–4.3.2 with
Armijo line-search

The line search procedure by backtracking with respect to the Armijo rule (4.22)
is given in Algorithm 4.A.4.

Algorithm 4.A.4 Armijo line search

Input: f :M 7→ R, a descent direction a retraction R onM, xt ∈ M, initial
stepsize s0

t > 0 and σ, β ∈]0, 1[.
Output: s.
1: Initialize: s = s0

t .
2: while f(xt)− f(Rxt(sηt)) < σs 〈−gradf (xt) , ηt〉 do
3: s← βs.
4: end while
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Computational cost of RGD (Armijo). RGD (Armijo) corresponds to Al-
gorithm 4.3.1 using the backtracking line search with the Armijo condition at
each iteration. Computing once the function value and the Riemannian gradi-
ent at the same time costs in total

FLOPSfobj + FLOPSgradf −
[
FLOPS(PΩ(GHT)) + FLOPS(ΘrG, ΘcH)

]
= (6k + 4)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2(m+ n)k. (4.64)

Hence, the computational cost of the t-th iteration is

(6k + 4)|Ω|+ 4nnz (Θ) k + 4(m+ n)k2 + 2(m+ n)k + nLS
t FLOPSfobj, (4.65)

where FLOPSfobj is defined in (4.55).

Flop counts for RCG (Armijo). RCG lsArmijo (Algorithm 4.3.2, with step-
sizes chosen via the Armijo line search) needs to compute the nonlinear CG
direction via Algorithm 4.A.3, and its per-iteration cost is larger than that of
RGD (Armijo) by the amount of (4.57). In sum, it is

(6k+ 4)|Ω|+ 4nnz (Θ) k+ 12(m+n)k2 + 17(m+n)k+nLS
t FLOPSfobj. (4.66)

for an iteration t ≥ 0.

4.A.7 Algorithms using the Euclidean gradient

The cost for computing the Euclidean gradient is smaller than the cost of
computing the variable metric gradient by the cost of line 3 of Algorithm 4.A.1.
Therefore, the computational cost per-iteration of Euclidean GD (linemin)
is smaller than (4.58) by exactly 4(m+ n)k2, which is

12(k + 1)|Ω|+ 6nnz (Θ) k + 7(m+ n)k. (4.67)

Computing the Euclidean CG step, using the same rule for computing the
CG directions, requires the same cost as by (4.57), hence it equals

13(m+ n)k. (4.68)

As a consequence, the computational cost per-iteration of Euclidean CG (linemin)
is larger than (4.67) by exactly that of (4.68), which is

12(k + 1)|Ω|+ 6nnz (Θ) k + 20(m+ n)k. (4.69)

4.A.8 Computation details in GRALS [RYRD15]

This subsection contains a description of the algorithm proposed by Rao et
al. [RYRD15] and a detailed list of flop counts for the standard CG steps
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involved in this algorithm. GRALS consists of the following two alternating
least squares procedures

Gt = arg min
G

f(G,Ht−1), (4.70a)

Ht = arg min
H

f(Gt,H), (4.70b)

for a given initial point.
The quadratic forms of the least-squares systems (4.70a)–(4.70b) have the

following structures. The subproblem (4.70a) is a least-squares problem whose
objective f(G) := f(G,Ht) can be rewritten as a quadratic form of the vector-
ization of GT via the identification f(G) = f̃1(vec(GT)),

min
s
f̃1(s) =

1

2
sTA(1)s− vec(HtTPΩ(M?)T)Ts, (4.71)

where A(1) ∈ Rkm×km has the following structure,

A(1) = B̄(1) + αΘr ⊗ Ik, (4.72)

where B̄(1) ∈ Rkm×km is block diagonal with m diagonal blocks (B
(1)
i )i=1,...,m

of size k × k such that
B

(1)
i =

∑
j∈Ωi

hjhj
T, (4.73)

for i ∈ [[m]]. Here the index sets Ωi := {j ∈ [[n]] : (i, j) ∈ Ω} and

hj = [Hj1, ..,Hjk]T ∈ Rk (4.74)

is the transpose of the j-th row of H.

Algorithm 4.A.5 Hessian-vector multiplication A(1)s [RYRD15]

Input: Data (known on Ω) PΩ(M?) ∈ Rm×n, Ω ⊂ [[m]]× [[n]]. Quadratic form
A(1) in (4.72). Vector s := vec(GT) ∈ Rk×m. Laplacian-based matrix Θ̄.

Output: A(1)s.
1: for i = 1, ..,m do
2: Get gi := [Gi1..,Gik]T from s (vectorization of GT).
3: Compute g̃i =

∑
j∈Ωi

hj(hj
Tgi). # See (4.73).

4: end for
5: Get G from the vectorization s = vec

(
GT
)
and compute G̃ = Θ̄G.

6: Return: vec([g̃1, .., g̃m]) + vec(G̃T).

Similarly, the subproblem (4.70b) can be solved by the same routines (Al-
gorithm 4.A.5 and 4.A.6) as for (4.70a) by swapping the roles of G and H (and
matrices in the regularization terms) in all computations of matrices involved.
In the implementation of GRALS, the linear CG routine is used to solve the
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two subproblems in the form of (4.71). Algorithm 4.A.6 is a standard CG
descent procedure with A ∈ Rq×q, b ∈ Rq as inputs and x0 as the initial point.
Note that GRALS [RYRD15] uses a warm-start scheme: x0 corresponds to
latest iterate Gt−1 (resp. Ht−1) for the t-th step (4.70a) (resp. (4.70b)).

The Hessian-vector multiplication in the linear CG iteration (Algorithm 4.A.6,
line 13) is computed via Algorithm 4.A.5.

Algorithm 4.A.6 CG Algorithm for solving (4.70b) (resp. (4.70a))

Input: A ∈ Rq×q, for q = nk (resp. mk), initial point x0 ∈ Rq. Accuracy
parameter ε, iteration budget nCG.

Output: x? ∈ Rq, n?CG

1: Compute: b = vec(PΩ(M?)TG) ∈ Rq (resp. b = vec(PΩ(M?)H)).
# 2|Ω|k flops

2: r0 = b−Ax0.
3: for k = 0, ..,nCG do
4: Compute: ‖rk‖. # 2nk (resp. 2mk) flops
5: if ‖rk‖ ≤ ε‖r0‖ then
6: Break;
7: end if
8: if k = 0 then
9: p1 = r0.

10: else
11: pk+1 = rk + ‖rk‖2

‖rk−1‖2 pk. # 2nk (resp. 2mk) flops
12: end if
13: Compute: vk+1 = Apk+1. # 2(|Ω|+ nnz (Θ))k flops
14: Compute: β = ‖rk‖2

pTk+1vk+1
. # 2nk (resp. 2mk) flops

15: Compute: xk+1 = xk + βpk+1, rk+1 = rk − βvk+1. # 4nk (resp. 4mk)
flops

16: end for
17: Return x? = xk,n?CG = k.

Computational cost of GRALS. The number of flops required by Algo-
rithm 4.A.6 is:

2(n?CG + 1)|Ω|k + 2n?CGnnz (Θ) k + 10n?CGnk

( resp. 2(n?CG + 1)|Ω|k + 2n?CGnnz (Θ) k + 10n?CGmk).

During the t-th iteration in GRALS, let nHt (respectively nGt ) denote the
number of CG iterations (i.e. n?CG returned by this algorithm) required by
Algorithm 4.A.6 for solving the subproblem (4.70b) (resp. (4.70a)) at iteration
t. Then the number of flops required by GRALS to complete the t-th iteration,
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from (Gt,Ht) to (Gt+1,Ht+1) is

2(nGt + nHt + 2)|Ω|k + 2(nGt + nHt )nnz (Θ) k + 10(nGt m+ nHt n)k. (4.75)

Figure 4.11 shows the RMSE per iteration, where the x-axis is represented
either by the wall time recorded at each iteration or the cumulative cost (in
flops) required by the main computational steps in each of the algorithms at
each iteration.
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Figure 4.11: RMSE per iteration. Left: the x-axis is wall time at each iteration. Right:
the x-axis is the cumulative computational cost at each iteration. Experimental settings:
m = 1000, n = 900, k = r? = 10, |Ω|/mn = 20.0%. M? is generated with the model (4.46)
and is partially observed without any noise.

Our implementation (AltMin)

In addition to GRALS [RYRD15], we implement the alternating minimization
method ((4.70a)–(4.70b)) with a linear CG solver that is controlled by the two
following parameters,

� nCG: the iteration budget for each of the two least-squares subproblems.

� ε: tolerance parameter to control the accuracy of the solutions to each of
the two subproblems.

The most costly computation in AltMin/GRALS is the computation of
A(1)vec

(
GT
)
and A(2)vec

(
HT
)
. Algorithm 4.A.7 avoids searching for indices

in the subset Ωi for each i ∈ [[m]] by using the following incremental procedure.
The notations therein are adapted to the computation of B(1)vec

(
GT
)
. Note

that for the computation of B(2)vec
(
HT
)
, this algorithm applies by swapping

the roles of G and H.



93 4.B. THE MATRIX MODEL WITH GRAPH INFORMATION

Algorithm 4.A.7 Hessian-vector multiplication B(1)s

Input: Ω ⊂ [[m]]× [[n]]. H ∈ Rn×k, vector s := vec(GT) ∈ Rkm.
Output: B(1)s, for B(1) in (4.73).
1: Initialize the k-dimensional vectors: yi = 0 for i = 1, ..,m.
2: for l = 1, .., |Ω| do
3: Get (il, jl): the l-th pair of Ω.
4: Get hjl from H. # See (4.74).
5: Get gil = [Gil1, ..,Gilk]T, which is (silk−k+1, .., silk).
6: Compute yil = yil + hjl(h

T
jl
gil).

7: end for
8: Return: vec ([y1, .., ym]) ∈ Rkm.

4.A.9 The Hessian of the objective function of (4.9)

The second-order Euclidean directional derivative of f at x = (G,H) ∈ Rm×k×
Rn×k along a direction ξ = (ξG, ξH) ∈ Tx

(
Rm×k × Rn×k

)
is defined as

∇2f(x)[ξ] :=
d

dt
∇f(x+ tξ)|t=0. (4.76)

The gradient vector field has the following expression,

∇f(x) =
(
SH + αΘrG,STG+ αΘcH

)
, (4.77)

where S := PΩ(GHT−M). To simplify notations, we calculate the two matrix
components separately,

d

dt
∂Gf (x+ tξ) |t=0 = lim

t→0

1

t

[
PΩ((G+ tξG)(H + tξH)T −M)(H + tξH)

− PΩ(GHT −M)H + tαΘrξG

]
= PΩ(GξTH + ξGH

T)H + SξH + αΘrξG.

Similarly, d
dt∂Hf (x+ tξ) |t=0 = PΩ(GξTH + ξGH

T)TG+STξG +αΘcξH . Hence
we have

∇2f(x)[ξ] =

(
PΩ(GξTH + ξGH

T)H + SξH + αΘrξG
PΩ(GξTH + ξGH

T)TG+ STξG + αΘcξH

)
.

4.B The matrix model with graph information

The model (4.44) is of particular interest because it models a wide range of
real data matrices whose entries present pairwise similarities. Figure 4.1 shows
differences between Z (4.44a) and ArZ (4.44b) in both the data entries and in
the graph spectral domain. By using the concept of graph Fourier transforms
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(e.g. [SRV16]), we illustrate how (g,Ar,Ac) in (4.45) transforms a Gaussian
random matrix Z into a matrix with more apparent pairwise similarities on
the given graphs.

By definition (e.g. [SRV16]), the graph Fourier transform of a vector f ∈ Rm
with respect to the graph Laplacian Lr = UΛUT, is

f̂(λl) = (Uel)
T f , for all l ∈ [[m]].

Now we compare the smoothness of the Gaussian low-rank model Z = FQT

in (4.44a) and the graph-based modelX = ArZ (4.44b) with respect to the row-
wise similarity graph Lr: For any j = 1, . . . , k, the graph Fourier coefficients of
the j-th column of the Gaussian random matrix F ∈ Rm×k and transformed
matrix G = ArF = Ug(Λr)F are

Ĝ:,j(λl) = (UT el)
TArF:,j =

√
g(λl)el

TF:,j , for all l ∈ [[m]],

where F:,j
i.i.d.∼ N (0,σ2

F Im). From basic calculations, the amplitudes of of graph
Fourier coefficients of G satisfy

E
[
|Ĝ:,j(λl)|2

]
= g(λl)E

[
‖elTF:,j‖22

]
= σ2

F g(λl). (4.78)

Therefore, when g is decreasing on (0, +∞), e.g., in the case of (4.46), the ex-
pected amplitude of Ĝ:,j(λl) decreases for the increasing eigenvalues {λl}l=2,...,m.
Note that a small eigenvalue λ corresponds eigenfunctions on the graph with
small variations. Hence, in this case, the energy of G:,j in the graph Fourier
domain, determined by (|Ĝ:,j(λl)|)1≤l≤m, is mostly concentrated on low graph-
vertex frequencies.

Indeed, given (4.78), the overall variations of the matrix factor G is related
to tr(GTLrG) in the regularizer of our main problem (4.9) as follows,

E
[
tr(GTLrG)

]
= E

 k∑
j=1

m∑
l=1

λ2
l |Ĝ:,j(λl)|2

 = kσ2
F

m∑
l=1

λ2
l g(λl).

The weighted-sum expression above implies that tr(GTLrG) is small when the
amplitudes (|Ĝ:,j(λl)|)l are more concentrated on low frequencies than on high
frequencies. The same property applies to the factor H with respect to Lc.
This reflects that the graph-based regularizer

SL(x) = tr(GTLrG) + tr(HTLcH),

quantifies the smoothness of of the entries of (G,H) on the row and column
index sets with respect to the row-wise and column-wise similarity graphs (Gr

and Gc), as explained in (4.2).
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4.C Cross validation for parameter selection

A parameter configuration of (4.9) is denoted as β := (α, γr, γc) ∈ R3
+. Given a

set H = {βj ∈ R3
+, j = 1, ...,nHP} of nHP elements, the K-fold cross validation

(CV) is used in the experiments to find the best choice in H.
The selection criterion is a validation score that is to be computed for each

parameter configuration β ∈ H. Let X̂S (Ω,β) denote the solution given by
a GRMC solver S using the parameter β and the training data on Ω. Then
the validation score of β is the matrix recovery error of the solution on a set
Ωval ⊂ Ωc containing some known entries.11 We use the RMSE (4.43) as the
error function. This means the validation score is defined as

EΩval(X̂S (Ω,β)) := RMSE(X̂S (Ω,β) ; Ωval). (4.79)

Next, we proceed theK-fold cross validation for matrix completion with a stan-
dard splitting [JWHT13, §5.1.3] of the training and validation sets, given the
set of all known entries. Algorithm 4.C.1 describes this procedure specifically
for matrix completion.

Algorithm 4.C.1 K-fold cross validation for matrix completion

Input: Union of training and validation sets U ⊂ [[m]] × [[n]] and a test set
Ωte ⊂ Uc, a GRMC solver S : Rm×k ×Rn×k 7→ Rm×k ×Rn×k, a collection
of parameter configurations H = {βj : j = 1, . . . ,nHP}.

Output: ĈVK(β).
1: for j ∈ {1, . . . , |H|} do
2: for k ∈ {1, . . . ,K} do
3: Get the k-th partitioning U = Ωktr ∪ Ωkval such that |Ωktr|/|U| = K−1

K .
4: Find solution X̂S

(
Ωktr,βj

)
using the solver S.

5: Compute EΩk
val

(X̂S
(
Ωktr,βj

)
) # see (4.79)

6: end for
7: Compute the K-fold cross validation score ĈVK(βj) as defined in (4.80).
8: end for

In the end of this CV procedure (line 7), each parameter setting β ∈ H is
evaluated by the following validation score,

ĈVK(β) =
1

K

K∑
k=1

EΩk
val

(X̂S
(
Ωktr,β

)
). (4.80)

Training and validation sets. The training and validation sets during each
fold comes from a shuffled splitting of the set of known entries.

11Note that this validation set has to be an index set on which the matrix entries are also
known, since the matrix recovery error on Ωval needs to be computed.
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On synthetic data, the ground-truth matrix M? is fully available. In this
case, with a given sampling rate ρ, we first generate the union U of the index
set Ωtr ⊂ [[m]] × [[n]] (of the revealed entries, also called “training data” in a
general sense) and the validation set Ωval ⊂ [[m]]× [[n]]. This union is generated
according to a certain probabilistic distribution on [[m]]×[[n]] such that E [|U|] =
ρK
K−1 . We used the Bernoulli distribution B(ρ). Subsequently, the test set is
either Uc (the complement of U) or any subset of Uc with a reasonable size.

For real-world datasets, the data matrix M? is often only partially known.
Let O ⊂ [[m]] × [[n]] denote the set of all known entries. In this case, we split
the available entries into (i) a test set Ωte and (ii) the union of training and
validation sets, which is U := Ωcte. Then the training and validation sets are
generated in the aforementioned manner based on U .



Chapter 5

Optimization on the set of
fixed-rank matrices

Optimization with low-rank matrices is a fundamental problem that arises in
signal processing, machine learning and computer vision. In applications such
as principal component analysis, matrix recovery and data clustering, the de-
sired solutions to the problem often have a intrinsically low rank [UT19], since
the most meaningful information in the data is structured. Moreover, the
low-rank constraint reduces significantly the complexity of the problem with-
out compromising the accuracy or utility of the solution. Therefore, low-rank
matrix models provide powerful tools for efficient representation, recovery or
pattern recognition of the data. One of the approaches to impose the low-rank
structure of a m-by-n matrix formulates an optimization with the matrix nu-
clear norm [CR08, RFP10, CT10], which is a convex relaxation of the matrix
rank. Another approach represents the m-by-n matrix X through low-rank
matrix factorization X = ABT, where A and B are m-by-k and n-by-k factor
matrices. For a search space of dimension O((m + n)k), which is greatly re-
duced compared to that of the m-by-n matrices within the convex optimization
approach, matrix factorization methods present enormous advantage for its low
memory requirement and computational cost.

Algorithms for low-rank matrix factorization can be regrouped into two
main types, alternating minimization [ZWSP08, JNS13b, Har14] and gradi-
ent descent algorithms (e.g., [KO09, KMO10, PKCS18]). Recent advances
in matrix recovery problems such as compressed sensing and matrix comple-
tion [SL16, GLM16, TBS+16, ZL16] shed light on the absence of spurious local
minima in these problems under mild conditions, despite that matrix factor-
ization is a nonconvex problem, and thus they explain formally the success of
(Euclidean) gradient descent algorithms for nonconvex matrix recovery. Rie-
mannian algorithms, in a similar spirit as Euclidean gradient descent, exploit
manifold structures of a low-rank matrix space, and thus have often been shown
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to offer superior performance to Euclidean gradient descent algorithms. As an
important example of low-rank matrix spaces, the setMk of fixed-rank matri-
ces

Mk =
{
X ∈ Rm×n : rank (X) = k

}
(5.1)

is a smooth Riemannian manifold (e.g. [Van13]) and can be characterized
through the factorization ofX in various ways. Depending on the matrix factor-
ization form, a rank-k matrix X is identified with a point in the product space
of the factor matrices of X; the Riemannian first-order (and/or second-order)
information of the objective function on the product space is computed accord-
ing to a given metric defined on the manifoldMk. Vandereycken [Van13] used
the rank-k singular value decomposition (SVD) to identify a matrix X ∈ Mk

with the point (U , Σ,V ), where U , Σ and V are the factor matrices of the
rank-k SVD of X, and consideredMk as an embedded submanifold of Rm×n,
using the Euclidean metric. In recent works about low-rank matrix recovery,
Wei et al. [WCCL16, TW16] proposed several variants of the iterative hard
thresholding (IHT) algorithm to address the fixed-rank constraint; IHT refers
to the projection of a matrix with a rank larger than k onto the setMk with
respect to the Euclidean metric on Rm×n, in a similar way as the projection-
like retraction used in [Van13]. We also refer to [MMBS14] for an overview of
matrix factorizations and related Riemannian algorithms for optimization with
fixed-rank matrices.

In this chapter, we focus on a quotient manifold-based approach to op-
timization with fixed-rank matrices. First, we revisit the quotient manifold
structure ofMk based on a metric defined through Riemannian precondition-
ing [MAS12, MS16] and then investigate the properties of the underlying Rie-
mannian gradient descent (RGD) algorithm. Naturally, the nonlinear descent
step of this RGD algorithm is defined according the quotient manifold struc-
ture of Mk, instead of an embedded manifold structure. Hence, a notable
difference of this RGD algorithm from many other algorithms on the set Mk

is that it is projection-free, in the sense that it does not need metric projec-
tion (see Section 2.2.3) to maintain the fixed-rank constraint. We show that
the RGD algorithm induces a sequence of fixed-rank matrices that enjoys an
invariance property regarding the pair of factor matrices of the matrix factoriza-
tion. Second, we propose novel results about the properties of the Riemannian
gradient descent algorithm under the so-called restricted positive definiteness
(RPD) property [UV20b] of a class of low-rank matrix optimization problems.
Through the RPD property of the objective function around a given critical
point, we demonstrate the existence of a region of attraction onMk, in which
the landscape of the objective function in the ambient space Rm×n is preserved.
From these discoveries, we give a result about the local convergence rate of the
RGD algorithm. To the best our knowledge, this is the first convergence anal-
ysis of projection-free algorithms on the manifold of fixed-rank matrices.

The convergence results can be applied to matrix recovery problems. Specif-
ically, an application to matrix completion with fixed-rank matrices is dis-
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cussed. We highlight the aforementioned properties through numerical exper-
iments: we show that the quotient manifold-based algorithms not only enjoys
the benefits of low-rank matrix factorization but also present desirable invari-
ance properties that the Euclidean gradient descent does not possess. In par-
ticular, its convergence behavior does not vary with changes in the balancing
between the factor matrices, while the performance of Euclidean gradient de-
scent is easily deteriorated due to unbalanced factor matrices.

In summary, the main contributions in this chapter are as follows.

� We show formally that the Riemannian gradient descent algorithm under
the aforementioned quotient geometric setting enjoys desirable invariance
properties. A new result about this quotient manifold-based RGD algo-
rithm is given; see Section 5.2.

� For a class of low-rank matrix optimization problems, we provide new re-
sults about the geometric properties of the RGD algorithm around critical
points, under the restricted positive definiteness property. Based on these
new results, a convergence rate analysis onMk is given; see Section 5.3.

Organization. The rest of this chapter is organized as follows. In Section 5.2,
we present the Riemannian quotient manifold structure of Mk and the quo-
tient manifold-based RGD algorithm, followed by new results about this RGD
algorithm. The main results about the RGD algorithm for a class of fixed-rank
matrix optimization problems are given in Section 5.3. Numerical experiments
and results are presented in Section 5.5. We conclude the chapter in Section 5.6.

5.1 Notation

Given two integers m,n ≥ 1 and a rank value k ≤ min(m,n), we denote by
Rm×k∗ ×Rn×k∗ the product manifold of real m× k and n× k matrices with full
column-ranks. A point in Rm×k∗ × Rn×k∗ is denote by x̄ = (Gx̄,Hx̄), (G,H) or
simply x̄ indifferently. By default, the symbols G and H signify the m× k and
n × k matrices of x̄ respectively; they also constitute a pair of left and right
factor matrices of X ∈Mk for X = GHT.

A tangent vector to the product space ĚMk has two matrix components
and is denoted as sξ = (ξ̄(1), ξ̄(2)). Given a matrix X ∈ Rm×n, the Euclidean
metric on the tangent space TXRm×n ' Rm×n, also called the Frobenius inner
product, is defined and denoted by 〈V ,W 〉 := tr(V TW ), for V ,W ∈ TXRm×n.
Given a matrix X ∈Mk, the k-th largest singular value of X, i.e., the minimal
non-zero singular value, is denoted as σmin(X) by default. The spectral norm
of a symmetric positive semidefinite matrix A and the operator norm of the
linear operator A : X 7→ AX are denoted by ‖A‖2.
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5.2 Optimization on the set of fixed-rank matri-
ces Mk

In this section, we exploit the geometric structure ofMk (5.1) as a quotient sub-
manifold of the following product manifold (e.g., [MBS11, MMBS14, AAM14])

ĚMk := Rm×k∗ × Rn×k∗ . (5.2)

Based on a metric on ĚMk that induces a metric on the quotient manifoldMk,
we investigate the Riemannian gradient descent algorithm and show that it
induces a RGD sequence onMk.

This section is organized as follows. We first give an overview of the geo-
metric properties—the tangent vectors and metrics—ofMk as a quotient space
of ĚMk in Section 5.2.1. Then in Section 5.2.2, we explain how an optimiza-
tion problem onMk is related to a problem defined on the product space ĚMk

and give an explicit characterization of a product space-based (or factorization-
based) Riemannian gradient descent algorithm regarding its relation with op-
timization on the quotient space Mk. Such a characterization reveals some
interesting invariance properties of all algorithms that are qualified for opti-
mizing a function defined on the quotient space. A detailed description of the
algorithm is given in Section 5.2.2.

5.2.1 Geometry of the quotient space Mk

The identification of Mk as a quotient submanifold of ĚMk = Rm×k∗ × Rn×k∗
follows the standard definition of a quotient manifold through canonical pro-
jection; see [AMS08, §3.4] for more generic descriptions of this topic. Hereafter,
we focus on the geometry of Mk as a quotient submanifold of ĚMk [MBS11,
MMBS14, AAM14].

Let ∼ denote an equivalence relation (see Definition 2.1.11) on the product
space ĚMk such that, for any pair of points (G,H), (G′,H ′) ∈ ĚMk, (G,H) ∼
(G′,H ′) if and only if GHT = G′H ′T. Since the equivalent classes of ∼ are the
fibers of the matrix multiplication

π : ĚMk 7→ Rm×n, (G,H) 7→ GHT,

and becauseMk ⊂ Rm×n is the image of π, the mapping π induces an one-to-
one correspondence betweenMk and ĚMk/∼.

Let π denote the canonical projection ĚMk 7→ ĚMk/∼ : (G,H) 7→ [(G,H)],
where [(G,H)] denotes the equivalence class {(G′,H ′) ∈ ĚMk : G′H ′T = GHT}.
The structure of the fibers can be characterized by the linear group GL (k): For
any X ∈ Mk, the set of all pairs of full column-rank matrices (G,H) ∈ ĚMk

satisfying π((G,H)) = X is the equivalent class

π−1(X) :=
{

(GF−1,HFT) : F ∈ GL (k)
}

. (5.3)
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In fact, the operations (G,H) 7→ (GF−1,HFT),F ∈ GL (k) correspond to
all possible transformations that leave the matrix product X = GHT ∈ Mk

unchanged. Hence the identification Mk ' ĚMk/GL (k). One can see that
the quotient space Mk is a quotient submanifold of ĚMk [AMS08, MBS11,
MMBS14, AAM14]. The product space ĚMk is referred to as the total space.

Tangent space and metrics. The tangent vectors to the quotient manifold
Mk can be represented by tangent vectors to the total space ĚMk. In fact,
given a matrix X ∈ Mk and a tangent vector ξ ∈ TXMk, the mapping π :
ĚMk 7→ Mk actually induces infinitely many representations of ξ, due to the fact
that it is a projection. Let x̄ be an element of the equivalence class π−1(X).
Any element sξ ∈ Tx̄ĚMk that satisfies Dπ(x̄)[sξ] = ξ can be considered as a
representation of ξ. Indeed, for any smooth function f :Mk 7→ R, the function
f̄ := f ◦ π : ĚMk 7→ R, one has the following identification,

Df̄(x̄)[sξ] = Df(π(x̄))[Dπ(x̄)[sξ]] = Df(X)[ξ].

Since π : ĚMk 7→ Mk is surjective, the kernel of Dπ(x̄) : Tx̄ĚMk 7→ TXMk

is non-trivial, thus, the matrix representation of ξ in Tx̄ĚMk is not unique.
Nevertheless, one can find a unique representation of ξ in a subspace of Tx̄ĚMk.
This is realized by decomposing the tangent space

Tx̄ĚMk ' Rm×k × Rn×k

into two complementary subspaces (see Section 2.1.3) as follows: Tx̄ĚMk =
Vx̄ ⊕ Hx̄, where Vx̄, called the vertical space, is the tangent space at x̄ of the
equivalence class [x̄], i.e.,

Vx̄ := Tx̄(π−1(X)), (5.4)

and Hx̄, called the horizontal space, is a subspace of Tx̄ĚMk complementary
to Vx̄. One can see that a tangent vector sξ ∈ Vx̄ satisfies Dπ(x̄)[sξ] = 0.
Consequently, for any X ∈ Mk and ξ ∈ TX , there is a unique representation
sξ ∈ Hx̄ ⊂ Tx̄ĚMk of ξ such that

Dπ(x̄)[sξ] = ξ.

The tangent vector sξ ∈ Hx̄ is called the horizontal lift of ξ.
Given the horizontal lifts as the matrix representation of tangent vectors

to the quotient manifold Mk, any metric ḡ on the total space that satisfies
following invariance property induces a metric onMk.

Definition 5.2.1 (e.g., [AAM14, §3]). For X ∈ Mk and x̄ ∈ π−1(X), let
sξ, sη ∈ Tx̄ĚMk denote the horizontal lifts of ξ and η respectively, a metric ḡ in
the total space is said to be invariant along π−1(X) if

ḡx̄(sξ, sη) = ḡȳ(sξȳ, sηȳ), (5.5)
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for any point ȳ ∼ x̄ in π−1(X), where sξȳ, sηȳ denote the horizontal lifts of ξ and
η at ȳ respectively.

Indeed, given a metric ḡ that satisfies the invariance property in Defini-
tion 5.2.1, the inner product gX : TXMk × TXMk 7→ R such that gX(ξ, η) =
ḡx̄(sξx̄, sηx̄) is a metric on the quotient manifold Mk. In Section 5.2.2, we give
an explicit example of a metric ḡ on ĚMk that induces a metric onMk.

5.2.2 Metrics and algorithms on ĚMk

Based on the relations between the points and tangent vectors on the total space
and those on the quotient space, we establish links between the optimization
with fixed-rank matrices and matrix factorization in this subsection.

Given a function f : Mk 7→ R, we consider f̄ := f ◦ π. By construction,
f̄(x̄) = f(X) for any x̄ ∈ π−1(X). Naturally, the optimization of f onMk:

min
X∈Mk

f(X) (5.6)

can be dealt with by minimizing f̄ on the total space ĚMk.

Example 5.2.2 (Low-rank matrix completion). In the context of low-rank
matrix completion, let M? be a given matrix observed only on an index set
Ω and let ψ : Rm×n 7→ R be a regularizer. The optimization on Mk of
f(X) := 1

2‖PΩ(X − M?)‖2F + ψ(X) can be realized by solving the following
matrix factorization problem,

min
(G,H)∈Rm×k

∗ ×Rn×k
∗

f̄(G,H) :=
1

2p
‖PΩ(GHT −M?)‖2F + ψ(GHT). (5.7)

Indeed, the function f̄ is invariant along the equivalence classes (5.3).

Example 5.2.3 (Low-rank matrix approximation). Given a matrix A ∈ Rm×n.
The problem of finding the best rank-k approximation of A can be formulated
by minimizing f(X) = 1

2‖X −A‖2F onMk. Then f̄ = f ◦ π : ĚMk 7→ R has the
following form

f̄(G,H) =
1

2
‖GHT −A‖2F. (5.8)

The graph of f̄ (5.8) can be visualized in the example with the smallest
dimensions. Figure 5.1 shows the landscape of f̄ : R∗ × R∗ 7→ R : (x, y) 7→
1
2 (xy −A)2 on the 2-dimensional plane, for A = 1.

Optimizing f̄ on ĚMk instead of (5.6) is essentially a matrix factorization
approach since it deals with the rank-k factor matrices of the matrix variable in
Mk. Through the quotient structure ofMk, the function f̄ is invariant along
the equivalence classes in ĚMk, i.e., f(x̄) = f(x̄′), for any x̄′ ∼ x̄. This poses
potential issues to algorithms for solving the problem on ĚMk. For example,
due to the invariance of f̄ in equivalence classes, any (isolated) local minimum
of f onMk corresponds to a whole equivalence class in ĚMk, which contains an
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Figure 5.1: Landscape of the cost function of matrix factorization on the 2D plane.

infinite number of nondegenerate minima. Similarly, since the landscape of f̄
on ĚMk is different and actually more complicated (the search space being the
total space ĚMk) than f , the optimization path of an algorithm on ĚMk generally
depends on the location of its current iterate in its equivalence class. To address
these issues, we consider algorithms using a certain type of Riemannian gradient
on ĚMk that enjoys invariance properties regarding the location of its iterates in
the equivalence classes. For this purpose, we first exploit the quotient structure
ofMk and consider a Riemannian metric on ĚMk that induces a metric on the
quotient manifold Mk. Therefore, in the remaining part of this subsection,
we introduce one example of such metrics on ĚMk and present a Riemannian
gradient descent algorithm under this metric. Then, in the next subsection, we
investigate the properties of the underlying Riemannian gradient and the RGD
algorithm.

As mentioned in the last subsection, any metric in the total space that is
invariant along equivalence classes induces a metric in the quotient space. Such
a metric provides a way to relate the Riemannian gradients of f̄ to gradients
of f . Next, we study a metric that satisfies this invariance property. This
particular metric is interesting not only because it induces a metric on the
quotient space but also it is adapted to Frobenius norm-based loss functions in
the sense of Riemannian preconditioning.

A metric on ĚMk through Riemannian preconditioning

We introduce a metric on ĚMk designed through Riemannian preconditioning
that has been shown to have nice properties in the optimization of Frobenius
norm-based loss functions (e.g., Example 5.2.2) with fixed-rank matrices.

Definition 5.2.4 ([MAS12]). Given x̄ := (G,H) ∈ ĚMk, let ḡx̄ : Tx̄ĚMk×Tx̄ĚMk

denote an inner product defined as follows,

ḡx̄(sξ, sη) = tr(ξ̄(1)T η̄(1)(HTH)) + tr((ξ̄(2))Tη̄(2)(GTG)), (5.9)

for sξ, sη ∈ Tx̄ĚMk.
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It can be shown that ḡx̄(·, ·) is a Riemannian metric since it is symmetric
and positive-definite at any point x̄ and it is a smooth-varying bilinear form
on ĚMk.

From Definition 2.1.22, the Riemannian gradient of a function f̄ at x̄ ∈ ĚMk

is the unique vector, denoted as gradf̄ (x̄) ∈ Tx̄ĚMk, such that ḡx̄(ξ̄, gradf̄ (x̄)) =
Df̄(x̄)[sξ], ∀sξ ∈ Tx̄ĚMk. Therefore, given the metric (5.9), the Riemannian gra-
dient of f̄ has the following form,

gradf̄ (x̄) =
(
∂Gf̄ (x̄) (HTH)

−1
, ∂H f̄ (x̄) (GTG)

−1
)

, (5.10)

where ∂Gf̄ (x̄) and ∂H f̄ (x̄) are the two partial differentials of f̄ .

The metric ḡ defined in (5.9) was proposed by [MAS12] in the context of
matrix completion with fixed-rank matrices, and it can be seen as a specially
adapted metric for the two-factor matrix factorization problems. Indeed, note
that the second-order partial differentials of f̄(G,H) := 1

2‖GHT −M?‖2F have
the following forms:

∂2
Gf̄(G,H)[sξ] = ξ̄(1)HTH and ∂2

H f̄(G,H)[sξ] = sξ(2)GTG.

LetH : T(G,H)
ĚMk 7→ T(G,H)

ĚMk denote an operator that maps the tangent vec-
tor sξ to the right hand-side terms above, that is, Hsξ = (ξ̄(1)HTH, ξ̄(2)GTG).
Then one can see that the Riemannian gradient (5.10), denoted as gradf̄ (x̄) :=
(ξ̄(1), ξ̄(2)), is the solution to the following secant equationHsξ = (∂Gf̄(x̄), ∂H f̄(x̄)),
which shows that the Riemannian gradient is an approximation of the Newton
direction of f̄ at (G,H). Hence, the metric ḡ (5.9) is also referred to as the
preconditioned metric on the two-factor product space Rm×k∗ ×Rn×k∗ . We refer
to [MS16] for a more thorough view about metric selection with Riemannian
preconditioning.

The following proposition shows that the metric (5.9) induces a metric on
the quotient spaceMk.

Proposition 5.2.5. For any matrix X ∈Mk, the preconditioned metric (5.9)
satisfies the invariance property as in Definition 5.2.1, that is, for two horizon-
tal lifts x̄ ∈ ĚMk and sξ, sη ∈ Tx̄ĚMk, ḡx̄(sξ, sη) = ḡx̄′(sξ′, sη′), for any x̄′ ∼ x̄, where
sξ′, sη′ ∈ Tx̄′ĚMk are the horizontal lifts at x̄′ such that Dπ(x̄′)[sξ′] = Dπ(x̄)[sξ]
and Dπ(x̄′)[sη′] = Dπ(x̄)[sη].

Proof. For any x̄ := (G,H) ∈ ĚMk and x̄′ ∼ x̄, there exists an invertible matrix
F ∈ GL (k), such that x̄′ = (GFT,HF−1). Since the tangent vector sξ′ must
satisfy Dπ(x̄′)[sξ′] = Dπ(x̄)[sξ], and note that Dπ(x̄)[sξ] = G(ξ̄(2))T + ξ̄(1)HT for
x̄ = (G,H), sξ′ and F must satisfy

G(ξ̄(2))T + ξ̄(1)HT = GFT(ξ̄′
(2)

)T + ξ̄′
(1)

(HF−1)
T

,
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for any sξ ∈ Tx̄ĚMk, which yields

ξ̄′
(1)

= ξ̄(1)FT and ξ̄′
(2)

= ξ̄(2)F−1.

The same relation holds for sη, sη′ and F . Applying these equalities into the
expression of ḡx̄′(sξ′, sη′), where ḡ is the preconditioned metric (5.9), we recover
immediately the expression of ḡx̄(sξ, sη).

Riemannian gradient descent algorithms. Under the quotient geometric
settings of Mk, we focus on algorithms for optimization on ĚMk in relation
with the main problem (5.6). We introduce two Riemannian algorithms on the
product space ĚMk that require only the first-order information of the objective
function, followed by computational details.

Algorithm 5.2.1 Riemannian Gradient Descent based on the preconditioned
metric (Qprecon RGD)

Input: Initial point x̄0 ∈ ĚMk, parameters β,σ ∈ (0, 1), and ε > 0; t = 0.
Output: x̄t ∈ ĚMk.
1: while ‖gradf̄ (x̄t) ‖ > ε do
2: Set sηt = −gradf̄ (x̄t).
3: Backtracking line search: given θ0

t , find the smallest integer ` ≥ 0 such
that, for θt := θ0

t β
`,

f̄(x̄t)− f̄ (x̄t + θtsηt) ≥ σθtḡx̄t(−gradf̄ (x̄t) , sηt). (5.11)

4: Update: x̄t+1 = x̄t + θtsηt; t← t+ 1.
5: end while

In Algorithm 5.2.1, the details are as follows. The search direction is the
negative Riemannian gradient defined in (5.10). The operation needed for the
gradient descent update step (line 4) on ĚMk is chosen to be as the identity map,
which is a valid retraction operator on the ĚMk. The stepsize θt in each iteration
is obtained following a backtracking line search procedure with respect to the
line search condition (5.11). In this backtracking procedure, the initial trial
stepsize θ0

t (line 3) is important to the time efficiency of algorithm. We consider
the following methods for setting the initial trial stepsize, including notably (i)
exact line minimization; see (4.23) in Chapter 4; and (ii) Riemannian Barzilai–
Borwein stepsize rules [IP18], which have been shown to be an efficient stepsize
method for Riemannian gradient methods. The following two variants are
considered,

θBB1
t :=

ḡx̄t
(z̄t−1, z̄t−1)

|ḡx̄t(z̄t−1, ȳt−1)| , θBB2
t :=

|ḡx̄t
(z̄t−1, ȳt−1)|

ḡx̄t(ȳt−1, ȳt−1)
, (5.12)

where z̄t−1 = x̄t − x̄t−1 and ȳt−1 = gradf̄ (x̄)− gradf̄ (x̄t−1).
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Riemannian conjugate gradient descent. Based on the same computa-
tional elements as for Algorithm 5.2.1, we also consider a Riemannian conjugate
gradient (Qprecon RCG) algorithm on the total space ĚMk. With the same Rie-
mannian gradient definition, the search direction sη of the RCG algorithm at
the t-th iteration is defined as sηt = sξt +βtsη

t−1, with sξt := −gradf̄ (x̄t)), where
βt is computed using a Riemannian version of one of the nonlinear conjugate
gradient rules. Details about the RCG search direction are presented in the sim-
ilar algorithm (Algorithm 4.3.2) in Chapter 4. In the numerical experiments,
we choose the Riemannian version of the following modified Hestenes-Stiefel
rule [HS52] (HS+)

β = max

(
0,

ḡx̄t

(
sξt − sξt−1, sξt

)
ḡx̄t

(
sξt − sξt−1, sηt−1

)) .

5.2.3 Induced sequence in the quotient manifold

In this subsection, we investigate the relation between the RGD algorithm
(Algorithm 5.2.1) on ĚMk and the optimization problem (5.6) on Mk. First,
through the Riemannian gradient of f̄ = f ◦ π : ĚMk 7→ R under the precondi-
tioned metric (5.9), we propose an explicit form of the induced Riemannian gra-
dient of f . Second, we study the image under the projection π of the sequence
{x̄t}t≥0 ⊂ ĚMk produced by the RGD algorithm; the sequence {π(x̄t)}t≥0 in
Mk is referred to as the induced sequence. Then, we propose a result about
the induced sequence of the quotient-manifold based RGD algorithm.

Under the preconditioned metric ḡ (5.9), the gradient vector field of f̄ in-
duces a Riemannian gradient vector field of f in the tangent bundle of Mk.
Indeed, from Proposition 5.2.5, the metric ḡ (5.9) is invariant along the equiva-
lence classes and therefore induces a metric g inMk such that, for anyX ∈Mk

and ξ, η ∈ TXMk,
gX(η, ξ) = gx̄(sη, sξ), (5.13)

where x̄ is an element in π−1(X) and sη and sξ are the horizontal lifts (at x̄) of
η and ξ respectively. Note that with sη := gradf̄ (x̄),

ḡx̄(sη, sξ) = Df̄(x̄)[sξ] = D(f ◦ π)(x̄)[sξ] = Df(π(x̄))[Dπ(sξ)]

≡ gπ(x̄)(ξ, gradf (π(x̄))),

for any sξ ∈ Tx̄ĚMk. Through the identification (5.13), the horizontal component
of η = gradf̄ (x̄) is the horizontal lift of gradf (X) at x̄ ∈ π−1(X). Also note
that gradf̄ (x̄) belongs to the horizontal space Hx̄: since f̄ is invariant along
the equivalence classes, it is constant on π−1(X), which entails that for any
sξ ∈ Vx̄ = Tx̄(π−1(X)), Df̄(x̄)[sξ] = ḡx̄(sξ, gradf̄ (x̄)) = 0. Hence, gradf̄ (x̄) ∈
(Vx̄)⊥ = Hx̄. Therefore, gradf̄ (x̄) is the horizontal lift at x̄ of gradf (X).

Moreover, the horizontal lifts gradf̄ (x̄), for all x̄ ∈ π−1(X), are equivalent,
i.e., the induced Riemannian gradient gradf (X) is invariant to the location
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of x̄ in the equivalence class π−1(X). In addition to this remark, we give an
explicit form of gradf (X) in the following proposition.

Proposition 5.2.6. Given a matrix X ∈ Mk, let X = UΣV T denote its
SVD and let x̄ := (G,H) ∈ π−1(X) be an element of ĚMk. Under the metric
induced by the preconditioned metric (5.9), the Riemannian gradient of f on
the quotient manifoldMk satisfies

gradf (X) = GX(∇f(X)), (5.14)

where ∇f(X) is the Euclidean gradient of f in Rm×n and GX : Rm×n 7→ TXMk

is a linear operator defined as follows,

GX(Z) = PUZ + ZPV , (5.15)

for all Z ∈ Rm×n, where PU := UUT and PV := V V T are the orthogonal
projections onto the column and row subspaces of X respectively.

Proof. Let gradf̄ (x̄) = (η̄(1), η̄(2)) denote the two components of the gradi-
ent (5.10) of f̄ . With x̄ = (G,H) ∈ π−1(X), where X := UΣV T ∈ Mk, we
have

η̄(1) = ∂Gf̄ (x̄) (HTH)−1 and η̄(2) = ∂H f̄ (x̄) (GTG)−1,

where ∂Gf̄ (x̄) = ∇f(X)H and ∂H f̄ (x̄) = ∇f(X)
T
G. Since gradf̄ (x̄) is

the horizontal lift of gradf (X), by definition, gradf (X) = Dπ(X)[gradf̄ (x̄)].
Therefore, we have

gradf(X) = Dπ(X)[gradf̄ (x̄)]

= G(η̄(2))T + η̄(1)HT

= G(GTG)−1GT∇f(X) +∇f(X)H(HTH)−1H

= PU∇f(X) +∇f(X)PV ,

where PU and PV are the matrices defined in the statement.

Remark 5.2.7. In the notation of (5.15), PU and PV are the matrices of the
orthogonal projections. We also denote by abuse the action of these projec-
tion operators as PU (Z) = PUZ and PV (Z) = ZPV respectively. The action
of GX (5.15) can be rewritten as GX(Z) = PUZPT

V + PUTZPV + 2PUZPV .
This implies that the operator GX is related to the orthogonal projection
PTXMk

(2.16a) (i.e., (2.5) in [Van13]) through

GX(Z) = PTXMk
(Z) + PUZPV , for all Z ∈ Rm×n. (5.16)

This relation is used in the proof of a main lemma (Lemma 5.3.11) later. �

Next, let {x̄t}t≥0 denote the sequence generated by Algorithm 5.2.1. We
take an interest in the image of the sequence under the projective mapping
π : ĚMk 7→ Mk. Let {Xt}t≥0 ⊂ Mk be the sequence associated with {x̄t}t≥0
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such thatXt = π(x̄t). The following lemma describes how the induced sequence
{Xt}t≥0 is related to the update rule of Algorithm 5.2.1.

Lemma 5.2.8. Let (x̄t)t≥0 ∈ ĚMk denote the sequence generated by Algo-
rithm 5.2.1 and let {Xt}t≥0 be the induced sequence inMk. Then the iterates
satisfy

Xt+1 = Xt − θtgradf(X) + θ2
t∇f(Xt)Xt

†∇f(Xt), (5.17)

where X†t ∈ Rn×m denotes the Moore–Penrose pseudoinverse of Xt.

Proof. To simplify the notations, we omit the subscript t of all terms related
to the t-th iterate (Gt, sηt, stepsize θt) and denote Xt+1 by X+ in the following
equations. Let sη := gradf̄ (x̄) denote the Riemannian gradient of f̄ on the
current iterate x̄ := (G,H). From the update step in Algorithm 5.2.1, we have

X+ := π(x̄− θgradf̄ (x̄)) = π(x̄)− θ
(
G(η̄(2))T + η̄(1)HT

)
+ θ2η̄(1)(η̄(2))T

= X − θgradf(X) + θ2∂Gf̄(x̄)(HTH)−1(GTG)−1(∂H f̄(x̄))
T (5.18)

= X − θgradf(X) + θ2∇f(X)H(HTH)−1(GTG)−1GT∇f(X)︸ ︷︷ ︸
φ1

(5.19)

= X − θgradf(X) + θ2∇f(X)X†∇f(X), (5.20)

which proves (5.17). The equation 5.18 is obtained by identifying (G(η̄(2))T +
η̄(1)HT) with

Dπ[(G,H)](sη) := Dπ[(G,H)](gradf̄ (x̄)) = gradf (X) .

The equation (5.20) is obtained as follows. Let X := UΣV T denote the SVD
of X ∈ Mk, where where U ∈ St(m, k) and V ∈ St(n, k) and Σ ∈ Rk×k. Then
we use the fact that there exists F ∈ GL (k), for any (G,H) ∈ π−1(X), such
that G = UΣGF

T and H = V ΣHF
−1, where ΣG and ΣH are k-by-k diagonal

matrices such that ΣGΣH = Σ. Therefore, φ1 in the last term of the right-hand
side of (5.19) reads:

φ1 = ∇f(X)V ΣHF
−1(FΣ−2

H FT)(F−TΣ−2
G F−1)FΣGU

T∇f(X)

= ∇f(X)V ΣH(Σ−2
H Σ−2

G )ΣGU
T∇f(X)

= ∇f(X)V Σ−1
H Σ−1

G UT∇f(X)

= ∇f(X)X†∇f(X).

The characterization in Proposition 5.2.6 is not a computational compo-
nent of the RGD algorithm (see Algorithm 5.2.1) but is an update rule on
Mk induced by the algorithm. This quotient manifold-based RGD algorithm
produces iterates in the total space ĚMk. More interestingly, the result above
shows explicitly that the algorithm is invariant on equivalence classes (5.3),



109 5.3. MAIN RESULTS FOR FIXED-RANK MATRIX OPTIMIZATION

and does not rely on metric projection to maintain the rank constraint.
The invariance property revealed in Proposition 5.2.6 and Lemma 5.2.8

enables us to qualify these algorithms as Riemannian descent algorithms on the
quotient space. The explicit form in Lemma 5.2.8 about the induced sequence
of this algorithm allows for the local convergence analysis on Mk, which is
substantially different and simpler than with matrix factorization on the total
space ĚMk; see the next section.

5.3 Main results for fixed-rank matrix optimiza-
tion

In this section, we investigate the quotient manifold-based algorithm for solving
low-rank matrix optimization problems. We focus on a class of problems with
a quadratic objective function. Due to the rank constraint, these problems
are nonconvex. However, the quadratic objective function of these problems
usually possess nice properties around critical points on the rank-constrained
search space. Such nonconvex problems appear in various forms in applications
like compressed sensing (e.g., [WCCL16]), matrix completion (e.g., [SL16]),
trace regression and phase retrieval [LHLZ21].

Starting from recent advances about quadratic functions satisfying a cer-
tain restricted positive definiteness (RPD) property [UV20b], we exploit the
RPD properties of quadratic objective functions in the context of fixed-rank
optimization (5.6), and then propose novel results about the local convergence
behavior of Algorithm 5.2.1.

5.3.1 Low-rank matrix optimization problems

Let A : Rm×n 7→ Rm×n be a linear operator that is symmetric and positive
semidefinite, and let B? = A(M?) be a reference data matrix, where M? is
a (partially) hidden real-valued m × n matrix. We define f as the following
quadratic function

f(X) :=
1

2
〈X,A(X)〉 − 〈B?,X〉 , (5.21)

where 〈·, ·〉 denotes the Frobenius inner product of two matrices.
This function appears as the objective function of many matrix recovery

problems [D+06, CR09b, FCRP08, SL16, CWW17], as in the examples below.
In these matrix recovery problems, the given matrix B? corresponds to the
data acquired from a hidden (or partially hidden) matrix M?, through an
observation system modeled by the linear operator A.
Example 5.3.1 (Matrix sensing). Compressed sensing refers to the problem of
recovering a data matrix M? from its observations b? through a matrix sensing
operator, Φ : Rm×n 7→ Rd, where b? := Φ(M?). This matrix recovery problem
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can be formulated as the minimization of the following quadratic function

f(X) =
1

2
(‖Φ(X)− b?‖22 − ‖b?‖22),

which can be written in the form of (5.21), with A = Φ∗Φ and B? = Φ∗b?.

Example 5.3.2 (Matrix completion). For matrix completion, e.g., in Exam-
ple 5.2.2, the recovery of a hidden matrix from a few of its entries can be
formulated by minimizing the following quadratic function

f(X) =
1

2p
(‖PΩ(X −M?)‖2F − ‖PΩ(M?)‖2F), (5.22)

where Ω is the index set of the known entries, p = |Ω|/mn, and PΩ : Rm×n 7→
Rm×n is the projection operator that retains only the entries on Ω and projects
all other entries to zero. In this case, A = 1

pPΩ and B? = 1
pPΩ(M?).

When the hidden matrixM? has a low rank that equals k, then naturally f
admitsM? as a global minimum on the low-rank manifoldMk. This scenario is
often referred to as the noiseless case in the low-rank matrix recovery problems.

The following definition (e.g., [UV20b]), depending on a rank parame-
ter k and a bounded positive constant, reveals an important property of the
quadratic function f that can be satisfied by the objective functions of some
aforementioned matrix recovery problems.

Definition 5.3.3 (RPD property [UV20b, Definition 3.1]). Let A : Rm×n 7→
Rm×n be a linear operator and let r be an integer such that 0 < r ≤ min(m,n).
The operator A satisfies the (β, r)-RPD property on M≤r if there exists 0 ≤
β < 1 such that

(1− β)‖Z‖2F ≤ 〈Z,A(Z)〉 ≤ (1 + β)‖Z‖2F, (5.23)

for all matrices Z ∈ M≤r. The smallest nonnegative number β satisfying the
property above is called the RPD constant.

In the literature of compressed sensing, the RPD property appears un-
der the name of the RIP condition, and this condition can be satisfied with
overwhelmingly high probability for a large family of random measurement
matrices, for example, the normalized Gaussian and Bernoulli matrices [CP11,
RFP10, WCCL16].

Critical points of low-rank matrix problems

A critical point X? of the quadratic function f (5.21) in the low-rank space
M≤k is characterized given in [SU15] and [UV20b, Proposition 2.4]: either X?

is a critical point of f onMk, or X? is a solution to the optimality condition
A(X)−B? = 0.

In the general cases where A is a positive semidefinite operator with a
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nontrivial kernel, i.e., an operator such that the matrix equation A(X) = B?

corresponds to a linear subspace of Rm×n, there are possibly more than one
point in M≤k that satisfy either of the above two characterizations. Inter-
estingly, recent advances in (low-rank) matrix recovery theories have proven
uniqueness results about the matrix M?: for example, [UV20b, Theorem 3.5]
shows that under certain RPD properties (requiring an upper bound on the
RPD constant): (i) the optimality equation A(X) = B? admits M? as the
unique solution (ii)M? is the unique global minimum of f and (iii) any critical
point of f onMk different than M? is either a saddle point or local minimum.
More precisely, this theorem uses the quantification of the lower spectral bound
of the Riemannian Hessian of f around its critical points onMk.

Note that the uniqueness result about the rank-k matrixM? [UV20b, Theo-
rem 3.5] implies, in particular, that one can use Riemannian descent algorithms
onMk to find the global minimum M?, among the critical points of f onMk.
One can also deduce local convergence results around M? from this uniqueness
result: given that M? is the unique global minimum hence a local minimum
on Mk, the local convergence rate of Riemannian gradient descent to M? is
linear [AMS08, Theorem 4.5.6].

We make the point above clearer next (in Section 5.3.2) and in a less strict
sense. More precisely, we take an interest in a question other than the unique-
ness ofM? as a local minimum of f onMk. Instead, we focus on the properties
of f around M? without requiring it to be the unique local minimum. For the
purpose of local convergence analysis, we formally describe a property of f (5.6)
in the following assumption in terms of the spectral bounds of the operator A
centered on a matrixM? ∈Mk, which is related to but different than the RPD
property.

Assumption 5.3.4. Given M? ∈Mk and 0 ≤ β < 1, the inequality

(1− β)‖X −M?‖2F ≤ 〈X −M?,A(X −M?)〉 ≤ (1 + β)‖X −M?‖2F (5.24)

holds for all matrices X ∈ Mk. The smallest number β ≥ 0 satisfying (5.24)
is referred to as the RPD constant of (A,M?).

The assumption above can be seen as a consequence of the RPD prop-
erty (5.23) with suitable rank parameters. The proposition below provides a
sufficient condition for Assumption 5.3.4 to hold in view of the RPD property
of A:
Proposition 5.3.5. Assumption 5.3.4 holds for any M? ∈ Mk if A satisfies
the (β, 2k)-RPD property.

Proof. This is because (X −M?) ∈M≤2k for any X and M? inMk.

In the proposition above, the (β, 2k)-RPD property is strong enough for
Assumption 5.3.4 to hold without any requirement on the properties of M?

(other than M? ∈Mk).
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In the development of our main results (Section 5.3.2), we use Assump-
tion 5.3.4 (i.e., (5.24)) instead of the RPD property because Assumption 5.3.4
offers a condition that is more straightforward for the local convergence anal-
ysis. Note again that in contrast to the result in [UV20b, Theorem 3.5], our
local convergence analysis does not investigate nor require the uniqueness of
M? as a local minimum of f onMk.

From Proposition 5.3.5, Assumption 5.3.4 can be satisfied in the compressed
sensing problem, as mentioned before. In the context of matrix completion,
where A = PΩ (see Example 5.3.2), the inequality (5.24) in Assumption 5.3.4
is generally not satisfied for all X ∈Mk but a slightly more restrictive version
of it is an important intermediate result for establishing exact recovery and
convergence results of some matrix factorization-based algorithms. In fact, the
sampling operator PΩ generally does not satisfy the RPD property (Defini-
tion 5.3.3); see [CR09b, §1.1.1] for examples of very sparse (rank-1) matrices
that cannot be recovered from a sample of its entries, and there is little chance
that the inequality (5.24) is satisfied around such matrices. However, it is also
shown in [CR09b] that the inequality (5.24) can be satisfied if M? is suffi-
ciently incoherent. Since the incoherence is a natural feature of data matrices
in many practical problems, the inequality (5.24) is a reasonable and useful
property; see Section 5.4 for more details, where a more restricted version of
Assumption 5.3.4 is validated.

5.3.2 Local convergence analysis

In this subsection, we propose some key results about properties of the quadratic
function f around the hidden matrix M? based on Assumption 5.3.4. When
Assumption 5.3.4 holds (with 0 ≤ β < 1), the quadratic function f (5.21) is
well-conditioned and has a similar landscape as the function X 7→ 1

2 (‖X −
B?‖2F − ‖B?‖2F), which is strongly convex in the ambient matrix space Rm×n.
Interestingly, we show that some nice properties of f in the ambient space
Rm×n are preserved on the fixed-rank manifold. Based on these properties, we
provide results about local convergence properties of the proposed algorithm
and describe a region of attraction for the algorithm.

The following lemma is a basic property of the Euclidean gradient of f on
the vector space Rm×n.

Lemma 5.3.6. The quadratic function f defined in (5.21) has Lipschitz con-
tinuous gradient on M≤k, with a Lipschitz constant L > 0. In particular, for
matrices X,Y ∈Mk,

‖∇f(X)−∇f(Y )‖F ≤ L‖X − Y ‖F. (5.25)

Proof. The inequality (5.25) holds since f (5.21) has Lipschitz-continuous
gradient in Rm×n, which is true since it is twice-differentiable and is composed
of quadratic terms.
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The magnitude of L in Lemma 5.3.6 depends on A and k. For example,
given that A is symmetric and positive semidefinite, if A satisfies the (β2k, 2k)-
RPD property (5.23), it follows that

‖∇f(X)−∇f(Y )‖F =

√
〈A2(X − Y ),X − Y 〉 ≤ (1 + β2k)‖X − Y ‖F, (5.26)

which entails that the Lipschitz constant L ≤ 1 + β2k.
Next, in the noiseless case, i.e., the hidden matrix M? has a low rank k, we

investigate the Riemannian Hessian of f (5.21) at M?.

Lemma 5.3.7. Let f be a quadratic function defined in (5.21), where the hid-
den matrix M? has a low rank k. If M? satisfies Assumption 5.3.4, i.e., the
RPD inequality (5.24)

(1− β)‖X −M?‖2F ≤ 〈A(X −M?),X −M?〉 ≤ (1 + β)‖X −M?‖2F

holds for all X ∈ Mk, with a RPD constant 0 ≤ β < 1, then the Riemannian
Hessian of f at M? is positive definite:

λmin(f) := min
W∈TM?Mk

( 〈Hessf(M?)[W ],W 〉
‖W‖2F

)
≥ 1− β > 0. (5.27)

The proof of this lemma is given in Section 5.3.3.
The result above is very useful in determining the local convergence rate of

a Riemannian algorithm that deals with fixed-rank matrices. Let {x̄t}t≥0 be
a sequence generated by Algorithm 5.2.1 and let {Xt}t≥0 denote the induced
sequence such that Xt = π(x̄t).

Theorem 5.3.8. Let f be a quadratic function defined in (5.21), where the hid-
den matrix M? has a low rank k. Suppose that M? satisfies Assumption 5.3.4.
Then, if the sequence {Xt}t≥0 induced by Algorithm 5.2.1 converges to M?, the
local convergence rate of {Xt}t≥0 is linear.

Proof. Under Assumption 5.3.4, the result of Lemma 5.3.7 holds, i.e., the Rie-
mannian Hessian of f atM? is positive definite; see (5.27). Therefore, according
to [AMS08, Theorem 4.5.6], if {Xt}t≥0 converges to M?, the convergence rate
of {Xt}t≥0 is linear.

To state the convergence rate above, we need to assume that the sequence
converges to M?, because the sole Assumption 5.3.4 does not rule out the
existence of other critical points of f on Mk different than M?, hence, one
cannot rule out the case where the sequence {Xt}t≥0 converges to a different
point. Also, it is possible that the sequence does not admit an accumulation
point, due to the openness ofMk. The similar assumption is also seen in the
related work, e.g., [SU15, 2.4.4].

Therefore, we take an interest in the question of uniqueness of M? as a
critical point of f in a certain neighborhood of it on Mk. To approach this
question, still in the noiseless case, we investigate the Riemannian gradient of
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f (as in (5.14)) in a neighborhood of M? defined as follows,

B?(δ) = {X ∈Mk : ‖X −M?‖F ≤ δ}. (5.28)

In the following proposition and corollary, we provide a sufficient condition
under which M? is the unique critical point in B?(δ). Moreover, we will show
that B?(δ) is a region of contraction regarding the RGD update rule in Al-
gorithm 5.2.1. The proof strategy of Corollary 5.3.10 is inspired by [Nes04,
Theorem 2.1.14], which explains the linear convergence of gradient descent for
the minimization of a strongly convex function. In the case of this section,
we study the function f onMk under Assumption 5.3.4, which yields proper-
ties similar to “strong convexity”, in a weaker sense in B?(δ). We clarify this
property in the next proposition.

Proposition 5.3.9. Let f be a quadratic function defined in (5.21), where
the hidden matrix M? has a low rank k. Suppose that M? satisfies Assump-
tion 5.3.4, i.e., the RPD inequality (5.24) holds for all X ∈ Mk, with a RPD
constant 0 ≤ β < 1. Then for any constant δ satisfying

0 ≤ δ < (1− β)
σ?min

L
, (5.29)

it holds that

〈gradf(X),X −M?〉 ≥ ν̃‖X −M?‖2F, (5.30)

for all X ∈ B?(δ), with the constant ν̃ = 2
(

1− β − δL
σ?

min

)
> 0, where L is

the Lipschitz constant of f defined in Lemma 5.3.6 and the constant σ?min :=
σmin(M?) > 0.

The proof of this proposition is given in Section 5.3.3. The technique of
the proof is based on the novel results of this chapter (see Section 5.2.3 and
Lemma 5.3.11) and a useful lemma ([WCCL16, Lemma 4.1]) about the orthog-
onal projection (2.16a) onMk.

Proposition 5.3.9 reveals that the growth of f around M? is similar to that
of the Euclidean distance function X 7→ ‖X−M?‖2F in the region B?(δ) around
M?, provided that Assumption 5.3.4 holds. In view of this remark, we have
the following corollary.

Corollary 5.3.10. Under the statement of Proposition 5.3.9: (i) The hidden
matrix M? is the unique critical point of f in the region B?(δ) (5.28), for any
radius δ satisfying (5.29).
(ii) For any radius δ satisfying (5.29), the region B?(δ) is stable by the RGD
update rule with the Riemannian gradient (5.14), given a bounded stepsize: for
any t ≥ 1, if Xt ∈ B?(δ) (5.28), then the induced RGD update Xt+1 (5.17)
satisfies

‖Xt+1 −M?‖F ≤
√
κ(θ)‖Xt −M?‖F, (5.31)
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with κ(θ) = 1 − θ(2ν̃ − C̃δθ) ∈ (0, 1) for any stepsize 0 < θ < min(1, 2ν̃C̃−1
δ,t ),

where C̃δ,t = 4L2 + δL
2(4L+2+δ)
σmin(Xt)

> 0 and ν̃ > 0 is the constant given in Propo-
sition 5.3.9.

Proof. (i): First, M? is a critical point (and also a global minimum) of f in
B?(δ). Moreover, if δ satisfies (5.29), the inequality (5.30) in Proposition 5.3.9
holds for all X ∈ B?(δ). Now assume that there exists another critical point
X ′ ∈ B?(δ) and X ′ 6= M?, then from the inequality (5.30), one has

〈gradf (X ′) ,X ′ −M?〉 ≥ ν̃‖X ′ −M?‖2F > 0.

But the left hand-side of the above inequality equals 0 (since X ′ being a crit-
ical point of f on Mk implies gradf (X ′) = 0), which entails a contradiction.
Therefore, M? is the unique critical point in B?(δ).

(ii): Let (5.17) be denoted as Xt+1 = Xt− θgradf (Xt) + θ2ΓXt . We have

‖gradf (Xt) ‖F ≤ C1‖Xt −M?‖F and ‖ΓXt‖F ≤ C2‖Xt −M?‖2F
for C1 = 2L > 0 and C2 = L2 σmin(Xt)

−1 > 0. (5.32)

Indeed, the Riemannian gradient of f (5.21) gradf (X) = GX(∇f(X)) =
GX(A(X −M?)) satisfies ‖gradf (X) ‖F = ‖GX(A(X −M?))‖F ≤ 2‖A(X −
M?)‖F ≤ 2L‖X −M?‖F, according to Lemma 5.3.11 (spectral bounds of GX)
and Lemma 5.3.6. Similarly, ‖ΓX‖F ≤ ‖X†‖2‖∇f(X)‖2F ≤ σmin(X)−1L2‖X −
M?‖2F ≤ C2‖X −M?‖2F.

Based on Proposition 5.3.9 and (5.32), it holds that, for Xt ∈ B?(δ) and
any stepsize θ ∈ (0, 1),

‖Xt+1 −M?‖2F = ‖Xt −M?‖2F − 2θ 〈gradf (Xt) ,Xt −M?〉+ 2θ2 〈ΓXt
,Xt −M?〉

+ θ2‖gradf (Xt)− θΓXt
‖2F

≤ ‖Xt −M?‖2F − 2θν̃‖Xt −M?‖2F + 2θ2C2‖Xt −M?‖3F
+ θ2(C2

1‖Xt −M?‖2F + C2
2θ

2‖Xt −M?‖4F + 2C1C2θ‖Xt −M?‖3F) (5.33)

≤
(
1− 2ν̃θ + θ2(C2

1 + 2C2δ + 2θC1C2δ + θ2C2δ
2)
)
‖Xt −M?‖2F, (5.34)

≤
(
1− 2ν̃θ + θ2(C2

1 + 2C2δ + 2C1C2δ + C2δ
2)
)
‖Xt −M?‖2F, (5.35)

where the second term (with ν̃) on the right-hand side of (5.33) is obtained
through (5.30) in Proposition 5.3.9, and the third and last terms obtained
through the Cauchy–Schwarz inequality and (5.32). The terms in δ in (5.34)
come directly from the bound ‖Xt −M?‖F ≤ δ and the coefficients with θ2

in (5.35) are simplified from (5.34) in view of the setting θ ∈ (0, 1) above.

Let the coefficient in (5.35) be denoted as κ(θ) := 1− θ
(

2ν̃ − C̃δθ
)
, where

C̃δ := C2
1 + δ(2C2(1 + C1) + C2δ) =

(5.32)
4L2 + δ

L2(4L+ 2 + δ)

σmin(Xt)
> 0.
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We have 0 < κ(θ) < 1 if and only if 0 < θ(2ν̃ − C̃δθ) < 1, which is satisfied
when 0 < 2ν̃ − C̃δθ ≤ 1 given that θ ∈ (0, 1), hence the conclusion provided
that 0 < θ < min(1, 2ν̃C̃−1

δ ).

The application of the geometrical and local convergence results above are
also discussed in Section 5.4, in the specific case of matrix completion. Based on
recent advances on recovery guarantees for matrix completion, we characterize a
subset ofMk in which the inequality (5.24) holds and discuss the regularization
schemes under which these results are applicable. Numerical experiments for
matrix completion in Section 5.5 are given as demonstrations.

5.3.3 Technical lemmas and proofs of the results

We give proofs of the results in Section 5.3.2.

Proof of Lemma 5.3.7.

Proof. Recall that the Riemannian Hessian of f at Y ∈ Mk, by defini-
tion [AMS08, Proposition 5.5.4], satisfies

〈Hessf(Y )[Z],Z〉 =
d2

dt2
(f(ExpY (tZ)))

∣∣∣∣
t=0

, (5.36)

where ExpY : TYMk 7→ Mk is the exponential map at Y . We prove the
spectral lower bound of Hessf(M?) as follows. First, the exponential map
at Y := M? has the following expression (e.g., [AM12], [Van13, Proposition
A1], [UV20b, Appendix A]),

ExpM?(Z) = M? + Z + ∆M?(Z), (5.37)

where ∆M?(Z) := (I−PU?)ZM?†Z(I−PV ?)+o(‖Z‖3F) satisfies ‖∆M?(W )‖F .
‖Z‖2F. From (5.36)–(5.37), it follows that the quadratic function f (5.21) sat-
isfies, for any Z ∈ TM?Mk,

〈Hessf(M?)[Z],Z〉 = 〈A(Z),Z〉 . (5.38)

Next, we bound (5.38) using Assumption 5.3.4 (about A and M?) via the
quadratic function f̃ : X 7→ f(X) − f(M?). In fact, from the definition of
f (5.21), we have

f̃(X) =
1

2
〈A(X),X〉 − 〈B?,X〉 − f(M?)

=
1

2
〈A(X),X〉 − 〈A(M?),X〉 − (−1

2
〈A(M?),M?〉) (5.39)

=
1

2
〈A(X −M?),X −M?〉 ≥ 1− β

2
‖X −M?‖2F, (5.40)
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where the equality (5.39) holds due to the fact that B? = A(M?) by defini-
tion (5.21), the equality in (5.40) holds since A is a symmetric operator, and
the last inequality is a direct result of the inequality (5.24) in Assumption 5.3.4.
It follows that, for any Z ∈ TM?Mk and X := ExpM?(Z) ∈Mk,

f̃(ExpM?(Z)) ≥ 1− β
2
‖ExpM?(Z)−M?‖2F, (5.41)

which can be rewritten via the expression (5.37) of ExpM?(Z) as follows,

f̃(ExpM?(Z)) = 〈A(Z),Z〉+ ϕf̃ (Z) ≥ (1− β)‖Z‖2F + ϕF (Z), (5.42)

where ϕf̃ (Z) and ϕF (Z) are the sums of third- and higher-order terms of Z
on the two sides of (5.41), i.e., |ϕf̃ (Z)| ≤ C1‖Z‖3F and |ϕF (Z)| ≤ C2‖Z‖3F, for
constants C1 > 0 and C2 > 0.

Finally, combining (5.42) and (5.38), we have, for any Z ∈ TM?Mk,

λf (Z) :=
〈Hessf(M?)[Z],Z〉

‖Z‖2F
=
〈A(Z),Z〉
‖Z‖2F

≥ (1− β)−
|ϕf̃ (Z)|+ |ϕF (Z)|

‖Z‖2F
≥ (1− β)− (C1 + C2) ‖Z‖F,

which entails that

λf (Z) ≥ sup
Z∈TM?Mk

(1− β − (C1 + C2)‖Z‖F) = 1− β, (5.43)

where the supremum of the right-hand side is obtained with W ∈ TM?Mk in
a certain direction, such that ‖W‖F → 0.

The following two lemmas provide some useful properties of the opera-
tor GX that relates the Euclidean gradient of f to its Riemannian gradient
through (5.15). They will be used in the proof of Proposition 5.3.9 that fol-
lows.

Lemma 5.3.11. Let X be a matrix in Mk and let X := UΣV T denotes its
rank-k SVD. The linear operator GX : Rm×n 7→ TXMk defined in (5.15)
satisfies the following properties.

(i): GX is symmetric and positive semidefinite. In particular, GX(Z) = 2Z
if Z ∈ TXMk, and GX(Z) = 0 if Z ∈ (TXMk)⊥.

(ii): Let X,Y be two matrices inMk, and let (GX −2 I)(Z) := GX(Z)−2Z
denote the evaluation of the operator (GX − 2 I) at Z ∈ Rm×n. It holds that

(GX − 2 I)(X − Y ) = 2(I−PTXMk
)(Y ). (5.44)

Proof. (i): From the definition (5.15), GX(Z) = PU (Z) + PV (Z), we de-
duce that GX is a symmetric operator, since the orthogonal projections PU (·)
and PV (·) are symmetric operators. We prove the remaining claims as fol-
lows. From (5.16) in Remark 5.2.7, we deduce that GX(Z) = PTXMk

(Z) +



CHAPTER 5. OPTIMIZATION ON THE SET OF FIXED-RANK
MATRICES 118

UUTZV V T = 2Z if Z ∈ TXMk. If Z ′ ∈ (TXMk)⊥, then there exists
Y ∈ Rm×n such that Z ′ = (I−PTXMk

)(Y ), and consequently

GX(Z ′) = PTYMk
((I−PTXMk

)(Y )) + UUT((I−PTXMk
)(Y ))V V T = 0.

Therefore, for any Z ∈ Rm×n, GX(Z) = GX(PTXMk
(Z)) = 2 PTXMk

(Z), which
entails that 0 ≤ 2‖PTXMk

(Z)‖2F = 〈GX(Z),Z〉 ≤ 2‖Z‖2F.
(ii): We prove the equality (5.44) as follows. The matrix Z := Y − X ∈

Rm×n can be decomposed as Z = Z̃ + ∆Z , where Z̃ := PTXMk
(Z) and

∆Z := (I−PTXMk
)(Z) = (I−PTXMk

)(Y ), where the last equality holds since
(I−PTXMk

)(X) = 0. Therefore, we have

(GX − 2 I)(X − Y ) = −(GX − 2 I)(Z̃ + ∆Z)

= (2 I−GX)(∆Z) = 2∆Z := 2(I−PTXMk
)(Y ), (5.45)

where the equalities in (5.45) are obtained by using the fact that Z̃ ∈ TXMk

and ∆Z ∈ (TXMk)⊥ and the properties GX |TXMk
= 2 I and GX |(TXMk)⊥ = 0,

proven in (i).

The properties of GX listed above are related to the orthogonal projection
operator PTXMk

. The following lemma in the related work about this projec-
tion operator will be used in the proof of Proposition 5.3.9.

Lemma 5.3.12 ([WCCL16], Lemma 4.1). Let X and Y be two matrices in
Mk. Then it holds that

‖(I−PTYMk
)(X)‖F ≤

1

σmin(X)
‖X − Y ‖2F. (5.46)

We refer to [WCCL16, §4.1] for the proof of the lemma above.

Proof of Proposition 5.3.9.

Proof. We prove the inequality (5.30) as follows. First, through Proposi-
tion 5.2.6, the Riemannian gradient of f (5.21) is

gradf (X) = GX(∇f(X)) = GX(A(X −M?)), (5.47)

for all X ∈Mk. Therefore, we have

〈gradf(X),X −M?〉 = 〈GX(A(X −M?)),X −M?〉
= 〈A(X −M?),GX(X −M?)〉 (5.48)
= 2 〈A(X −M?),X −M?〉+ 〈A(X −M?), (GX − 2 I)(X −M?)〉
= 2 〈A(X −M?),X −M?〉+ 2 〈A(X −M?), (I−PTXMk

)(M?)〉 (5.49)
≥ 2 〈A(X −M?),X −M?〉︸ ︷︷ ︸

a1

−2 ‖A(X −M?)‖F︸ ︷︷ ︸
a2

‖(I−PTXMk
)(M?)‖F︸ ︷︷ ︸

a3

, (5.50)
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where (5.48) holds since GX is a symmetric operator, (5.49) is obtained by notic-
ing that (GX−2 I)(X−M?) = 2(I−PTXMk

)(M?); see (5.44) in Lemma 5.3.11.
The terms a1 and a2 in (5.50) have the following bounds,

a1 := 〈A(X −M?),X −M?〉 ≥ (1− β)‖X −M?‖2F, (5.51)
a2 := ‖A(X −M?)‖F ≤ L‖X −M?‖F, (5.52)

where (5.51) is the result of (5.24), since Assumption 5.3.4 holds for M?,
and (5.52) holds according to Lemma 5.3.6 (recall that A(X−M?) = ∇f(X) =
∇f(X) − ∇f(M?)). From (5.46) in Lemma 5.3.12, the term a3 in (5.50) has
the following bound,

a3 := ‖(I−PTXMk
)(M?)‖F ≤

1

σ?min

‖X −M?‖2F, (5.53)

where σ?min := σmin(M?). Applying (5.51)–(5.53) to (5.50), we have

〈gradf(X),X −M?〉 ≥ 2
(

(1− β)− L

σ?min

‖X −M?‖F
)
‖X −M?‖2F. (5.54)

Note that the coefficient in the right-hand side of (5.54) is strictly positive if
X ∈ Mk satisfies ‖X −M?‖F ≤ δ, where δ is a radius satisfying 0 ≤ δ <

(1− β)
σ?

min

L , which proves the condition (5.29). In conclusion, for any radius δ
satisfying (5.29),

〈gradf(X),X −M?〉 ≥ 2
(

(1− β)− L

σ?min

‖X −M?‖F
)
‖X −M?‖2F

≥ 2

(
1− β − δL

σ?min

)
‖X −M?‖2F,

for all X ∈ B?(δ), which concludes the proof.

5.4 Extension to low-rank matrix completion and
discussions

As introduced in Example 5.3.2, the low-rank matrix completion problem can
be formulated as an instance of the low-rank quadratic problem. In this section,
we summarize a class of matrix completion problem formulations and discuss
the conditions on the problem setting—in relation with the matrix subsam-
pling operator and regularization methods—under which the new results (in
Section 5.3) are applicable. Numerical experiments are presented to demon-
strate the convergence behavior of the proposed algorithms in comparison with
existing Euclidean-based and Riemannian algorithms.
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5.4.1 Problem setting

Let M? ∈ Rm×n be a matrix that is known on a part of its entries and let Ω
be the index set of the known entries of M?. We consider the optimization on
Mk of the following matrix completion model,

min
X∈Mk

F (X) := f(X) + ψ(X), (5.55)

where f is the data fitting function defined in (5.22) and ψ : Rm×n 7→ R+ is
a smooth regularization function (an instance of ψ is specified later in (5.59)).
The mask operator PΩ : Rm×n 7→ Rm×n in (5.22) is an orthogonal projection
such that the (i, j)-th entry of PΩ(X) is Xij if (i, j) ∈ Ω and zero otherwise.

As in Example 5.3.2, the data fitting function f is a quadratic function
that fits the definition (5.21) up to a constant scalar 1

2p‖PΩ(M?)‖2F. The linear
operator A in (5.21) takes the form A = 1

pPΩ
∗PΩ = 1

pPΩ.
It is well understood that the subsampling operator PΩ can be badly con-

ditioned with unbalanced sampling pattern or on matrices that are highly co-
herent [CR09b]. Thus, we consider the standard assumption that M? is µ-
incoherent, which guarantees that the subsampling operator PΩ is well-conditioned
around M?.

Definition 5.4.1 (Incoherence [CR09b]). A matrix Z = UΣV T ∈ Rm×n is
µ-incoherent if

‖Ui,:‖2 ≤
√
µk

m
, ‖Vj,:‖2 ≤

√
µk

n
, (5.56)

for all (i, j) ∈ [[m]]× [[n]].

The incoherence constant µ is a bound that measures the maximal row
norms of U and V . Since the SVD factor matrix U (respectively V ) is or-
thonormal, such that ‖U‖2F =

∑m
i=1 ‖Ui,:‖22 ≡ k, the incoherence constant µ is

small if the variations of the entries in U and V are moderate; on the contrary,
µ is large if U and V has columns with spikes. It can be shown that the smallest
possible incoherence constant is µ = 1.

5.4.2 The restricted positive definite inequality

As mentioned in Section 5.3.1, the subsampling operator PΩ generally does not
satisfy the RPD property (Definition 5.3.3). However, under certain conditions
on the subsampling pattern, the inequality (5.24) in Assumption 5.3.4 can be
satisfied in some neighborhood of the hidden matrix M?, provided that M? is
sufficiently incoherent. The following set, adapted from [SL16, §3],

B?(δ,µ) = B?(δ) ∩ {X ∈M≤k : X is µ-incoherent}, (5.57)

where B?(δ) is defined in (5.28), is a neighborhood of M? in which the inequal-
ity (5.24) holds. More precisely, the following proposition, adapted from a key
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result in [SL16], validates the inequality (5.24) on B?(δ,µ).

Proposition 5.4.2 ([SL16, Claim 3.1, Lemma 3.1]). Assume that a rank-k
matrix M? ∈ Rm×n is µ-incoherent. Suppose the condition number of M? is κ
and α = m/n ≥ 1. Then there exists a numerical constant C0 such that: if the
indices in Ω are uniformly generated with size

|Ω| ≥ C0αkκ
2 max(µ log(n),

√
αk6µ2κ4),

then with probability at least 1− 2n−4,

1

3
‖X −M?‖2F ≤

1

p
‖PΩ(X −M?)‖2F ≤ 2‖X −M?‖2F, (5.58)

for any X ∈ B?(δ,µ) defined in (5.57).

The proof of this proposition is given in [SL16, Appendix J].
As a consequence, the results in Proposition 5.3.9 applies to the quadratic

data fitting function f on the set B?(δ,µ) ∩ {X ∈Mk : σmin(X) ≥ σ̄ > 0}, for
a certain δ > 0 with a given constant 0 < σ̄ ≤ σmin(M?). Intuitively, B?(δ,µ)
is a region of attraction around the critical pointM?. Therefore, if the induced
sequence {Xt}t≥0 of Algorithm 5.2.1 converges to M? ∈ Mk, its convergence
rate is linear, as stated in Theorem 5.3.8.

Regularization and discussions

The conclusion above about the convergence rate using Theorem 5.3.8 is es-
tablished based on the assumption that the algorithm converges to M?. The
validation of this assumption, in the context of the matrix completion prob-
lem setting, is realized by ensuring that the iterates produced by an algorithm
remain confined in the set B?(δ,µ) defined in (5.57), once entering this neigh-
borhood. It is however not obvious to ensure this since a mere decrease (from
one iterate to the next) in the value of f through the RGD update does not
necessarily imply that the µ-incoherence condition is preserved.

Let L0 := {X ∈Mk : f(X) ≤ f(X0)} be a sublevel set, for an initial point
X0 ∈ Mk. The following criteria about the sublevel set of the regularized
objective function F (5.55) ensure that a monotonically decreasing algorithm
produces a sequence that belongs to B?(δ,µ) (5.57), and therefore provide a
way to design the regularization function ψ: (i) there exists δ0 such that all
points in L0 are δ0-close to M?; (ii) for any matrix X in the sublevel set L0,
the matrix Z = X−M? is µ-incoherent; (iii) the regularizer satisfies ψ(X) = 0
for all X that is δ1-close to M?, for some fixed parameter δ1 > 0.

We refer to [SL16, GLM16] for a thorough view regarding the regularization
function ψ. In addition to the regularization schemes in the aforementioned
works about recovery theories for matrix completion, we consider an adaptation
of the graph Laplacian-based regularization in Chapter 4.

In the same context of Section 4.2 (in the previous chapter), let (Gr,Gc) be
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a given pair of row-wise and column-wise similarity graphs associated with the
matrix M?. We define the regularizer ψ as

ψ(X) =
α

4(mn)2

(
Tδr
(
tr(XTΘrX)

)
+ Tδc

(
tr(XΘcXT)

))
, (5.59)

where Tδr , Tδc are hard-thresholding operators and Θr and Θc are graph Laplacian-
based matrices defined as follows,

Tδ(z) = max(0, z − δ)2, (5.60a)
Θr = Im + γrL

r and Θc := In + γcL
c. (5.60b)

As in the related work [SL16, GLM16], the purpose of the hard thresholding
function Tδ is to enforce the regularization term only when the associated
penalty function exceeds a prescribed value, and to avoid distorting the critical
point of f (5.22) from the global minimizer M?.

In the next section, we apply the regularization scheme (5.59) to (5.55) in
numerical experiments.

5.5 Numerical experiments

In this section, we conduct numerical experiments on matrix completion using
the proposed algorithms. The matrix completion model is defined according
to (5.55). Depending on whether the regularizer ψ in the model 5.55 is active or
not (ψ ≡ 0), the matrix completion model is referred to as a regularized model
or a non-regularized model. For the regularized model, we use the regularization
scheme in (5.59), such that the regularization term ψ is only effective if the
matrix candidate is far from the desired solution.

We carry out matrix completion tasks with both the non-regularized and
regularized versions of (5.55) using the proposed algorithms (Algorithm 5.2.1).
Details of these algorithms and their Euclidean counterparts are as follows.
Several state-of-the-art algorithms for optimization on Mk are also tested,
with details in Section 5.5.2.

The proposed algorithms: Algorithm 5.2.1 is labeled as Qprecon RGD and
the RCG algorithm is labeled as Qprecon RCG. The trial stepsizes (Algo-
rithm 5.2.1, line 5.11) are selected by default using line minimization, and the
other stepsize rules that are also tested are (i) (Armijo) for the Armijo line
search method, and (ii) (RBB) for the Barzilai–Borwein stepsize (5.12).

Euclidean gradient descent (Euclidean GD) and nonlinear conjugate gra-
dient (Euclidean CG) algorithms refer to the GD and CG algorithms using
the Euclidean metric on ĚMk in the definition of the search directions on ĚMk.
The stepsize selection rules are the same as the proposed algorithms; these
algorithms are implemented along with the proposed algorithms in the source
code.
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5.5.1 Invariant optimization path on Mk

As shown in Lemma 5.2.8, the algorithm Qprecon RGD on ĚMk induces a
sequence {Xt}t≥0 that moves on Mk along the Riemannian gradient descent
directions in TMk. This means that the sequence does not depend on the
locations of the iterates {x̄t}t≥0 in the vertical space Vx̄. In the following
experiment, we demonstrate this remark by observing the iteration histories of
Qprecon RGD in matrix completion tests, in comparison with Euclidean GD.

A synthetic low-rank matrix is generated as follows: M? = A?B?, where
A ∈ Rm×k and B ∈ Rm×k are composed of entries drawn from the Gaussian
distribution N (0, 1), for a rank parameter k that is much smaller than the ma-
trix dimensions. The index set of the observed entries (training data) consists
of indices sampled from the Bernoulli distribution B(p): for (i, j) ∈ [[m]]× [[n]],

(i, j) ∈ Ω, with probability p. (5.61)

Using the non-regularized model, we carry out matrix completion tests on
noiseless observations ofM? on Ω, with a sampling rate p = 0.8. Qprecon RGD
and Euclidean GD are tested with two different initial points x0, x′0 ∈ ĚMk that
belong to the same equivalence class (in the sense that π(x0) = π(x′0)): In the
first test, each algorithm is initialized with x0 = (G0,H0) using the (balanced)
spectral initialization method (4.18). In this case, the two factors G0 and H0

are balanced, i.e., having equal matrix norms. In the second test, the initial
point is defined as x′0 = (λG0,H0/λ), for λ = 5. The comparative results are
given in Figure 5.2.

From the results in Figure 5.2, we observe that the two sequences of Qpre-
con RGD overlap, which shows indeed that the path of the sequence generated
by Qprecon RGD does not vary with the change in the initial point. We also
observe that these overlapping sequences converge linearly, with much faster
speed than Euclidean GD with the unbalanced initial point. In fact, one can
see from the figure that the convergence of Euclidean GD is significantly slowed
down with the unbalanced initial point x′0 compared to the case with x0.

5.5.2 Matrix completion performances

In this subsection, a synthetic matrix M? is generated using the graph-based
matrix model (4.44) with r? � min(m,n). As introduced in Chapter 4, this
graph-based model is designed to simulate low-rank matrices in real-world ap-
plications in the following sense: the matrix rows (respectively columns) ofM?

present pairwise similarities according to a given graph structure defined on the
index set of the matrix rows (respectively columns). For this purpose, a graph
Laplacian matrix Lr is generated with the prototypical graph model Community
using the GSPbox [PPS+14]. The function g in this model is chosen as (4.46)
with p = 2. The data matrix is observed on an index set Ω is that follows the
Bernoulli distribution (5.61) without any noise.
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Figure 5.2: Iteration histories of the algorithms with a balanced and an unbalanced initial
point. The size of M? is 100 × 200, with rank r? = 3. The sampling rate p = 0.8. (a)–(b):
test RMSEs by time. (c)–(d): path of the matrix entries ([Xt]1,1, [Xt]2,1) of the iterates
{π(x̄t)}.
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We evaluate the matrix recovery performances of the low-rank model (5.55)
with the graph-based regularizer (5.59) in comparison with the non-regularized
model. In the construction of the graph-based regularizer (5.59), the graph
Laplacian matrices are set to be the same as the ones used for generating
M?, as described above. This is of course an ideal choice. Nevertheless, we
refer to Chapter 4 for realistic choices, which have also been shown to be
effectively helpful for the matrix completion task. The regularization parame-
ters (α, γr, γc) are selected from a few randomly generated values in (0, 1) and
(δr, δc) are estimated based on the norm of PΩ(M?) and the sampling rate p.

We also compare the time efficiency of Qprecon RGD/RCG with their Eu-
clidean counterparts and several state-of-the-art algorithms in the aforemen-
tioned matrix completion tests.

From the experimental results in Figure 5.3, we have the following observa-
tions:

� In Figure 5.3: (a)-(b), the successful recovery rates with the graph-
regularized model is much higher than those with the non-regularized
model. This shows that the graph-regularized model already has a smaller
sample complexity requirement than the non-regularized model, despite
the current parameter search for (α, δr, δc) is insufficient.

� In Figure 5.3: (e)-(f), under a critically small sampling rate, the time
efficiency of Qprecon RGD and Qprecon RCG is enhanced when the
graph-based regularization scheme (5.59) is used. In particular, with the
graph-regularized model, the convergence of these algorithms are seldom
slowed down during the iterations, and the convergence rate is linear with
a quasi constant rate.

� In Figure 5.3: (c)-(d), also under a critically small sampling rate, and
with both the regularized and non-regularized models, the time efficiency
of Qprecon RGD and Qprecon RCG outperform their Euclidean counter-
parts by at least 8 times or even orders of magnitude.

Comparisons with existing algorithms. Furthermore, we compare the
performances of Qprecon RGD, Qprecon RCG with some existing and state-
of-the-art algorithms.

Figure 5.4 shows the iteration histories of Qprecon RGD and the 2-phase
GRMC algorithm (Algorithm 4.3.3) in Chapter 4. From this figure, we ob-
serve that the iteration histories of these two algorithms are similar or even
overlapping, over multiple runs of random tests, and they all show that the
matrix recoveries are successful. This suggests that the RGD algorithm (Al-
gorithm 4.3.1) onM≤k using the preconditioned metric produces a similar se-
quence as Qprecon RGD, given an appropriate rank k; see Section 5.3.1. This
observation agrees with the discussion about the location of critical points of
f (5.21) onMk ⊂M≤k.
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Figure 5.3: Performances of the matrix completion algorithms. The size of M? is 500× 600,
with rank r? = 10. (a–(b): percentage of successful recoveries (test RMSE below 10−8) with
and without the graph-based regularization. (c–(d): test RMSEs by time of Qprecon and
Euclidean algorithms under the sampling rate p = 10% (in a successfully recovered instance).
(e–(f): average iteration histories of Qprecon RGD and Euclidean GD under the sampling
rate p = 12.6% (in case of successful recoveries).
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Figure 5.4: Iterative results of the tested algorithms. The y-axis shows the RMSE on the
revealed entries (training data). M? is generated with non-trivial graph information with the
model (4.46) (for p = 2) and is partially observed without any noise. Matrix size m = 500,
n = 600, rank r? = 10. The rank parameter k is set to be equal to r? for both algorithms.
The sampling rate is set to 0.6 for all tests. The “phase-switching” criterion of Precon RGD
(M≤k 2-phase)(originally Algorithm 3 of [DAG20]) is if the relative error (on training data)
falls below 10−2. (a)–(b): two instances of repeated tests.

For time efficiency comparisons, we test the following algorithms [Van13,
WCCL16, TW16] for optimization with fixed-rank matrices. Precisely, LRGe-
omCG [Van13], NIHT and CGIHT [WCCL16] use the same manifold structure
of Mk and the same retraction operator for their respective update rules on
Mk. These algorithms produce iterates the matrix product space St(m, k) ×
St(n, k)×Rk×k, on which the Euclidean metric is used for the definition of the
gradient. A retraction is needed to ensure the fixed-rank constraint, that is,
π(x̄) := UΣV T ∈ Mk. The projection-like retraction [AM12] (also called the
IHT for “iterative hard thresholding”) is used. ASD and ScaledASD [TW16] are
algorithms using alternating steepest descent on the two-factor product space
ĚMk.

Note that the computation environment of the above algorithms are simi-
lar: (i) All these algorithms, as well as the proposed ones, are implemented in
MATLAB; (ii) under the assumption that max(m,n) � |Ω| = ρmn, the most
costly part of each of these algorithms is the computation of the computing
the residual matrix S := PΩ(X −M?) ∈ Rm×n, where X depends on the fac-
torization form underlying the structure of the manifold (or simply Euclidean
domain for ASD) of each algorithm, whose costs are at the order O(|Ω|k) for a
rank parameter k given. For this computational step, all the algorithms use a
MEX interface to a function implemented in C.

In Figure 5.5, we show the time efficiency of the tested algorithms for recov-
ering the same type of low-rank matrix as the above tests. From these results,
we can observe that the proposed algorithms Qprecon RGD and Qprecon RCG
perform similarly as ScaledASD and they are comparable or faster than the rest
of the algorithms. In Figure 5.5, the average costs of time of the algorithms
are given based on tests on a 1000 × 2000 matrix, under various rank choices
k ∈ {5, 10, . . . , 30} and sampling rates p ∈ {0.2, 0.3, . . . , 0.8}. We observe that
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(a) (b)

Figure 5.5: Average costs of time per-iteration. The matrix size is 1000× 2000.
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Figure 5.6: Iterative results of the tested algorithms. The y-axis shows the RMSE on the
revealed entries (training data). M? is generated with non-trivial graph information with
the model (4.46) (for p = 2) and is partially observed without any noise. The matrix size
is 800 × 900, with ranks r? ∈ {20, 30}. The sampling rate p = 0.6 for all tests. The rank
parameter k = r? in each setting.
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Qprecon RGD (RBB), ASD and Scaled ASD are three most efficient algorithms
in terms of per-iteration cost of time, for all settings of (p, k). In particular,
these three algorithms have much better scalability in k than the rest of the
algorithms.

5.6 Conclusion
We investigated methods for the matrix completion problem with a fixed-rank
constraint and focused on a Riemannian gradient descent algorithm in the
framework of optimization on the quotient manifold of fixed-rank matrices.
We showed that the Riemannian gradient descent algorithm under the afore-
mentioned quotient geometric setting not only enjoys the advantage of matrix
factorization but can also be analyzed in a more convenient way than existing
matrix factorization methods. We developed novel results for analyzing the
quotient manifold-based algorithm and proved that this algorithm solves the
fixed-rank matrix completion problem with a linear convergence rate. More-
over, the convergence property of the algorithm has desirable invariance prop-
erties in contrast to Euclidean gradient descent algorithms. Because of the
efficient iteration efficiency and its light per-iteration cost, the time efficiency
of this algorithm is also shown to be much faster than the Euclidean gradient
descent algorithms and is faster than many other Riemannian algorithms on
the set of fixed-rank matrices. Through the convergence analysis, we also pro-
vided a novel understanding of the graph-based regularization in the theoretical
framework of matrix completion.
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Chapter 6

Tensor completion using
graph-based regularization

Tensor completion refers to the task of recovering missing values of a multidi-
mensional array and can be seen as a generalization of the matrix completion
problem. Similar to the approximation of a matrix with low-rank models, the
approximation of a tensor can be formulated by a low-rank tensor model. Start-
ing from this idea, low-rank tensor completion consists in finding a low-rank
approximation of a tensor based on a given subset of its entries. Applications of
low-rank tensor completion can be found in many areas, e.g., signal processing
for EEG (brain signals) data [MHH+06] and MRI (magnetic resonance imag-
ing) [BAH16], and image and video inpainting [BSCB00, LMWY12, KR07].

In the literature on low-rank matrix completion, the matrix nuclear norm is
proven [CR09b, RFP10] to be a convex relaxation of the matrix rank that guar-
antees exact solutions to the corresponding rank-constrained problem in some
specific circumstances and has been used in various matrix rank-constrained
problems [MHE+10] such as matrix completion. Generalized from this ma-
trix relaxation, several works [LMWY09, GRY11, LMWY12, SHZL13, YHS13,
SDDS14] extended the nuclear norm-based regularization to the completion of
partially observed tensors (also known as multidimensional arrays). In [LMWY12],
the nuclear norm of a tensor is defined as a convex combination of nuclear norms
of its unfolding matrices, and the tensor completion model is as follows,

min
Z∈Rm1×...×mk

1

2
‖PΩ(T − Z)‖2F +

k∑
i=1

λi‖Z(i)‖∗, (6.1)

where T ∈ Rm1×...×mk is a given tensor that is only partially known, and
PΩ is the projection operator that retains the known entries of T recorded in
the index set Ω ⊂ [[m1]] × · · · × [[mk]], and ‖Z(i)‖∗ denotes the matrix nuclear
norm of the mode-i matricization (Definition 2.4.5) of tensor Z. The penalty
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terms ‖Z(i)‖∗ in (6.1) promote solutions such that the matricizations of the
tensor variable Z have a low rank.

However, the problem (6.1) requires handling the full tensor variable (in
its matricization forms), hence has very high memory requirements when the
tensor dimensions are large. In contrast, low-rank tensor decomposition offers
an alternative for its significant savings in memory. Previous work of low-rank
decomposition of tensors with missing data include [AB98, CG09, KABO10,
PFS17, TB05, SD19].

Depending on different tensor decomposition forms, there are several ways
to define the rank of a tensor. Low-rank tensor decompositions provide a
useful tool for tensor representation and are widely used in tensor comple-
tion [AB98, CG09, KABO10, ADKM11, PFS16, TB05, KB09]. The low-
rank tensor decomposition paradigm allows for extracting the most mean-
ingful and informative latent structures of a tensor, which usually contain
heterogeneous and multi-aspect data. The Canonical Polyadic (CP) decom-
position [Hit27b, Kru77, KB09], the Tucker and multilinear decomposition
(MLSVD) [Tuc66, DLDMV00a, DLDMV00b], and the tensor-train (TT) de-
composition [Ose11, GKK15, PTBD16] are among the most fundamental ten-
sor decomposition forms. Other variants include hierarchical tensor represen-
tations [DSH13, RSS15, RSS17] and PARAFAC2 models [RSS15]. We refer
to [SDF+17] for a thorough view on these tensor decompositions in the context
of signal processing and machine learning.

The rest of this chapter is based on [GDAG20]. The notation of tensor
and matrix operations and definitions of the tensor decompositions used in the
following part are given in Section 2.4.

We focus on the CP decomposition model for tensor completion [ADKM11,
Bro97, Bro98, KTBB99, Kro83, TB05, SD19]. Besides the CP decomposition
model, graph Laplacian-based regularization has also been applied to tensor
completion, see [NHTK12, GCZS16, GZA+18]. Similar approaches [BMG13,
LNSS16, ZZC15a, ZZC15b] also exploit auxiliary information of inter-relations
between the tensor entries with a probabilistic perspective.

In this work, we consider the following model using CP decomposition and
a graph Laplacian-based regularization:

min
U(1),...,U(k)

1

2
‖PΩ(T − JU (1), · · · ,U (k)K)‖2F +

k∑
i=1

λi
2
〈U (i)(U (i))

T
,L(i)〉

+

k∑
i=1

λi
2
‖(U (j))�j 6=i‖2F , (6.2)

where Ω ⊂ [[m1]] × · · · × [[mk]] is the index set of the revealed entries and T is
the ground truth tensor that is known only on Ω. The proportion of the known
entries |Ω|/(m1...mk), or its expectation E[|Ω|]/(m1...mk), is referred to as the
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sampling rate ρ. The shifted graph Laplacian L(i) is defined as

L(i) = λLLap
(i) + Imi , (6.3)

where Lap(i) is the graph Laplacian matrix which is assumed to be known.
The parameters λi ≥ 0 and λL ≥ 0 control the trade-off between the training
error function and the regularization term. In particular, when λL = 0, prob-
lem (6.2) reduces to a graph-agnostic tensor completion model. The search
space of (6.2) is Rm1×R × · · · × Rmk×R. Throughout this chapter, the graphs
and the graph Laplacian matrices involved in the regularization term are de-
scribed in Section 2.3. The model (6.2) can be seen as an extension of (4.9) in
Chapter 4.

We use the CP decomposition in the problem setting above because it is
the most natural extension of the two-term matrix factorization in the graph-
regularized matrix completion model. Other decomposition forms such as
Tucker or MLSVD appear less convenient because the core tensor dimensions
are different than those of the graph matrices (which equals the tensor dimen-
sions).

Besides considerations for a more data-adaptive model, the graph-based
regularization term plays a role like other regularizers in limiting the actual
search space of the problem to a closed sublevel set, for many algorithms. It
is worth noting that, in the absence of such regularizers, the low-rank tensor
approximation problem underlying (6.2) can be ill-posed, in the sense that
the best approximation with bounded CP rank (depending on R) does not
exist. This ill-posedness can be seen in the well-known example with border
tensors [DSL08], where the approximation of such tensors can be arbitrarily
well but it does not have a minimum (despite the existence of an infimum).

Contributions and organization

The main contributions of this chapter are as follows.

� We provide an alternating minimization algorithm for solving the graph-
regularized tensor completion problem. An efficient Hessian-vector multi-
plication scheme is used in the linear conjugate gradient (CG) algorithm
for solving the subproblems in this alternating minimization framework.
The computational framework of the linear CG algorithm is inspired by
Rao et al. [RYRD15] for graph-regularized matrix completion. In addi-
tion, an alternating direction method of multipliers (ADMM) algorithm
is also proposed; see Section 6.1.

� We provide a proof for the convergence of iterates of the proposed AltMin
algorithm to a critical point of the objective function according to the
Kurdyka-Łojasiewicz (KŁ) property; see Section 6.2.
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� We show through experiments (Section 6.3) on both synthetic and real
data that our algorithms produce tensor completion results with good
recovery accuracies and are time efficient compared to several baseline
methods.

The rest of this chapter is organized as follows. In Section 6.1, an alternating
minimization (AltMin) algorithm using linear CG for solving the subproblems
is proposed; an ADMM algorithm is also developed for solving the graph-
regularized LRTC problem. Convergence analysis of the AltMin algorithm is
given in Section 6.2. Numerical experiments together with some interesting
observations are presented in Section 6.3. Conclusion is given in Section 6.4.

6.1 Algorithms using alternating minimization

In this section, we introduce an alternating minimization (AltMin) algorithm
and an ADMM algorithm for solving the LRTC problem (6.2).

To minimize the objective function of (6.2), defined on the product space
of tensor factors Rm1×R×· · ·×Rmk×R, alternating minimization (also referred
to as block coordinate descent) consists in minimizing the function cyclically
over each factor matrix among (U (1), . . . ,U (k)) while keeping the remaining
variables fixed at their last updated values.

Let f(·) denote the objective function of (6.2) and U (i)
t denote the t-th iter-

ate of U (i) for t ≥ 0. Let f (i)
t+1 denote the objective function of the subproblem

in U (i) as follows:

f
(i)
t+1(U (i)) , f(U

(1)
t+1, . . . ,U

(i−1)
t+1 ,U (i),U

(i+1)
t , . . . ,U

(k)
t ). (6.4)

Algorithm 6.1.1 Alternating minimization
Input: Data (known on Ω) PΩ(T ) ∈ Rm1×...×mk , observed set Ω. Objective
function f
Output: (U

(i)
t )i=1,...,k

1: Initialization: U (1)
0 , . . . ,U

(k)
0

2: for t = 0, 1, 2, . . . do
3: if stopping criterion is satisfied then
4: return;
5: end if
6: for i = 1, . . . , k do
7: U

(i)
t+1 = arg minU∈Rmi×R f

(i)
t+1(U)

8: end for
9: end for

During the (t + 1)-th iteration and for i ∈ [[k]], subproblem (6.4) has the
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following expression1:

min
U(i)∈Rmi×R

1

2
‖PΩ(i)(T(i) − U (i)[(U (j))�j 6=i]

T
)‖2F +

λi
2
〈U (i)(U (i))

T
,L(i)〉

+

k∑
j=1
j 6=i

λj
2
‖(U (n))�n 6=j‖2F , (6.5)

where Ω(i) is the set of 2-dimensional indices, in the form of (`i, ri) ∈ Ω(i),
corresponding to (`1, . . . , `k) ∈ Ω with respect to the tensor matricization (Def-
inition 2.4.5). The one-to-one map satisfies (2.24).

Due to the graph Laplacian-based regularization term, the major challenge
in solving (6.2) by the alternating minimization procedure is the structure
of each subproblem, which is different from those of an unregularized tensor
decomposition problem. We explain this in detail as follows. For clarity and
practical reasons, we show this by first converting the matrix variable U (i)

into its vectorization x := vec
(
(U (i))

T) ∈ RmiR and then studying g(i)(x) :=

f
(i)
t+1(U (i)). The function g is a quadratic function of the following form,

g(i)(x) :=
1

2
xTM (i)x− vec(Q(i))

T
x, x ∈ RmiR, (6.6)

where

M (i) = A(i) + λiL
(i) ⊗ IR + Imi ⊗ C(i) ∈ RmiR×miR, (6.7a)

Q(i) = (PΩ(i)T(i))(U
(j))�j 6=i ∈ Rmi×R. (6.7b)

The components A(i) and C(i) in (6.7a) are defined and computed as follows.
Let A(i) ∈ RmiR×miR be the matrix of the following quadratic form xTA(i)x :=

‖PΩ(U (i)[(U (j))�j 6=i]
T

)‖2F in x = vec
(
(U (i))

T)
. We have

‖PΩ(i)(U (i)[(U (j))�j 6=i]
T

)‖2F = 〈U (i)(U (−i))
T

,PΩ(i)(U (i)(U (−i))
T

)〉

= tr(U (−i)(U (i))
T
PΩ(i)(U (i)(U (−i))

T
)) =

mi∑
s=1

tr(Us,:
TP

Ω
(i)
s

(Us,:(U
(−i))

T
)U (−i))

=

mi∑
s=1

Us,:

 ∑
`∈Ω

(i)
s

(U
(−i)
`,: )

T
U

(−i)
`,:

 (Us,:)
T

, (6.8)

where Us,: denotes the s-th row of U (i), U (−i) denotes (U (j))�j 6=i ∈ Rm(−i)×R

and m(−i) denotes the number
∏
j 6=imj for brevity. In the line above (6.8), we

1For convenience, we ignore the subscript t+1 or t in the variables U(j) for all j = 1, . . . , k,
and omit constant terms in the objective.
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decomposed PΩ(i) by rows with P
Ω

(i)
s

(defined on Rm(−i)), for s = 1, . . . ,mi,
which applies to the s-th row Us,:(U

(−i))T . Therefore, A(i) ∈ RmiR×miR is a
block diagonal matrix with mi diagonal blocks and each block has the form

A(i)
s =

∑
`∈Ω

(i)
s

(U
(−i)
`,: )

T
U

(−i)
`,: ∈ RR×R, (6.9)

where Ω
(i)
s = {` : (s, `) ∈ Ω(i)}.

The component Imi
⊗C(i) denotes the matrix related to the quadratic form

q(U (i)) :=
∑
j 6=i

λj‖(U (n))�n6=j‖2F (6.10)

in (6.5). Now we verify that

C(i) =

k∑
j=1
j 6=i

λjdiag[(‖U (−i,−j)
:,` ‖2)`=1,...,R] ∈ RR×R, (6.11)

where U (−i,−j) := (U (n))�n 6=i,j denotes the Khatri-Rao product of U (n)’s ex-
cluding U (i) and U (j). Indeed, the function (6.10) writes

q(U (i)) =
∑
j 6=i

λj

R∑
`=1

‖U (−i,−j)
:,` ⊗ U (i)

:,` ‖22

=
∑
j 6=i

λj

R∑
`=1

‖U (−i,−j)
:,` ‖22︸ ︷︷ ︸
C

(i,j)
``

tr
(
U

(i)
:,` (U

(i)
:,` )

T)

=
∑
j 6=i

λj tr
(
U (i)C(i,j)(U (i))

T)
= tr

(
U (i)(

∑
j 6=i

λjC
(i,j))(U (i))

T
)

.

By recalling that tr(XTCX) = vec(X)
T

(I ⊗ C)vec(X), the formula (6.11) of
C(i) yields the identification q(U (i)) = xT(Imi⊗C(i))x, with x = vec

(
(U (i))

T)
.

The function g(i) in (6.6), and equivalently f (i)
t+1 of (6.5), is strongly convex

(see Theorem 6.2.7 point 2) provided that λn > 0 for n = 1, . . . , k. As a
consequence, the update step (6.5) consists of finding the graph-regularized
least squares solution

M (i)x∗ = vec(Q(i)). (6.12)

Note that the main computational challenge in finding the least-squares so-
lution (6.12) is the presence of graph Laplacian-based regularization terms
in (6.6). The similar difficulty can be found in the graph-regularized least
squares problem in [RYRD15]. More precisely, the matrix M (i) ∈ RmiR×miR

in (6.6) is not block diagonal because of the component L(i) ⊗ IR. Therefore,
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the least squares problem with (6.6) cannot be decomposed into mi separable
least squares problems in RR. In the next subsection, we use linear CG to
solve each subproblem with respect to its vectorized form. We also consider (in
Section 6.1.2) an alternating direction method of multipliers (ADMM) as an
alternative way to address the difficulty with these nonseparable least squares
problems.

The stopping criterion in Algorithm 6.1.1 (line 3) is satisfied if either of the
following conditions is satisfied: (i) the wall time used for producing the latest
iterate is larger than a time budget parameter τmax (which is potentially set
to ∞); (ii) the progress of the iterate (U

(i)
t )i=1,...,k, measured by a heuristic

difference function ∆t, is smaller than a (global) tolerance parameter ε. Here
we define ∆t as follows,

∆t := |E(Ut; Ωtr)− E(Ut−1; Ωtr)|, (6.13)

where E(U ; Ωtr) :=
‖PΩtr (JU(1),...,U(k)K−T )‖F

‖PΩtr (T )‖F is the relative error restricted to
the index set Ωtr ⊂ [[m1]]× · · · × [[mk]] of the revealed entries.2

In the following subsections, we consider linear CG for solving the high-
dimensional least-squares problem (6.6).

6.1.1 The linear CG solver

Algorithm 6.1.2 shows an instance of AltMin using linear CG as the subproblem
solver. Detailed steps for the linear CG algorithm are given in Algorithm 6.1.3.

Algorithm 6.1.2 AltMin-CG for solving (6.2)

Input: Observed tensor PΩ(T ), graph Laplacian Lap(1), . . . ,Lap(k), ob-
served set Ω, parameters λ1, . . . ,λk and λL
Output: (U

(i)
t )i=1,...,k

1: Initialization: U (1)
0 , . . . ,U

(k)
0

2: for t = 0, 1, 2, . . . do
3: if stopping criterion is satisfied then
4: return;
5: end if
6: for i = 1, . . . , k do
7: Compute: C(i),Q(i) defined in (6.11), (6.7b) and (U (j))�j 6=i

8: x
(i)
t+1 := arg minx g

(i)(x) by Algorithm 6.1.3
9: U

(i)
t+1 = unvec(x(i)

t+1)
10: end for
11: end for

2The subscript “tr”, indicating the “training set”, refers to the revealed entries.
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Note that M (i) has a special form which contains Kronecker products and
its size is very large, hence we compute it in a more efficient way by a spe-
cial Hessian-vector multiplication in the CG method. By the relation (BT ⊗
A)vec(X) = vec(AXB), it follows that

(L(i) ⊗ IR)x = vec
(
(U (i))

T
L(i)

)
,

(Imi
⊗ C(i))x = vec

(
C(i)(U (i))

T)
,

where x = vec
(
(U (i))

T)
. Thus the Hessian-vector multiplication can be imple-

mented by a series of matrix multiplications as follows

M (i)x = vec
(
λi(U

(i))
T
L(i) + C(i)(U (i))

T)
+A(i)x. (6.14)

Define vec(N (i)) = A(i)x with N (i)
:,j = A

(i)
j (U

(i)
j,: )

T
. In view of (6.9), and similar

to [RYRD15], A(i)
j (U

(i)
j,: )

T
can be computed in the following way

N
(i)
:,j = A

(i)
j (U

(i)
j,: )

T
=
∑
`∈Ω

(i)
s

U
(−i)
`,: (U

(i)
j,: )

T
(U

(−i)
`,: )

T
. (6.15)

Details to compute this Hessian-vector product in the CG method are listed in
Algorithm 6.1.4.

Computational cost of AltMin-CG The computational cost for each al-
ternating step (6.5) corresponds to the procedure required by line 7–line 9 of
Algorithm 6.1.2.

The cost of forming (U (j))�j 6=i is O( |Ω|Rρmi
), where ρ denotes the sampling

rate. The cost of computing Q(i) in (6.7b) is O(|Ω|R) with access to (U (j))�j 6=i .
The cost of forming C(i) in (6.11) is O( |Ω|Rρmimj

).
The major cost in Algorithm 6.1.2 corresponds to line 8, which involves

(inner) iterations of the linear CG. The total cost of line 8 is nCG times the
per-iteration cost of the linear CG algorithm (Algorithm 6.1.3), where nCG

denotes the number of iterations required by the CG solver (Algorithm 6.1.3) for
producing x

(i)
t+1. The per-iteration cost of Algorithm 6.1.3 is mainly composed

of the following components.

� Cost of computingA(i)x: O(|Ω|R), since the cost of computingA(i)
j (U

(i)
j,: )

T

in (6.15) is O(|Ω(i)
j |R) for j = 1, ...,mi and

∑
j=1,...,mi

|Ω(i)
j | = |Ω|;

� Cost of computing (L(i) ⊗ IR)x: O(nnz(L(i))R);

� Cost of computing (Imi
⊗ C(i))x: O(miR).
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Algorithm 6.1.3 Linear CG for solving min g(i)(x) defined in (6.6)

Input: M (i) ∈ RmiR×miR, Q(i) ∈ Rmi×R, initial point x0 ∈ RmiR, accuracy
parameter ε, iteration budget Tmax

Output: x∗ ∈ RmiR

1: r0 = vec(Q(i))−M (i)x0

2: for t = 0, . . . ,Tmax do
3: Compute: ‖rt‖
4: if ‖rt‖ ≤ ε‖r0‖ then
5: Break
6: end if
7: if t = 0 then
8: p1 = r0

9: else
10: pt+1 = rt + ‖rt‖2

‖rt−1‖2pt
11: end if
12: Compute: vt+1 = M (i)pt+1 # see Algorithm 6.1.4
13: Compute: α = ‖rt‖2

pt+1
Tvt+1

14: Compute: xt+1 = xt + αpt+1, rt+1 = rt − αvt+1

15: end for
16: return x∗ = xt.

Algorithm 6.1.4 Hessian-vector multiplication M (i)x in the CG method

Input: L(i) ∈ Rmi×mi , Ω
(i)
j , C(i) ∈ RR×R, D(i) := (U (j))�j 6=i ∈ Rm(−i)×R,

x := vec
(
(U (i))

T) ∈ RmiR, λi ≥ 0.
Output: M (i)x

1: for i = 1, . . . , k do
2: X = unvec(x) ∈ RR×mi

3: Compute: N (i)
:,j =

∑
`∈Ω

(i)
j

(D`,:x:,j)D`,:
T

4: Compute: M (i)x = vec(C(i)X + λiXL
(i)) + vec(N (i)) defined in (6.14)

5: end for
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Overall, the cost of computing the Hessian-vector multiplication M (i)x is

O(nnz(L(i))R+ |Ω|R).

Therefore, the dominant term in the per-iteration cost of Algorithm 6.1.2 is

nCGO(nnz(L(i))R+ |Ω|R). (6.16)

Discussion Alternating minimization (AltMin) methods have been applied
to various low-rank tensor completion problems [LYZY10, LMWY12, XY13b]
and are known for many advantages. AltMin is a desirable choice for the graph-
regularized tensor decomposition problem (6.2) for the following reasons:

(i) It is easy to implement as there is no need to tune optimization param-
eters like step sizes; (ii) Each of the subproblems (6.5) is convex and easy to
solve. In fact, we have shown in the previous subsection that each subproblem
is equivalent to a least-squares problem in the miR-dimensional vector space;
and (iii) global convergence properties of alternating minimization methods in
matrix and tensor decomposition-related problems are also well known.

6.1.2 ADMM

Besides the AltMin-CG method, we also consider ADMM to solve the LRTC
problem (6.2). ADMM has become a very popular approach to solving a broad
variety of optimization problems in signal, image processing and sparse rep-
resentation problems [ABDF10, BPC+11, GO09] for several reasons, and one
notable advantage of ADMM is that it provides a simple way to handle opti-
mization problems with complicated objective functions for its nature of de-
composing a problem into sequences of simpler subproblems. Moreover, its
decoupling of problem variables usually enables simple implementation and
easy parallelization. The ADMM framework is used in [LS15], for example,
for designing parallel algorithms for nonnegative tensor factorization and with
encouraging results, is shown to have high potential for large-scale applications.

For the graph-regularized tensor problem (6.2), the aforementioned advan-
tages are also appealing. As is shown in the description of AltMin (Algo-
rithm 6.1.1), the graph-based regularization term in this problem model in-
duces a major computational challenge (especially for large-scale applications),
since it turns the least-squares subproblems harder to solve (in centralized as
well as parallel settings) due to the fact that it breaks the (pure) block-diagonal
pattern of the Hessian (see (6.7a)) of the least-squares subproblems.

To remedy this, we address the problem (6.2) in the following spirit: we
introduce an auxiliary variable (B(1), . . . ,B(k)) ∈ Rm1×R × · · · × Rmk×R to
replace the role of (U (i), . . . ,U (k) in the graph-based regularization term and
then impose equality constraints B(i) = U (i) for all i. Subsequently, we apply
ADMM to the reformulation.
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The reformulation with auxiliary variables is:

min
U(1),...,U(k)

1

2
‖PΩ(T − JU (1), · · · ,U (k)K)‖2F +

k∑
i=1

λi
2
〈B(i)(B(i))

T
,L(i)〉

+

k∑
i=1

λi
2
‖(U (j))�j 6=i‖2F ,

subject to U (i) = B(i), i = 1, . . . , k. (6.17)

The augmented Lagrangian for (6.17) is

Lη(U ,B,Y ) = f(U ,B) +

k∑
i=1

〈Y (i),B(i) − U (i)〉+

k∑
i=1

η

2
‖B(i) − U (i)‖2F ,

(6.18)

where f(U ,B) denotes the objective function of (6.17) and Y (i) ∈ Rmi×R is
the matrix of Lagrange multiplier and η > 0 is a penalty parameter. We
apply the ADMM iterative scheme to minimize Lη over {U (1), . . . ,U (k)} and
{B(1), . . . ,B(k)} as follows

{U (i)
t+1}ki=1 = arg min

{U(i)}ki=1

Lηt(U (1), . . . ,U (k),B
(1)
t , . . . ,B

(k)
t ,Y

(1)
t , . . . ,Y

(k)
t ) (6.19)

{B(i)
t+1}ki=1 = arg min

{B(i)}ki=1

Lηt(U (1)
t+1, . . . ,U

(k)
t+1,B(1), . . . ,B(k),Y

(1)
t , . . . ,Y

(k)
t )

(6.20)

Y
(i)
t+1 = Y

(i)
t + ηt(B

(i)
t+1 − U

(i)
t+1), i = 1, . . . , k. (6.21)

Updating {U (1)
t+1, . . . ,U

(k)
t+1}. The optimization problem (6.19) can be

rewritten as follows when updating {U (1)
t+1, . . . ,U

(k)
t+1}

min
U(1),...,U(k)

1

2
‖PΩ(T − JU (1), . . . ,U (k)K)‖2F +

k∑
i=1

λi
2
‖(U (j))�j 6=i‖2F

+

k∑
i=1

ηt
2
‖U (i) −B(i)

t − (1/ηt)Y
(i)
t ‖2F . (6.22)

We apply the alternating minimization method to update each U (i) for i =
1, . . . , k, while fixing the other variables. Then problem (6.22) becomes a
quadratic optimization problem. For convenience, we ignore the subscript in
the fixed U (j) for j 6= i, and the resulting subproblem with respect to U (i) is
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formulated as

min
U(i)

1

2
‖PΩ(i)(T(i) − U (i)[(U (j))�j 6=i ]

T
)‖2F +

k∑
j=1
j 6=i

λj
2
‖(U (n))�n 6=j‖2F

+
ηt
2
‖U (i) −B(i)

t −
Y

(i)
t

ηt
‖2F , (6.23)

which is separable by rows of U (i). Thus, each row of the new iterate U (i)
t+1 is

the solution to the following linear equation in RR,

(A
(i)
j +ηtIR+C(i))(U

(i)
j,: )

T
= [(PΩ(i)T(i))(U

(j))�j 6=i + ηtB
(i)
t + Y

(i)
t ]j,:

T
, (6.24)

whereA(i)
j and C(i) are defined in (6.9) and (6.11) respectively, for j = 1, . . . ,mi.

Updating {B(1)
t+1, . . . ,B

(k)
t+1}: By alternating minimization method, the op-

timization problem (6.20) can be reformulated as follows when updating the
variables {B(1)

t+1, . . . ,B
(k)
t+1},

min
B(i)

λi
2
〈B(i)(B(i))

T
,L(i)〉+

ηt
2
‖U (i)

t+1 −B(i) − (1/ηt)Y
(i)
t ‖2F . (6.25)

which boils down to solving

(ηtImi
+ λiL

(i))B(i) = ηtU
(i)
t+1 − Y

(i)
t . (6.26)

Followed by the above standard procedure of ADMM, it concludes in Algo-
rithm 6.1.5. Here we adopt the CG method combined with the Hessian-vector
product defined in the previous subsection to update B(i)

t+1 in (6.26) (also cor-
responding to line 10 of Algorithm 6.1.5). The iterate U (i)

t+1 in (6.24) is updated
by rows, therefore a simple CG solver is used.

Computational cost of ADMM. We analyze the computational cost for
each alternating step of the augmented Lagrangian step (6.18) corresponding
to the procedure required by line 6–line 12 of Algorithm 6.1.5. The costs of
forming (U (j))�j 6=i , C(i) and Q(i) are computed in the complexity analysis part
of Section 6.1.1. Let nADMM denote the maximal number of iterations required
for solving the linear equations (6.24) and (6.26). Then the dominant costs are
nADMMO(miR+ |Ω|R) and nADMMO(nnz(L(i))R) respectively. Therefore, the
total complexity of Algorithm 6.1.5 (ADMM) is nADMMO(nnz(L(i))R+ |Ω|R),
which is of the same order as Algorithm 6.1.2 (AltMin-CG).
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Algorithm 6.1.5 ADMM for problem (6.2)

Input: Observed tensor PΩ(T ), graph Laplacian Lap(1), . . . ,Lap(k), ob-
served set Ω, parameters λ1, . . . ,λk and λL
Output: (U

(i)
t )i=1,...,k

1: Initialization: U (1)
0 , . . . ,U

(k)
0 , η0

2: for t = 0, 1, 2, . . . , do
3: if stopping criterion is satisfied then
4: return;
5: end if
6: for i = 1, . . . , k do
7: for j = 1, . . . ,mi do
8: Update the j-th row of U (i)

t+1 by (6.24)
9: end for

10: Update B(i)
t+1 by (6.26)

11: Y
(i)
t+1 = Y

(i)
t + η

(i)
t (B

(i)
t+1 − U

(i)
t+1)

12: end for
13: Update ηt+1 = γηt
14: end for

6.2 Convergence analysis

In this section, we will show the global convergence of iterates {U (1), . . . ,U (k)}
generated by Algorithm 6.1.2 (AltMin-CG) to a critical point.

6.2.1 Preliminaries

The following definitions and lemmas are used for the convergence analysis in
the next subsection.

Definition 6.2.1 ([RW09],[ABRS10, Definition 1]). Let f : Rm 7→ R ∪ {+∞}
be proper and lower semicontinuous.
1) The domain of f is defined and denoted by domf := {x ∈ Rm : f(x) < +∞}.
2) For each x ∈ domf , the Fréchet subdifferential of f at x, denoted as ∂̂f(x),
is

∂̂f(x) =

ξ ∈ Rm : lim inf
y 6=x
y→x

f(y)− f(x)− 〈ξ, y − x〉
‖y − x‖ ≥ 0

 .

If x /∈ domf , then ∂̂f(x) = ∅.
3) The limiting subdifferential of f at x ∈ domf , denoted as ∂f(x), is defined
as follows

∂f(x) := {ξ∗ ∈ Rm : ∃(xn)n≥0,xn → x, f(xn)→ f(x) and ξn ∈ ∂̂f(xn)→ ξ∗}.
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Definition 6.2.2 (KŁ function). [XY13b, Definition 2.5] A function f(x) sat-
isfies the Kurdyka-Łojasiewicz (KŁ) property at point x̄ ∈ dom(∂f) if, in a
certain neighborhood U of x̄, there exists ψ(s) = cs1−θ for some c > 0 and
θ ∈ [0, 1) such that the KŁ inequality below holds:

ψ′(f(x)−f(x∗))dist(0, ∂f(x)) ≥ 1, for any x ∈ U∩dom(∂f) and f(x) 6= f(x∗),
(6.27)

where dom(∂f) = {x : ∂f(x) 6= ∅) and dist(0, ∂f(x)) = min{‖y‖ : y ∈ ∂f(x)}.
If f satisfies the KŁ property at each point of dom(f), f is called a KŁ function.

Definition 6.2.3 (Strong convexity). A differentiable function f : domf 7→ R
is strongly convex if and only if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 (6.28)

holds for some µ > 0 and all x, y ∈ domf .

Definition 6.2.4 (Coercivity). A real-valued function f : Rm → R is called
coercive if and only if

f(x)→ +∞ as ‖x‖ → +∞. (6.29)

The following two lemmas follow directly from Theorem 2.8 and Theorem
2.9 of [XY13b] and are used for proving the convergence of the proposed alter-
nating minimization method.

Lemma 6.2.5. Assume f satisfies the KŁ property and ∇f is Lipschitz con-
tinuous on any bounded subset of its domain. Let (U

(1)
0 , . . . ,U

(k)
0 ) be any ini-

tialization and (U
(1)
t , . . . ,U

(k)
t ) be the sequence generated by Algorithm 6.1.1,

where each subproblem f
(i)
t (U (i)) (line 7 of Algorithm 6.1.1) is strongly convex

and is solved exactly. If the sequence (U
(1)
t , . . . ,U

(k)
t ) is bounded and there ex-

ists a finite limit point (U
(1)
∗ , . . . ,U

(k)
∗ ), then it converges to (U

(1)
∗ , . . . ,U

(k)
∗ ),

which is a critical point of f .

The convergence rate of the sequence is as follows.

Lemma 6.2.6. Assume ∇f is Lipschitz continuous on any bounded set and
suppose that U (i)

t converges to a critical point U (i)
∗ for i = 1, . . . , k, at which f

satisfies the KŁ inequality with ψ(s) = cs1−θ for constants c > 0 and θ ∈ [0, 1).
Then:
1. If θ = 0, U (i)

t converges to U (i)
∗ in a finite number of iterations;

2. If θ ∈ (0, 1
2 ], ‖U (i)

t − U
(i)
∗ ‖ ≤ βτ t, ∀t ≥ t0 for certain t0 > 0, β > 0,

τ ∈ [0, 1);
3. If θ ∈ ( 1

2 , 1), ‖U (i)
t − U (i)

∗ ‖ ≤ βt−(1−θ)/(2θ−1), ∀t ≥ t0 for certain t0 > 0,
β > 0.
Part 1, 2 and 3 correspond to finite convergence, linear convergence, and sub-
linear convergence, respectively.
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6.2.2 Convergence properties of AltMin

We show that the iterates generated by Algorithm 6.1.1 (AltMin) converge to
a stationary point in the following theorem. Note that this theorem applies
to Algorithm 6.1.2 (AltMin-CG), provided that the updated iterate of each
of the subproblems (line 8 in Algorithm 6.1.2) is the exact minimizer of the
corresponding (graph-regularized) least-squares problem. In practice, this re-
quires setting a sufficiently low tolerance parameter ε for the subproblem solver
(Algorithm 6.1.3).

Theorem 6.2.7. The iterates (U
(1)
t , . . . ,U

(k)
t ) generated by Algorithm 6.1.1

(AltMin) from any initialization converge globally to a critical point of f in (6.2).
Moreover, linear convergence and sublinear convergence in parts 2 and 3 of
Lemma 6.2.6 apply depending on θ in KŁ property of f .

Proof. According to Lemma 6.2.5, we need to check whether all the assumptions
satisfied.

1) Function f in (6.2) is a KŁ function with θ ∈ [1/2, 1) as it is a combina-
tion of polynomials which are one kind of real analytic functions (see [KP02,
Definition 1.1.5]). The real analytic function itself and the finite sum or prod-
uct of real analytic functions are KŁ functions, see [ABRS10, section 4] and
[XY13b, section 2.2].

2) Gradient ∇f is Lipschitz continuous on any bounded subset of domain
since f is a C∞ function.

3) For i = 1, . . . , k, f (i) in (6.5) is strongly convex by Definition 6.2.3 since
L(i) in (6.3) is positive definite. Therefore, the quadratic form g(i) of the sub-
problems (6.6) is strongly convex through the identification g(i)

(
vec
(
(U (i))

T))
=

f (i)(U (i)). Moreover, the solution for each g(i) corresponds to the exact mini-
mizer.

4) Notice that since f is coercive as defined in Definition 6.2.4 and real
analytic, it is guaranteed to produce a bounded sequence (U

(1)
t , . . . ,U

(k)
t ), thus

it has a critical point (U
(1)
∗ , . . . ,U

(k)
∗ ).

Lemma 6.2.5 then implies that the sequence generated by Algorithm 6.1.2
from any initial point converges to a critical point (U

(1)
∗ , . . . ,U

(k)
∗ ) of f . More-

over, the asymptotic convergence rates in parts 2 and 3 of Lemma 6.2.6 apply
as θ ∈ [1/2, 1).

6.3 Experiments

In this section, we carry out some numerical experiments to demonstrate the
working of our proposed algorithms Algorithm 6.1.2 (AltMin-CG) and Algo-
rithm 6.1.5 (ADMM) on the LRTC model (6.2) with k = 3. All numerical ex-
periments were performed on a Macbook Pro with a 2.3 GHz Intel Core i7 CPU,
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16GB RAM and MATLAB R2015a with Tensor Toolbox version 2.5 [BK+12].
The source code is made available online.3

We focus on the following two tasks:

1. To test and verify the effect of the graph Laplacian-based regularizer in
our model (6.2), we compare the recovery quality of solutions given by
the graph-regularized tensor completion model with two graph-agnostic
tensor completion models.

2. To validate the effectiveness and efficiency of the proposed methods Al-
gorithm 6.1.2 and Algorithm 6.1.5 when applied to solving model 6.2, we
compare with other baseline methods on both synthetic data and real
data.

In our experiments, we evaluate the quality of a tensor approximation with
the following error functions, for a given index set Ω′ that contains only the
known entries of T ?: (i) the relative error (RE) of the tensor candidate T =
JU (1), · · · ,U (k)K against T ? on Ω′ in the Frobenius norm, and (ii) the root mean
squared error (RMSE) of T restricted on Ω′. The training and test RMSEs
refer to the RMSE on the training and test set respectively.

Initialization We initialize both our proposed methods and other methods
with a point U0 ∈ Rm1×R × Rm2×R × Rm3×R where each factor matrix U (i)

0 is
a Gaussian matrix such that [U

(i)
0 ]jr ∼ N (0, 1).

Experimental methodology Based on a ground truth tensor T ∈ Rm1×m2×m3

and for a fixed sampling rate ρ, we generateNtest training instances (Ω`)`=1,...,Ntest

under the same sampling rate ρ. For each training instance (T , Ω`), Ninit initial
points (U0,(`,j)), for j = 1, ..,Ninit, are generated. Let T̂ (U0,(`,j); Ω`) denote the
solution of the j-th test based on the training instance (T , Ω`) with the initial
point U0,(`,j), and E(T̂ ) the error (e.g., RE, RMSE) of the candidate tensor T̂
w.r.t. T . Then each method is evaluated by the following score

Err =
1

NtestNinit

Ntest∑
`=1

Ninit∑
j=1

E(T̂ (U0,(`,j)); Ω`). (6.30)

In all experiments we select Ntest = 5 and Ninit = 10.

Parameter selection In all experiments, the problem-related parameters
(λi,λL) in (6.2)–(6.3) are generated randomly with the uniform distribution in
the log scale. Then the parameter is chosen among all generated parameter
settings through K-fold cross validation (for K = 3).

3https://gitlab.com/ricky7guanyu/tensor-completion-with-regularization-term.

https://gitlab.com/ricky7guanyu/tensor-completion-with-regularization-term
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6.3.1 Graph-regularized and graph-agnostic tensor com-
pletion models

In this subsection, we conduct tests to compare the graph-regularized tensor
completion model with graph-agnostic models. Hereafter, we refer to our graph-
regularized tensor completion model (6.2) as GReg-TC, when λi and λL are
nonzero. The model (6.2) is referred to as NuclReg-TC when the problem
parameter for the graph Laplacian-based regularization term is reduced to zero,
i.e., λL = 0, but the other regularizers are kept active (λi nonzero). The
model (6.2) is referred to as unreg-TC when all regularization parameters are
reduced to zero, i.e., λi = λL = 0.

In the experiments of this subsection, the stopping criteria consist of (i) a
large iteration budget parameter Tmax; and (ii) a global tolerance parameter ε
for (6.13).

Experiment on synthetic data with graph information

As our model (6.2) has a graph regularizer term, it is tempting to generate a
synthetic low rank tensor T that features some graph information inside.

Here is how we construct such a synthetic tensor. First, we generate
the graph Laplacian matrix Lap(1) ∈ R100×100 of U (1) which exhibits row-
wise similarities by the prototypical graph model "Community" using GSP-
box [PPS+14]. Let Lap(1) = Ū Λ̄ŪT be the eigenvalue value decomposition of
a given graph Laplacian matrix. We consider the following tensor model,

T = JÃU (1),U (2),U (3)K + E , (6.31)

where Ã = Ū Λ̄−1 and (U (1),U (2),U (3)) ∈ Rmi×R are random matrices whose
columns are i.i.d. Gaussian vectors. The tensor E contains additive noise such
that E`1`2`3 ∼ N (0,σ), where σ is set according to a given signal-to-noise ratio
(SNR). In this experiment, we set SNR to 20 dB. The graph information is
incorporated in the tensor model as follows. By construction, the first factor
matrix belongs to an eigensubspace of a given graph Laplacian matrix with a
prescribed order of “preferences” for each of the eigenvectors (here the prefer-
ences are given by (1/λ̄i)i=1,...,R). Here, the model enables building a tensor
where the entries along the first dimension exhibit pairwise similarities accord-
ing to the connections of the given graph. This model can be seen in the related
work on graph-based regularization for matrix completion [RYRD15, DAG20].

We test the tensor completion performances on the synthetic tensor (6.31),
for R = 10. The sample rates (SR) tested are {0.3%, 0.5%, 0.7%, 1%} and the
rank parameter R is set to 10 for all the models tested. The average relative
error (RE) are given in Table 6.1. Figure 6.1 shows the histogram of the relative
errors for SR = 0.3%. We see that on this experiment, our GReg-TC model
outperforms both other models, for both tested methods.
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Table 6.1: Average recovery accuracies (relative error) of the three models on synthetic data:
GReg-TC (with graph Laplacian), NuclReg-TC (without graph Laplacian), unreg-TC
(no regularizer).

Sample Ratio Algorithm GReg-TC NuclReg-TC unreg-TC
AltMin-CG 0.8198 1.0083 7.1110

0.3% ADMM 0.8246 1.0054 4.4393
AltMin-CG 0.4418 0.9201 9.9010

0.5% ADMM 0.4486 0.9236 7.6692
AltMin-CG 0.3106 0.7561 9.9548

0.7% ADMM 0.3000 0.7487 8.4821
AltMin-CG 0.1380 0.4772 13.5740

1% ADMM 0.1439 0.4513 10.9230
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Figure 6.1: Recovery accuracies of the three tensor completion models on synthetic data.
The sampling rate SR = 0.3%.
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Experiments on real data

Next, we consider experimenting from two real-world datasets. An essential
difference between these experiments and the experiments on synthetic data is
that there is no ground-truth similarity graphs associated with the data tensor.
While we assume that real life data often present pairwise similarities between
its entries, we need to build the graph Laplacians Lap(i).

MovieLens. We now evaluate the models on a movie rating dataset called
MovieLens dataset 100k,4 which consists of 100, 000 movie ratings from 943
users on 1682 movies during a seven-month period from September 19th, 1997
through April 22nd, 1998. Each movie rating in this dataset has a time stamp.
Therefore, we obtain a tensor T of size 943× 1682× 7 (i.e., time period is split
into 7 parts). We randomly select 80% of the known ratings as training set.

In this experiment, we construct a movie-wise similarity graph based on
the data matrix itself (with missing entries). Let M? denote the Movie-
Lens data matrix with missing entries. We compute the graph proximity
parameters based on a low-rank approximation of the partially revealed ma-
trix. More precisely, we use a rank-r approximation of the zero-filled ma-
trix M0 := PΩ(M?) ∈ Rm×n as the features for constructing the graph. Let
(U0,S0,V0) denote the r-SVD of M0 and let M̃0 := U0S0V

T
0 .

Next, the computation of the graph edge weight parameters based on the
given matrix M := M̃0 can be realized using various node proximity meth-
ods such as K-Nearest Neighbors (K-NN) and ε-graph models [Cha83, BN03,
HN04, CGS09], which boil down to computing a certain distance matrix be-
tween the rows (resp. columns) ofM . Let Zr(M) ∈ Rm×m denote the row-wise
distance matrix of M defined as Zij(M) = d(Mi,:,Mj,:), for i, j ∈ [[m]], where
d : Rn × Rn 7→ R+ is a distance on the n-dimensional vector space. Subse-
quently, we build a Gaussian ε-graph by computing the node proximity weights
as follows

[Wε(M)]ij = exp
(
−Zij(M)/ε2

)
, for i, j ∈ [[m]], (6.32)

where ε ∈ R is a hyperparameter of the graph model. Furthermore, a sparse
graph adjacency matrix is preferable to a dense one from a computational
point of view, as the per-iteration cost of the proposed algorithms (e.g. Algo-
rithm 6.1.2) depends partly on nnz(Lr) and nnz(Lc). For simplicity, we sparsify
the graph adjacency matrix defined in (6.32) with the following thresholding
operation

[Wε,σ(M)]ij = 1≥σ
(
exp

(
−Zij(M)/ε2

))
, for i, j ∈ [[m]], (6.33)

where 1≥σ is the hard threshold function 1≥σ(z) =

{
z if z ≥ σ
0 otherwise.

In the graph model (6.33), parameter ε is tuned according to the variance

4https://grouplens.org/datasets/movielens/100k/
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Table 6.2: RE of the three models on the MovieLens dataset: GReg-TC (with graph Lapla-
cian), NuclReg-TC (without graph Laplacian), unreg-TC (no regularizer).

Method GReg-TC NuclReg-TC unreg-TC
AltMin-CG 0.2233 0.2233 1.4526
ADMM 0.2193 0.2234 1.1205

of (Zij)i,j=1,..,m and threshold σ is chosen according to a preset sparsity level
s� 1 for the edge set associated with Wε,σ such that |E(Wε,σ)|/m2 ≤ s.

Given the graphs described above, we test the tensor completion perfor-
mances using a rank parameter R = 10. The results are obtained after 50
repeated tests with random initialization; see Table 6.2, while the histogram of
these results is presented in Figure 6.2. These results show that the solutions
to the graph-regularized model (6.2) (labeled GReg-TC) and NuclReg-TC
model have better recovery performance (in terms of RMSE) than unreg-
TC model. The gain of recovery performance induced by the graph learned
from the data may be considered marginal; however, on movie rating data, it
is notoriously difficult to improve the RMSE score much beyond basic meth-
ods [BL+07].
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Figure 6.2: Recovery accuracies (relative error) of the three tensor completion models on the
MovieLens dataset.

The FIA dataset. In this experiment, we use the “rank-deficient spectral
FIA dataset”.5 This dataset consists of results of flow injection analysis on 12
different chemical substances. The represented tensor is of size 12(substances)×
100(wavelengths) × 89(reaction times). We construct the adjacency matrices
following the ideas in [NHTK12, Section 4.1]. For 12 chemical substances, we
build the adjacency matrix between two substances as the inverse of Euclidean
distance between their feature vectors. For wavelengths and reaction times, the
adjacency matrices are built using the simple chain graph model since these
quantities varies in a smooth manner in their respective domains of definition.

5http://www.models.life.ku.dk/datasets
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Table 6.3: RE of the three models on the FIA dataset: GReg-TC (with graph Laplacian),
NuclReg-TC (without graph Laplacian), unreg-TC (no regularizer).

Sample Ratio Algorithm GReg-TC NuclReg-TC unreg-TC
AltMin-CG 0.1012 1.1096 6.6597

1% ADMM 0.2396 1.1385 1.5985
AltMin-CG 0.0146 0.3470 3.9619

5% ADMM 0.0209 0.2131 0.2131
AltMin-CG 0.0126 0.2087 0.3837

7% ADMM 0.0180 0.0572 0.0572

The sample ratio varies the fraction of observed entries as 1%, 5% and 7%.
We present in Table 6.3 average results after running 50 times; the histogram
for SR = 1% is shown in Figure 6.3. Similar to the comparative results on
synthetic data, these results show that the solutions of the GReg-TC model
have smaller recovery errors compared to those of the other two models.
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Figure 6.3: Recovery accuracies (relative error) of the three tensor completion models on the
FIA dataset. The sampling rate SR = 1%.

Results and observations. The results in Tables 6.1–6.3 show that the
solutions of the graph-regularized model (6.2) (labeled by GReg-TC) have
smaller recovery errors than those of the two graph-agnostic models, NuclReg-
TC and unreg-TC. This observation is encouraging since it indicates that
incorporating graph auxiliary information in the tensor completion model leads
to more robust recovery results, especially when the proportion (sampling rate)
of the revealed entries is very low.

The graph Laplacians in synthetic data are comparably easy to build using
the synthetic data itself, which always has the ground truth. In comparison,
for real data, we need to explore and construct the adjacency matrix from the
observed data, which is only a small portion of the data. Moreover, sometimes
the data itself is not well collected. Notice that in the MovieLens experiment,
we build the graph Laplacians only in user mode without metadata about the
background information of users. Therefore, the GReg-TC and NuclReg-
TC models perform relatively similar, and both demonstrate lower relative
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errors. With the increase of the sample ratio, the effect of graph Laplacians is
getting weaker as shown in Table 6.3.

Moreover, from histograms, we find that the proposed GReg-TC model
and NuclReg-TC model display better consistency than the unreg-TC model,
as the results of 50 runs are quite close, implying that the proposed model is
more robust on predicting the missing data. The last values of log(RE) in the
GReg-TC model always stay at the same bar or at the adjacent bar, and are
located left of those of the NuclReg-TC model and unreg-TC model.

6.3.2 Time efficiency comparisons

In this subsection, we focus on evaluating the time efficiency of our proposed al-
gorithms under the same experimental settings described in the last subsection.
In each of the following experiments, iteration information for our proposed al-
gorithms is recorded. At each iteration, the recovery quality of the current
iterate is evaluated in terms of the RMSE on test entries.

Besides our proposed algorithms, a representative selection of state-of-art
methods are also tested, based on their codes that are publicly available or made
available to us: (i) INDAFAC is a damped Gauss-Newton method proposed by
Tomasi and Bro [TB05] for solving the following tensor completion model

min
T ,U
‖T(1) − U (1)(U (3) � U (2))

T‖2F s.t PΩ(T − Z) = 0,

where Z is only known on Ω; (ii) CP-WOPT [ADKM11] is an algorithm for
solving the CPD-based problem minU ‖PΩ(JU (1),U (2),U (3)K − T ?)‖2F and is
available in the Tensor Toolbox [BK+12]; (iii) BPTF is a Bayesian probabilistic
tensor CPD algorithm [XCH+10] and solves a regularized problem

min
U
‖PΩ(JU (1),U (2),U (3)K− T ?)‖2F + ψ(U)

where the regularizer ψ is composed of Frobenius norms of the factors of U
and a `2 norm-based function imposing columnwise smoothness of U (3); (iv)
TFAI [NHTK12] is an algorithm for tensor completion with auxiliary informa-
tion. We adopt the within-mode auxiliary information method with the graph
Laplacians shown as

min
T ,U
‖T − JU (1),U (2),U (3)K‖2F + ψ(U) s.t PΩ(T ) = PΩ(T ?),

where ψ is a graph Laplacian-based regularizer as in (6.2); (v) TNCP [LSJ+14]
is an ADMM algorithm for solving the following matrix trace-norm regularized
problem

min
T ,U

λ

2
‖T − JU (1),U (2),U (3)K‖2F +

3∑
i=1

αi‖U (i)‖∗ s.t PΩ(T ) = PΩ(T ?);



153 6.3. EXPERIMENTS

and (vi) AirCP [GCZS16] is an ADMM algorithm for solving the CP-based
tensor completion using auxilary graph information

min
T ,U ,X

λ

2
‖T −JU (1),U (2),U (3)K‖2F+ψ(U ,X) s.t PΩ(T ) = PΩ(T ?),U (i) = X(i),

ψ(U ,X) is composed of the sum of Frobenius norms of U (i) and the graph
Laplacian-based norms of X(i).

Remark 6.3.1. The parameters involved in the models of TFAI, TNCP and
AirCP are chosen after cross validation.
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Figure 6.4: Iterative results of the tested algorithms on synthetic data: RMSE on training
and test sets by accumulative time per-iteration. The sampling rates tested are 0.3% and
0.5%.

Tests on synthetic data. Under the same experimental settings as for Ta-
ble 6.1, the RMSEs of the iterates given by the tested methods are shown in
Figure 6.4. The iterative results in the figures are taken from one test ran-
domly chosen from the repeated tests. Figure 6.4 shows the results under
the sampling rates SR = 0.3% and 0.5%, in which we observe that proposed
algorithms, AltMin-CG and ADMM, have a better time efficiency than the
rest of the tested methods. Detailed observations on these results are given in
Section 6.3.2.
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Tests on the MovieLens dataset. Under the same experimental settings
on the MovieLens dataset and with the same graph construction method as in
the previous subsection, we show the RMSEs of the iterates given by the tested
methods in Figure 6.5. The iterative results in the figure are taken from one
test randomly chosen from the repeated tests. In particular, the labels “AltMin-
CG1” and “ADMM1” represent the results of these algorithms under the graph-
agnostic, nuclear norm-based model (NuclReg-TC). The results therein shows
that the AltMin-CG and ADMM methods remain competitive on this dataset,
in particular their time efficiency is comparable to AirCP.

Time(seconds)
0 5 10 15 20

tr
a

in
 R

M
S

E

1

1.5

2

2.5

3

3.5

4

4.5 AltMin-CG
ADMM
AltMin-CG1
ADMM1
WOPT
BPTF
TFAI
AirCP
TNCP

Time(seconds)
0 5 10 15 20

te
s
t 

R
M

S
E

1

1.5

2

2.5

3

3.5

4

4.5 AltMin-CG
ADMM
AltMin-CG1
ADMM1
WOPT
BPTF
TFAI
AirCP
TNCP

Figure 6.5: Iterative results of the tested algorithms on the MovieLens dataset: RMSE on
training and test sets by accumulative time per-iteration.
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Figure 6.6: Iterative results of the tested algorithms on the FIA dataset: RMSE on training
and test sets by accumulative time per-iteration.
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Tests on the FIA dataset. Under the same experimental settings on the
FIA dataset and with the same graph construction method as in the previous
subsection, we show the RMSEs of the iterates given by the tested methods
in Figure 6.6. The iterative results in the figure are taken from one test ran-
domly chosen from the repeated tests. These results show that the proposed
algorithms AltMin-CG and ADMM yield the best recovery performances (in
terms of test RMSE).

Results and observations

From Figure 6.4, we observe that most of the methods perform comparably in
time efficiency. In particular, the proposed AltMin-CG and ADMM methods,
followed by AirCP, TFAI, TNCP, are the fastest in terms of training RMSE.
Also, AltMin-CG and ADMM achieve the lowest test RMSEs, under low sam-
pling rates. This result is encouraging since it shows that our methods and
model for tensor completion can achieve robust recovery where only a small
fraction of data is available.

For real data in Figure 6.5, AirCP, TFAI, AltMin-CG and ADMM have
comparable time efficiencies and are the fastest among all tested algorithms
in terms of training error. BPTF is slower than the aforementioned methods
but obtains the lowest test RMSE. In Figure 6.6, we also observe that the
proposed AltMin-CG and ADMM methods outperform most other methods
both in efficiency and accuracy with the given training data that correspond
to low sampling rates.

6.4 Conclusion

Built on the ideas of a nuclear norm based approach, CP decomposition and
graph Laplacian regularizers, we constructed a new low-rank tensor comple-
tion model (6.2), also motivated by results in [RYRD15] on matrix completion
with graph Laplacian. The advantage of the proposed model is twofold: (i) the
CP-based decomposition enables a memory-efficient model for low-rank tensors
and (ii) the use of the graph Laplacian-based regularizer yields completion re-
sults with higher recovery accuracy than several classical, graph-agnostic tensor
completion models. An alternating minimization (AltMin) method is proposed.
The minimization of each of the subproblems is done by a linear CG routine,
in which an efficient Hessian-vector multiplication is used. Besides, the alter-
nating directions method of multipliers (ADMM) method is also applied to
the LRTC model which shows competitive performance. Moreover, the conver-
gence analysis for the proposed AltMin algorithm is given. From the results
of various numerical experiments, we verified that the graph-regularized tensor
completion model (6.2) produces solutions with better recovery performances
compared to graph-agnostic tensor completion models. This observation is es-
pecially significant when the sample rate is small. Our proposed algorithms
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for solving the graph-regularized tensor completion problem, AltMin-CG (Al-
gorithm 6.1.2) and ADMM (Algorithm 6.1.5), have been shown to be time
efficient compared with other state-of-art methods.



Chapter 7

Riemannian preconditioned
algorithms for tensor
completion

In this chapter, we focus on the low-rank tensor decomposition approach to ten-
sor completion and develop new algorithms using Riemannian preconditioning.
This chapter is based on the paper [DGGG21].

Related work

For the tensor completion problem using the CP decomposition (CPD), Tomasi
and Bro [TB05] proposed to used the Levenberg–Marquardt (modified Gauss-
Newton) method for third-order tensors, in which the rank-R tensor candidate
is represented by the vectorization of all three factor matrices of the CPD; Acar
et al. [ADKM11] proposed to use a nonlinear conjugate gradient algorithm;
Jain et al. [JO14] proposed an alternating minimization algorithm, which uses
a special initialization by the Robust Tensor Power Method [AGH+14] allow-
ing for a guaranteed tensor recovery with a sample complexity lower bound.
The Tucker decomposition, as a closely related decomposition format, is also
widely used for tensor completion, with more or less different application pur-
poses; see [CMD+15] about the relations and differences between the Tucker
and the CP decompositions. Kressner et al. [KSV14] exploited the Riemannian
geometry of the rank-constrained search space with the Tucker decomposition
and proposed a Riemannian conjugate gradient (RCG) algorithm for the ten-
sor completion problem. Kasai and Mishra [KM16] paid attention to the data
fitting function of tensor completion and introduced a preconditioned metric
on the quotient space of the rank-constrained search space with the Tucker
decomposition; they used a Riemannian conjugate gradient algorithm with re-
spect to the proposed metric. Vervliet and De Lathauwer [VD19] developed

157



CHAPTER 7. RIEMANNIAN PRECONDITIONED ALGORITHMS FOR
TENSOR COMPLETION 158

efficient algorithms using the Gauss-Newton method for CPD-based data fu-
sion problems, which also include problems with missing entries. We refer
to [SVBD13, SVBD15, SD19] for more recent works about CP decomposition
with fully observed or missing entries.

For a m1 × · · · ×mk tensor that is only partially observed, low-rank ten-
sor completion using CP decomposition can be modeled by approximating the
given partially observed tensor with a rank-R tensor candidate in the CP de-
composition form T = JU (1), . . . ,U (k)K, where U (i) are mi × R matrices with
full column-rank and JU (1), . . . ,U (k)K denotes the product of the CP decom-
position, which is the sum of the outer products of the respective columns of
U (i). In such problem formulations, the CP decomposition not only provides
a powerful data representation, but also has an advantageously low memory
requirement—which scales as O((m1 + · · · + mk)R) for a given CP rank R—
compared to other types of models (e.g., [LMWY12]) that involve otherwise a
full dense tensor variable (requiring O(m1m2 . . .mk) memory). However, the
fixed-rank CP decomposition, as well as other tensor decomposition models
with a fixed-rank, requires the choice of an appropriate rank value. Since an
optimal rank choice is usually unknown in practice, fixing the tensor rank in the
CP decomposition-based (as well as Tucker-based) approaches is not an ideal
strategy. Unfortunately, the search or estimation of the optimal rank is also
hard [Kru89]. Therefore, the approach with a fixed CP rank limits the appli-
cability of the completion model, and it is natural to study CP decompositions
with a rank upper bound (e.g., [LSC+14]). For example, a rank-increasing
approach is used (e.g., [YZC16]) during the optimization process for the explo-
ration of an optimal rank.

Contributions and organization of the chapter
In this chapter, we consider the tensor completion problem by modeling low-
rank tensors using the polyadic decomposition (PD). More precisely, the kth-
order tensor variable is represented by k factor matrices via polyadic decom-
position. Thus, we formulate the tensor completion problem as follows,

minimize
U :=(U(1),...,U(k))∈M

1

2
‖PΩ(JU (1), . . . ,U (k)K− T ?)‖2F + ψ(U), (7.1)

where JU (1), ...,U (k)K denotes the product defined in Definition 2.4.10, T ? is
the partially observed tensor, Ω is an index set indicating the observed entries
of T ?, PΩ denotes the orthogonal projector such that the (i1, . . . , ik)-th entry
of PΩ(Z) is equal to Zi1,...,ik if (i1, . . . , ik) ∈ Ω and zero otherwise, and the
search spaceM is a product space defined as

M = Rm1×R × · · · × Rmk×R (7.2)

with a rank parameter R, and ψ :M 7→ R is a regularization function.
Note that the search space of (7.1) includes points such that the actual
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CP rank of the product JU (1), . . . ,U (k)K is smaller than the rank parameter
R. Hence, the PD representation of the tensor candidate by U ∈ M is not
necessarily canonical. In the context of low-rank tensor completion, the op-
timal rank of the tensor candidate is unknown, and thus, it is important to
choose appropriate parameters of the low-rank model in question. One of the
approaches (using low-rank tensor decomposition) in previous work is to ex-
plore and adjust the rank parameter R sequentially [YZC16]. In the case of
the model using the Tucker decomposition with a fixed Tucker rank [KM16],
the most natural way to choosing the Tucker rank is to explore among a range
of (k-dimensional) trials.

In this work, we are interested in choosing large enough rank parameters
(while maintaining it in the range of values that are much lower than the tensor
dimensions) for the model (7.1). To alleviate issues where R is overestimated
compared to the rank of the desired solution, we design algorithms that tolerate
rank-deficient factor matrices (or almost rank-deficient, with close-to-zero tail-
ing singular values). The proposed algorithms are shown in numerical results
to be able to reach optimal solutions to (7.1), given a large enough value of R,
and thus, avoid lengthy sequential rank explorations.

The main contributions of this chapter are as follows. We design a precondi-
tioned metric on the search spaceM of the polyadic decomposition model (7.1)
and propose Riemannian gradient descent (RGD) and Riemannian conjugate
gradient (RCG) algorithms to solve the tensor completion problem.

We prove that the sequence of iterates generated by the RGD algorithm
converges to a critical point of the objective function and provide estimates of
the convergence rate using the Łojasiewicz property.

We test on synthetic data for recovering a partially observed tensor with
and without additive noise. The numerical results show that our algorithms
outperform the several existing algorithms. On the real-world dataset (Movie-
Lens 1M), we find that the proposed algorithms are also faster than the other
algorithms under various rank choices. Moreover, the tensor recovery perfor-
mance of our algorithms is not sensitive to the choice of the rank parameter,
in contrast to algorithms based on a fixed-rank model.

Organization. We give the definitions and notation for the tensor operations
and state the main problem in Section 7.1. The proposed algorithms and
convergence analysis are presented in Sections 7.2–7.3. Numerical results are
reported in Section 7.4. We conclude the chapter in Section 7.5.

7.1 Problem statement and notation

In this section, we introduce the main problem (7.1). The definitions and
notation involved in the tensor operations are given in Section 2.4.

In addition, for a strictly positive integer n, we denote the index set {1, . . . ,n}
as [[n]]. The set of n-dimensional real-valued vectors is denoted by Rn. For
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` ∈ [[n]], we denote by e` the (n-dimensional) vector that indicates 1 in the
`-th entry: [e`]` = 1 and [e`]j = 0 for all j 6= `. The set of kth-order
real-valued tensors is denoted by Rm1×···×mk . The i-th row and the j-th
column of a matrix A are denoted by Ai,: and A:,j respectively. An en-
try of a real-valued kth-order tensor Z ∈ Rm1×···×mk is accessed via an k-
dimensional index [`j ]j=1,...,k, with `j ∈ [[mj ]], and is denoted as Z`1,...,`k .
The inner product of two tensors Z(1),Z(2) ∈ Rm1×···×mk is defined as fol-
lows

〈
Z(1),Z(2)

〉
=
∑m1

i1=1 · · ·
∑mk

ik=1Z
(1)
i1,...,ik

Z(2)
i1,...,ik

. The Frobenius norm of a
tensor Z is defined as ‖Z‖F =

√
〈Z,Z〉.

A point in the search space M = Rm1×R × · · ·Rmk×R of (7.1) is denoted
by U = (U (1), . . . ,U (k)), where U (i) ∈ Rmi×R is the i-th factor matrix of U . In
fact,M is a smooth manifold, and the tangent space toM at any point U ∈M
is TUM = Rm1×R × · · ·Rmk×R. Therefore, a tangent vector in TUM is also a
tuple of k factor matrices, denoted as ξ = (ξ(1), . . . , ξ(k)), where ξ(i) ∈ Rmi×R,
for i = 1, . . . , k. The Euclidean metric at U is defined and denoted as, for all
ξ, η ∈ TUM, 〈ξ, η〉 =

∑k
i=1 tr(ξ(i)T η(i)), where tr(·) is the trace of a matrix.

Let M be endowed with a Riemannian metric g, then the Riemannian
gradient of a real-valued smooth function f at U ∈M, denoted as gradf(U), is
the unique element in TUM that satisfies, for all ξ ∈ TUM, gU (gradf(U), ξ) =
Df(U)[ξ], where Df(U) denotes the first-order differential of f at U .

Problem statement

By setting the regularizer as ψ(U) = λ
2

∑k
i=1 ‖U (i)‖2F, in a similar way as

in Maximum-margin Matrix Factorization [SRJ05], we specify the polyadic
decomposition-based model (7.1) as follows,

minimize
U∈M=Rm1×R×···Rmk×R

f(U) := fΩ(U) +
λ

2

k∑
i=1

‖U (i)‖2F, (7.3)

where the first term fΩ(U) := 1
2p‖PΩ(JU (1), · · · ,U (k)K−T ?)‖2F is referred to as

the data fitting function of the problem, and p = |Ω|/(m1 · · ·mk) is a constant
called the sampling rate. Note that when the regularization parameter λ > 0,
the regularizer ψ has an effect of keeping the variable U in a compact subset
ofM.

7.2 Algorithms

In this section, we propose a new metric on the manifold M = Rm1×R ×
· · ·Rmk×R. Under the proposed metric, we develop Riemannian gradient de-
scent and Riemannian conjugate gradient algorithms onM.
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7.2.1 A preconditioned metric

The Riemannian preconditioned algorithms in [MAS12, KM16] on the product
space of full-column rank matrices were proposed to improve the Euclidean
gradient descent method. In these algorithms, a Riemannian metric was de-
fined on the search space according to the differential properties of the cost
function. Specifically, it is designed based on an operator that approximates
the “diagonal blocks” of the second-order differential of the cost function. The
chosen metric plays a role of preconditioning in the optimization algorithms
such as Riemannian gradient descent. We refer to [MS16] for a more general
view on this topic of Riemannian preconditioning.

Starting from the idea of Riemannian preconditioning, we design a metric
for the polyadic decomposition-based problem (7.1), in which the rank con-
straints are more relaxed than the fixed Tucker-rank constraint in [KM16].
First, we construct an operator H(U) using the “diagonal blocks” of the second-
order differential of the data fitting function fΩ in (7.3). Roughly speaking,
such an operator satisfies

〈H(U)[ξ], η〉 ≈ ∇2fΩ(U)[ξ, η], (7.4)

for all ξ, η ∈ TUM, where ∇2fΩ(U) denotes the second-order differential of
fΩ, and 〈·, ·〉 is the Euclidean metric. Then, we design a metric that behaves
locally like (ξ, η) 7→ 〈H(U)[ξ], η〉. Assume that the operator H(U) is invertible
and that g̃ : (ξ, η) 7→ 〈H(U)[ξ], η〉 forms a Riemannian metric onM, then the
Riemannian gradient grad[fΩ](U) satisfies, by definition, g̃U (grad[fΩ](U), ξ) =
DfΩ(U)[ξ] = 〈∇fΩ(U), ξ〉 for all ξ ∈ TUM, where ∇fΩ(U) denotes the Eu-
clidean gradient of fΩ. Hence, grad[fΩ](U) = H(U)

−1
[∇fΩ(U)]. In view of

H(U) as in (7.4), grad[fΩ](U) is an approximation of the Newton direction of
fΩ, which results in a much improved convergence behavior than the Euclidean
gradient descent.

The main problematic in designing such a metric using H(U) as in (7.4) is
two-fold: (i) we need to find an appropriate approximation to the second-order
differential ∇2fΩ(U) and (ii) the sought operator H(U) : TUM 7→ TUM may
not be invertible. Concretely, we address these two problematics as follows.

First, we deduce the second-order partial derivatives of fΩ. Let U be a
point in M. The gradient of fΩ at U ∈ M under the Euclidean metric is a
vector in TUM as follows:

∇fΩ(U) = (∂U(1)fΩ(U), . . . , ∂U(k)fΩ(U)), (7.5)

where the partial derivatives have the following element-wise expression, for
i = 1, . . . , k,

[∂U(i)fΩ(U)]`,r :=
d

dt
fΩ(U (1), . . . ,U (i) + tE`,r, . . . ,U

(k))

∣∣∣∣
t=0

, (7.6)
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where E`,r = e`e
T
r . The right-hand side of (7.4) can be written in terms of the

following second-order partial derivatives,

∇2fΩ(U)[ξ, η] :=

k∑
i=1

〈∂2
iifΩ(U)[ξ], η〉+

k∑
i=1,j′ 6=i

〈∂2
ij′fΩ(U)[ξ], η〉 ,

where

∂2
ijfΩ(U)[ξ] :=

d

dt

(
∂U(i)fΩ(U (1), . . . ,U (j) + tξ(j), . . . ,U (k))

)∣∣∣∣
t=0

(7.7)

for i, j = 1, . . . , k. Subsequently, we construct H(U) as an operator on TUM
based on the action of the aforementioned “diagonal blocks” of ∇2fΩ(U), i.e.,
∂2
iifΩ(U)[ξ] for i = 1, . . . , k. More accurately, to design a metric that works for

all tensor completion problems with a certain subsampling pattern Ω, we use
the expectation of these terms over the subsampling operator. Therefore, we
define H(U) : TUM 7→ TUM as follows,

H(U)[ξ] =
(
EΩ

[
∂2

11fΩ(U)[ξ]
]

, . . . ,EΩ

[
∂2
kkfΩ(U)[ξ]

])
. (7.8)

Given the polyadic decomposition-based data fitting function fΩ in (7.3),
fΩ can be rewritten in terms of U (i) and (U (j))�j 6=i through the mode-i tensor

matricizations (2.24): fΩ(U) = 1
2p

∥∥∥PΩ(i)

(
U (i)((U (j))�j 6=i)T − T ?(i)

)∥∥∥2

F
, where

Ω(i) is the mode-i matricization of Ω. Therefore, from (7.6), the first-order
derivatives have the following expression,

∂U(i)fΩ(U) =
1

p
S(i)(U

(j))�j 6=i , (7.9)

where S(i) is the mode-i matricization of the residual tensor

S := PΩ

(
JU (1), · · · ,U (k)K− T ?

)
. (7.10)

Combining (7.7) and (7.9), it follows that

∂2
iifΩ(U)[ξ] =

1

p
PΩ(i)

(
ξ(i)((U (j))�j 6=i)T

)
(U (j))�j 6=i . (7.11)

Let Ω be a random index set of entries that are i.i.d. samples of the Bernoulli
distribution: (i1, . . . , ik) ∈ Ω, with probability p, for (i1, . . . , ik) ∈ [[m1]] ×
· · · × [[mk]]. Then by taking the expectation over the index set Ω, (7.11) has
the following approximation EΩ

[
∂2
iifΩ(U)[ξ]

]
= ξ(i)((U (j))�j 6=i)T (U (j))�j 6=i .
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Therefore, the operator H(U) as defined in (7.8) reads

H(U)[ξ] =
(
ξ(1)(U (j))�j 6=1)T (U (j))�j 6=1 , . . . , ξ(k)(U (j))�j 6=k)T (U (j))�j 6=k

)
.

(7.12)
The second problematic is that the operator H(U) in (7.12) may not be in-

vertible, since theR-by-R symmetric matrices in the form of ((U (j))�j 6=i)T (U (j))�j 6=i

are not necessarily positive definite. To this end, we propose to regularizeH(U)
with the identity operator on TUM. This is done by shifting the aforementioned
matrices by adding a constant diagonal matrix δIR, where IR denotes the R-
by-R identity matrix and δ > 0 is a relatively small parameter. Consequently,
we define the following inner product.

Definition 7.2.1. Given U = (U (1), . . . ,U (k)) ∈M, let gU be an inner product
in TUM as follows,

gU (ξ, η) =

k∑
i=1

tr
(
ξ(i)Hi,U (η(i))T

)
, for ξ, η ∈ TUM, (7.13)

where Hi,U is a R-by-R matrix defined as

Hi,U = ((U (j))�j 6=i)T (U (j))�j 6=i + δIR (7.14)

and δ > 0 is a constant parameter.

Note that Hi,U is positive definite even when there is a rank-deficient fac-
tor matrix among {U (i)}. Moreover, g is smooth on M, and is therefore a
Riemannian metric.

Now, we consider M as a manifold endowed with the Riemannian met-
ric (7.13). The associated norm of a tangent vector ξ ∈ TUM is defined and
denoted by ‖ξ‖U =

√
gU (ξ, ξ). Based on the Euclidean gradient of f in (7.5),

the Riemannian gradient of f is, by definition,

gradf(U) =
(
∂U(1)f(U)H−1

1,U , · · · , ∂U(k)f(U)H−1
k,U

)
. (7.15)

As mentioned in the beginning of this subsection, the Riemannian gradient (7.15)
can be seen as the result of preconditioning of the Euclidean gradient ∇f(U)
with the operator H(U) (upto a “rescaling” with δIR). We refer to the new
metric (7.13) as the preconditioned metric onM.

7.2.2 The Riemannian preconditioned algorithms

With the gradient defined in (7.15) using Riemannian preconditioning, we
adapt Riemannian gradient descent and Riemannian conjugate gradient al-
gorithms (e.g., [AMS08]) to solve the problem (7.3).

The Riemannian gradient algorithm is given in Algorithm 7.2.1, which con-
sists mainly of setting the descent direction as the negative Riemannian gra-
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Algorithm 7.2.1 Riemannian Gradient Descent (RGD)

Input: f :M 7→ R, x0 ∈M, tolerance ε > 0; t = 0.
Output: xt.
1: while ‖gradf(xt)‖ > ε do
2: Set ηt = −gradf(xt). # See (7.15)
3: Set stepsize st through one of the rules (7.16), (7.17) or (7.18).
4: Update: xt+1 = xt + stηt; t← t+ 1.
5: end while

dient and selecting the stepsizes. Note that since the search space is M =
Rm1×R × · · ·Rmk×R, the retraction map in this algorithm (line 4) is chosen
as the identity map. In line 3, given an iterate xt ∈ M and ηt ∈ Txt

M, the
stepsize st is chosen by one of the following three methods.

Stepsize by line minimization. The line minimization consists in comput-
ing a stepsize as follows,

st = arg min
s>0

h(s) := f(xt + sηt). (7.16)

With third-order tensors (k = 3), the solution can be obtained numerically by
selecting from the roots of the derivative h′(s), which is a polynomial of degree
5.

Backtracking line search with the Armijo condition. We first set up
a trial stepsize s0

t using the classical strategy [NW06, §3.4]: (i) when t ≤ 1,
s0
t = 1, (ii) when t ≥ 2, s0

t = 2(f(xt−1) − f(xt−2))/gxt−1
(ηt−1, gradf(xt−1));

then the stepsize st is returned by a backtracking procedure, i.e., finding the
smallest integer ` ≥ 0 such that

f(xt)− f (xt + stηt) ≥ σstgxt
(−gradf(xt), ηt), (7.17)

for st := max(s0
tβ

`, smin) with a constant parameter smin > 0. The backtrack-
ing parameters are fixed with σ,β ∈ (0, 1).

The Barzilai–Borwein (BB) stepsize. Recently, the Riemannian Barzilai–
Borwein (RBB) stepsize [IP18] has proven to be an efficient stepsize rule for
Riemannian gradient methods. Hence, we choose the stepsize as

sRBB1
t :=

‖zt−1‖2xt

|gxt(zt−1, yt−1)| , or sRBB2
t :=

|gxt
(zt−1, yt−1)|
‖yt−1‖2xt

, (7.18)

where zt−1 = xt − xt−1 and yt−1 = gradf(xt)− gradf(xt−1).
The Riemannian conjugate gradient algorithm is similar to RGD (Algo-

rithm 7.2.1) in terms of the stepsize selection (line 3) and the update step (line
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4). The RCG algorithm differs with RGD in the choice of the search direction
(line 2). More specifically, the search direction of RCG is defined as

ηt = −gradf(xt) + βtηt−1,

where βt is the CG parameter. In the numerical experiments, we choose the
Riemannian version [BMAS14] of the modified Hestenes–Stiefel rule [HS52]
(HS+) as follows,

βt = max

(
0,

gxt
(ξt − ξt−1, ξt)

gxt(ξt − ξt−1, ηt−1)

)
.

The vector transport operation involved in the computation of βt is chosen to
be the identity map.

In both algorithms, the cost for calculating the Riemannian gradient (7.15)
is a dominant term of the total cost. Therefore, we propose an efficient method
for evaluating the Riemannian gradient in the next section.

7.2.3 Computation of the gradient
We focus on the computation of the Riemannian gradient of f in (7.3). From
the definition (7.15), the computation of gradf(U) = (η(1), . . . , η(k)) consists
of two parts: (i) computing the partial derivatives Di := ∂U(i)f(U) ∈ Rmi×R

and (ii) computing the matrix multiplications η(i) = DiH
−1
i,U . From the expres-

sions (7.9) and (7.14), we have

Di =
1

p
S(i)(U

(j))�j 6=i︸ ︷︷ ︸
D̃i

+λU (i), (7.19)

η(i) = Di(((U
(j))�j 6=i)T (U (j))�j 6=i + δIR︸ ︷︷ ︸

Hi,U

)−1. (7.20)

In a straightforward manner, these two parts require mainly the following op-
erations:

1. Computing the sparse tensor S as in (7.10), which requires 2|Ω|R flops;

2. Computing (U (j))�j 6=i for i = 1, . . . , k, which requires 2
∑k
i=1m−iR flops,

where m−i :=
∏
j 6=imj ;

3. Forming the sparse matricizations S(i) for i = 1, . . . , k, which takes some
extra time for input/output with the sparse tensor S and the matriciza-
tions of the index set Ω.

4. Computing the sparse-dense matrix products D̃i := S(i)(U
(j))�j 6=i , for

i = 1, . . . , k, which require 2k|Ω|R flops. Then, one has access to {Di}i=1,...,k

after the matrix additions with λU (i) (whose cost is not listed out since
it is fixed regardless of the computational method).
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5. Computing the R-by-RmatrixHi,U (7.14) based on the matrix (U (j))�j 6=i

(obtained in step 2), which consists of a dense-dense matrix multiplication
of sizes R × m−i and m−i × R, for i = 1, . . . , k, which mainly requires
2
∑k
i=1m−iR

2.

6. Computing DiH
−1
i,U given Di (obtained in step 4) and Hi,U (obtained in

step 5), through Cholesky decomposition of Hi,U , for i = 1, . . . , k, which
requires

∑k
i=1 2miR

2 + CcholR
3.

The sum of the flops counted in the above list of operations is

2(k + 1)|Ω|R+ (

k∑
i=1

2m−i(R
2 +R)) + (

k∑
i=1

2miR
2 + CcholR

3). (7.21)

An efficient computational method. We propose a computational method
that avoids the matricizations of the residual tensor S and the computations
of the Khatri–Rao products (U (j))�j 6=i .

Given the residual tensor S after the step 1 above, we propose to compute
D̃i in (7.19) without passing through the steps 2 and 3. In fact, the computation
of D̃i = S(i)(U

(j))�j 6=i corresponds to the Matricized tensor times Khatri–Rao
product (MTTKRP), which is a common routine in the tensor computations.
Through basic tensor computations, the entrywise expression of this MTTKRP
does not require forming the matricizations of S explicitly. For brevity, we
demonstrate these relations concretely in the case of third-order tensors (k = 3),
knowing that their extension to higher-order tensors is straightforward. The
matrix D̃1 = S(1)(U

(j))�j 6=1 ∈ Rm1×R in (7.19) has the entrywise expression
below, [

D̃1

]
i1`

=

m2∑
i2=1

m3∑
i3=1

Si1i2i3U (3)
i3`
U

(2)
i2`

, (7.22)

for (i1, i2, i3) ∈ [[m1]] × · · · × [[m3]] and ` = 1, . . . ,R. Based on (7.22), Algo-
rithm 7.2.2 presents an efficient way to compute the MTTKRPs of (7.19), with
a sparse residual tensor S as input. Note that the computations of D̃2 and D̃3

correspond to the same equation (7.22) but with the indices (i1, i2, i3) swapped
via the rotations (1, 2, 3; 2, 3, 1) and (1, 2, 3; 3, 1, 2) respectively.

Subsequently, we propose to compute Hi,U (7.14) without large matrix mul-
tiplications. In fact, the large matrix multiplications with (U (j))�j 6=i in (7.14)
can be decomposed into smaller ones. Note that these matrix multiplications
satisfy the following identity:(

(U (j))�j 6=i

)T (
(U (j))�j 6=i

)
= Gk ? · · ·Gi+1 ? Gi−1 ? · · · ? G1, (7.23)

where Gj := U (j)TU (j) for j 6= i and the product by ? denotes the Hadamard
product. Using this property, the computation of Hi,U reduces to computing
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Algorithm 7.2.2 Sparse MTTKRP

Input: The index sets by axis IΩ := {i : (i, j, k) ∈ Ω}, JΩ and KΩ. The sparse
tensor S in the form of a |Ω|-by-1 array of observed entries {Sp = Sip,jp,kp :

(ip, jp, kp) ∈ Ω}. The factor matrices (U (i))i=1,2,3.
Output: D̃ := S(1)(U

(3) � U (2)).
1: D̃ = 0.
2: for p = 1, . . . , |Ω| do
3: for ` = 1, . . . ,R do
4: D̃ip` = D̃ip` + SpU (3)

kp`
U

(2)
jp`

.
5: end for
6: end for

Gj = U (j)TU (j), and then the entrywise multiplications between the (small)
R-by-R matrices {Gj}, which require only

∑k
i=1(2mi + k − 1)R2 flops, since

the computation of the matrices Gj cost 2
∑k
i=1miR

2 and the entrywise mul-
tiplications between Gj cost (k − 1)R2.

In summary, the operations reduce to the following steps.

a. Computing the sparse tensor S as in (7.10). This is identical to the step
1 above, which requires 2|Ω|R flops;

b. Computing D̃i := S(i)(U
(j))�j 6=i , for i = 1, . . . , k, using S (obtained in

step a) and U ; see Algorithm 7.2.2. The computational cost of this step
is 2k|Ω|R. Then, one has access to {Di}i=1,...,k after the matrix additions
with λU (i).

c. Computing theR-by-RmatrixHi,U (7.14) using U (input data); see (7.23).
The computational cost of this step is

∑k
i=1(2mi + k − 1)R2.

d. Computing DiH
−1
i,U given Di (obtained in step b) and Hi,U (obtained in

step c), through Cholesky decomposition of Hi,U , for i = 1, . . . , k. This
is identical to the step 6 above, which requires

∑k
i=1 2miR

2 + CcholR
3

flops.

Therefore, the total cost of the above steps is

2(k + 1)|Ω|R+

k∑
i=1

(4mi + k − 1)R2 + CcholR
3,

which is significantly reduced compared to the cost (7.21) of the naive method.
In particular, for third-order (or a bit higher-order) tensors (k � mi) with a low
rank parameter R, the dominant term in (7.21) is 2(k+1)|Ω|R+

∑k
i=1(2m−i+

2mi)R
2, while the dominant term in the cost of the proposed method is 2(k +

1)|Ω|R +
∑k
i=1 4miR

2. The reduction in the cost can be seen from the fact
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that mi � m−i =
∏
j 6=imj and mi � |Ω| = pm1 . . .mk. Note that on top

of the above reduction in flops, the time efficiency is further improved as the
matricizations of the residual tensor S are not needed. In particular, speedups
related to the step b (instead of steps 2–4 in the naive method) are demon-
strated in Table 7.A.1.

7.3 Convergence analysis

In this section, we analyze the convergence behavior of Algorithm 7.2.1. Let
{xt}t≥0 denote the sequence generated by this algorithm. First, we demonstrate
in Proposition 7.3.3 that every accumulation point of {xt}t≥0 is a stationary
point. Second, we analyze the iterate convergence property of the algorithm in
Theorem 7.3.5.

The following lemma generalizes the class of functions with Lipschitz-continuous
gradient to functions defined on Riemannian manifolds, and will be used in
Lemma 7.3.2.

Lemma 7.3.1 ([BAC19, Lemma 2.7]). LetM′ ⊂M be a compact Riemannian
submanifold. Let Rx : TxM′ 7→ M′. If f : M′ 7→ R has Lipschitz continuous
gradient in the convex hull of S. Then there exists L > 0 such that, for all
x ∈M′ and ξ ∈ TxM′,

|f(Rx(ξ))− (f(x) + gx(ξ, gradf(x))| ≤ L

2
‖ξ‖2x. (7.24)

Starting from the above lemma, we show that the proposed algorithm en-
sures a sufficient decrease property at each iteration.

Lemma 7.3.2. Let {xt}t≥0 be the sequence generated by Algorithm 7.2.1 (RGD),
in which the step sizes are chosen by either line minimization (7.16) or Armijo
line search (7.17). For all t ≥ 0, there exists C̄ > 0 such that

f(xt)− f(xt+1) ≥ C̄‖gradf(xt)‖2xt
. (7.25)

In particular, with the step sizes chosen by line minimization (7.16), there exists
a Lipschitz-like constant L0 > 0 such that (7.25) holds for C̄ = 1

2L0
.

Proof. Due to the fact that the objective function is coercive (because of the
Frobenius norm-based terms), the sublevel set S = {x ∈M : f(x) ≤ f(x0)} is a
closed and bounded subset ofM. Due to the boundedness of S, the convex hull
of S, denoted as S̄, is bounded. Therefore, f has Lipschitz continuous gradient
in S̄ since f ∈ C2(M). From Lemma 7.3.1, there exists a Lipschitz-like constant
L0 > 0 such that (7.24) holds. The inequality (7.24) ensures an upper bound of
f(Rx(sξ)) = f(x+sξ) as follows, f(x+sξ) ≤ f(x)+gx(sξ, gradf(x))+L0

2 ‖sξ‖2x,
for all s ≥ 0. Consequently, when the stepsize st = s∗ is selected by line
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minimization (7.16), we have

f(xt+1) = f(xt − s∗gradf(xt))

≤ min
s≥0

(
f(x)− s(1− L0s

2
)‖gradf(xt)‖2xt

)
= f(xt)− C̄‖gradf(xt)‖2xt

,

with C̄ = 1
2L0

. When the stepsize st is selected using Armijo line search, the
new iterate xt+1 = xt−stgradf(xt) is an Armijo point, where st ≥ smin > 0, by
construction of the line search procedure (with the parameter of lower bound
of stepsizes smin). Hence, through (7.17), we have

f(xt)− f(xt+1) ≥ σst‖gradf(xt)‖2xt
≥ C̄‖gradf(xt)‖2xt

,

where C̄ = σsmin > 0, with the line search parameter σ ∈ (0, 1).
In conclusion, the sufficient decrease property is satisfied with the two step-

size selection methods in the statement.

Proposition 7.3.3. The sequence {xt}t≥0 generated by Algorithm 7.2.1, with
step sizes chosen by either line minimization (7.16) or Armijo line search (7.17),
satisfies the following convergence properties: (i) Every accumulation point is
a stationary point; (ii) The algorithm needs at most

⌈
(f∗−f(x0))

C̄
1
ε2

⌉
iterations

to reach an ε-stationary solution, for a constant C̄ > 0.

Proof. (i) Let x∗ ∈ M be an accumulation point, then there exists a subse-
quence (xk(t))t≥0, where {k(t) : t ≥ 0} ⊂ N, such that limt→∞(f(xk(t)) −
f(x∗)) = 0. This entails that

∑∞
t=0 f(xk(t))− f(xk(t+1)) = f(xk(0))− f(x∗) <

∞. Applying the sufficient decrease property (7.25) of Lemma 7.3.2 to this
previous inequality, we have

∞∑
t=0

C̄‖gradf(xk(t))‖2xk(t)
≤
∞∑
t=0

f(xk(t))− f(xk(t+1)) <∞, (7.26)

for a constant C̄ > 0. Therefore, lim
t→∞

‖gradf(xk(t))‖xk(t)
= 0. (ii) Suppose

that the algorithm does not attain an ε-stationary point (a point on which the
gradient norm is bounded by ε) at iteration T −1, then ‖gradf(xt)‖ > ε, for all
0 ≤ t ≤ T−1. Using (7.25), we have f(x0)−f(xT ) ≥ C̄∑T−1

t=0 ‖gradf(xt)‖2xt
≥

C̄ε2T . Therefore T ≤ f(x0)−f(x∗)
C̄

1
ε2 .

Next, we prove the iterate convergence of the RGD algorithm in Theo-
rem 7.3.5 using the Łojasiewicz property. We first give the definition of the
Łojasiewicz inequality for functions defined on a Riemannian manifold [SU15].

Definition 7.3.4 (Łojasiewicz inequality [SU15, Definition 2.1]). LetM⊂ Rn
be a Riemannian submanifold of Rn. The function f : M 7→ R satisfies a
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Łojasiewicz gradient inequality at a point x ∈ M, if there exists δ > 0, σ > 0
and θ ∈ (0, 1/2] such that for all y ∈M with ‖y − x‖ ≤ δ, it holds that

|f(x)− f(y)|1−θ ≤ σ‖gradf(y)‖, (7.27)

where θ is called the Łojasiewicz exponent.

The Proposition 2.2 of [SU15] guarantees that (7.27) is satisfied for real
analytic functions defined on an analytic manifold. Since the objective function
of (7.3) is indeed real analytic and that the search space M is an analytic
manifold, the Łojasiewicz inequality (7.27) holds. Consequently, we have the
following iterate convergence result.

Theorem 7.3.5. Let {xt}t≥0 be the sequence generated by Algorithm 7.2.1 with
stepsizes chosen by either line minimization (7.16) or Armijo line search (7.17).
Then {xt}t≥0 converges to a stationary point x∗ ∈ M. Moreover, the local
convergence rate of {xt}t≥0 follows:

‖xt − x∗‖ ≤ C
{
e−ct if θ = 1/2,
t−θ/(1−2θ) otherwise,

with the Łojasiewicz exponent θ ∈ (0, 1/2] and constants c > 0 and C > 0.

Proof. The inequality (7.25) ensures that the sequence {xt}t≥0 is monotoni-
cally decreasing. Hence, the RGD algorithm satisfies the conditions in [SU15,
Theorem 2.3]. More precisely, it follows from (7.25) of Lemma 7.3.2 that

|f(xt+1)− f(xt)| ≥ C̄‖gradf(xt)‖2xt
= (C̄/st)‖xt+1 − xt‖xt

‖gradf(xt)‖xt

≥ κ0‖xt+1 − xt‖xt
‖gradf(xt)‖xt

, (7.28)

where κ0 > 0, since with line minimization (7.16), st = s∗ > 0, for all t ≥ 0,
is chosen from a finite number of numerical solutions; and with Armijo line
search (7.17), 0 < smin ≤ st ≤ s0

t , where s0
t > 0 is the initial stepsize before

backtracking. In addition, the RGD update rule ensures that

‖xt+1 − xt‖xt
= st‖gradf(xt)‖xt

≥ κ‖gradf(xt)‖xt
, (7.29)

for κ > 0. The result of the theorem is obtained by combining (7.28), (7.29)
and the Łojasiewicz inequality (7.27) and using [SU15, Theorem 2.3].

Note that although the convergence properties of the RGD algorithm (Al-
gorithm 7.2.1) with the RBB stepsize (7.18) are not given, one can easily use
this RBB stepsize as the initial trial stepsize in a backtracking line search pro-
cedure. Note that the convergence results in this section can be proved for
the RGD algorithm using line search with RBB (7.18) as the initial stepsize.
Interested readers are referred to [IP18] for details.
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7.4 Experiments

In this section, we carry out numerical experiments for tensor completion using
the proposed algorithms and several existing algorithms in the related work.
Details of these algorithms are as follows.

The proposed algorithms: Algorithm 7.2.1 is labeled as Precon RGD and
the RCG algorithm is labeled as Precon RCG. Depending on the stepsize se-
lection method, these algorithms are labeled with a descriptor in terms of (i)
(linemin) for the stepsize rule (7.16), (ii) (Armijo) for the Armijo line search
method (7.17), and (iii) (RBB) for the Barzilai–Borwein stepsize (7.18).

Euclidean gradient descent (Euclidean GD) and nonlinear conjugate gra-
dient (Euclidean CG) algorithms refer to the algorithms using the Euclidean
gradient (7.5) in the definition of the search directions on M. The stepsize
selection rules are the same as the proposed algorithms; these algorithms are
implemented along with the proposed algorithms in the source code. INDAFAC
is a damped Gauss-Newton method for CPD-based tensor completion proposed
by Tomasi and Bro [TB05]. CP-WOPT [ADKM11] is a nonlinear conjugate
gradient algorithm for CPD-based tensor completion. AltMin [GDAG20] is an
alternating minimization algorithm for CPD-based tensor completion, which
uses the linear CG for each of the least squares subproblems.

KM16 refers to a Riemannian optimization algorithm proposed by Kasai
and Mishra [KM16] for tensor completion with a fixed Tucker rank. The Rie-
mannian gradient in this algorithm is defined under a metric selected through
Riemannian preconditioning on the manifold corresponding to a (fixed-rank)
Tucker decomposition. In this algorithm, the tensor candidate is represented
by a tuple of factor matrices and a core tensor via the Tucker decomposi-
tion. In our experiments on third-order tensors, this algorithm is labeled as
KM16 (r1, r2, r3), according to the Tucker rank (r1, r2, r3) with which it is
tested. Note that the dimension of the search space of KM16 is

∑k
i=1

(
miri − r2

i

)
+∏k

i=1 ri, which is different than the dimension of M (search space of the
CPD/PD-based algorithms); In particular, the difference in these dimensions
is marginal when ri ≈ R for i = 1, 2, 3, with R� min(m1, . . . ,mk).

All the CPD/PD-based algorithms are initialized with a same randomly
generated point onM and the Tucker decomposition-based algorithm (KM16)
is initialized with a point such that its tensor representation is close enough to
that of the initial point of the other algorithms; see Appendix 7.B for details.

All numerical experiments were performed on a workstation with 8-core In-
tel Core i7-4790 CPUs and 32GB of memory running Ubuntu 16.04 and MAT-
LAB R2019. The source code is available at https://gitlab.com/shuyudong.
x11/tcprecon/. Implementations of the existing algorithms are also publicly
available.

https://gitlab.com/shuyudong.x11/tcprecon/
https://gitlab.com/shuyudong.x11/tcprecon/
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7.4.1 Synthetic data
Tensor model. We consider a low-rank tensor model that is composed of a
low Tucker-rank tensor and independent additive noises: with a given Tucker
rank parameter r? = (r?1 , r?2 , r?3), we generate such a tensor T ? using the fol-
lowing procedure,

T ? = Tr?(T ) + E , (7.30)

where T ∈ Rm1×m2×m3 is a third-order tensor composed of i.i.d. Gaussian
entries, that is, Tijk ∼ N (0, 1), the operator in the form of Tr(·) is a Tucker-
rank (ranktc) truncation operator defined as the best Tucker rank-r approx-
imation of T . The truncation Tr(·) can be obtained using existing imple-
mentations that are available in state-of-the-art tensor toolboxes (e.g., Ten-
sor Toolbox [BK+19] and Tensorlab [VDS+16]). Here we use the function
tucker_als.m in the MATLAB Tensor Toolbox. In the scenario of noiseless
observations, E = 0; otherwise E ∈ Rm1×m2×m3 contains independent noises
such that E`1`2`3 ∼ N (0,σ), where σ is set according to a given signal-to-noise
ratio (SNR); see Appendix 7.B.

Low-rank tensor recovery from partial, noiseless observations. A
synthetic tensor T ? is generated with the model (7.30) without noise. The
tensor T ? is only observed on an index set Ω, which is composed of indices
drawn from the Bernoulli distribution: (i, j, k) ∈ Ω with probability p ∈ (0, 1),
for all (i, j, k) ∈ Jm1K× Jm2K× Jm3K.

For the problem model (7.3), we set the regularization parameter λ to zero,
which allows for recovering the low-rank tensor T ? without any bias, provided
that the sampling rate p is sufficient. Then we test the aforementioned algo-
rithms with a given rank parameter R, assuming that the rank (CP or Tucker
rank) of the hidden tensor T ? is unknown to all the algorithms. For the CPD
and PD-based algorithms, we set the rank parameter R to an arbitrary value
such that R ≥ max(r?1 , r?2 , r?3). Since the optimal CP rank of the tensor candi-
date is unknown, a larger-than-expected rank parameter is interesting because
it allows for searching solutions in a fairly large tensor space, so that there is
better chance that optimal solutions are in the search spaceM.

The termination of the proposed algorithms (Precon RGD and Precon
RCG) is controlled by a tolerance parameter (ε = 10−7 in this experiment)
against the norm of the gradient; KM16 uses a Riemannian CG algorithm with
Armijo line search and default stopping criteria. On top of their respective
stopping criteria, all the algorithms are tested within a heuristic iteration bud-
get maxiter = 1000. Note that for all tested algorithms except AltMin, one
iteration corresponds to one pass over the whole training data PΩ(T ?); for Alt-
Min, one iteration corresponds to multiple passes over the training data, since
each of its iteration has a number of inner iterations for solving the underlying
alternating subproblem. Table 7.1 shows the performances of the tested algo-
rithms in terms of recovery errors and time, for rank parameters R ∈ {7, 14, 21}.
The iteration histories of these algorithms (including KM16) with R = 14 are
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shown in Figure 7.1. Specifically, for the fixed-Tucker rank algorithm, KM16,
we also test several other rank parameters than r = (R,R,R); its tensor re-
covery performances along with those of the proposed algorithms are presented
in Table 7.2. In Table 7.2, “#variables” indicates the dimension of the search
space of each of algorithms, depending on the rank parameters.
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Figure 7.1: Tensor completion from noiseless observations. The size of T ? is (100, 100, 100)
with a Tucker rank r? = (3, 5, 7). The sampling rate is 0.3. The rank parameter is set as
R = 14.

From the results shown in Figure 7.1 and Tables 7.1–7.2, we have the fol-
lowing observations: (i) For all three values of the rank parameter R that are
larger than max(r?1 , r?2 , r?3), the proposed algorithms and HaLRTC succeeded
in recovering exactly the true hidden tensor T ? (with a test RMSE lower than
10−6). AltMin, CP-WOPT and Euclidean CG succeeded exact recoveries only
with one or two of the rank parameter choices, and their convergences are slower
than the proposed algorithms by orders of magnitude. The test error of KM16
stagnated at a certain level as the core tensor dimensions chosen are not exactly
the same as the Tucker rank of T ?; (ii) Among the algorithms that success-
fully recovered the true hidden tensor, the proposed algorithms (Precon RGD
and Precon RCG) outperform AltMin in time with a speedup of around 10
times, and they achieve speedups between 2 and 6 times compared to HaL-
RTC; Especially, Precon RGD (RBB2) has the fastest convergence behavior.
(iii) For KM16 specifically, the time efficiency and the recovery performance of
KM16 (r, r, r) improves significantly when the core tensor dimensions (r, r, r)
decrease (and get closer to r?). In particular, when r is only 1/2 of the rank
parameter R = 14, the time efficiency of KM16 (r, r, r) gets close to those
of the proposed algorithms. Note that when r ≈ R/2, the dimensions of the
search space of KM16 (r, r, r) is much smaller than that of the proposed algo-
rithms; see Table 7.2. These comparisons can be explained by the fact that the
per-iteration cost of KM16 is much larger than the proposed algorithms, even
when the dimensions of its search space is close or smaller than that of the
proposed algorithms; see Figure 7.2 for detailed comparisons of their average
per-iteration time. The high computational cost of KM16 lies in its computa-
tion of the Riemannian gradient, which scales poorly with the Tucker rank as it
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involves computing the Gram matrix of the matricizations of the core tensor—
with a cost of O(r1r2r3(r1 + r2 + r3))—and solving Lyapunov equations (for
k = 3) of the ri × ri matrices.

Table 7.1: Tensor completion with noiseless observations. The size of T ? is (100, 100, 200)
with a Tucker rank r? = (3, 5, 7). The sampling rate is 0.3. The rank parameters R tested
are {12, 14, 16}.

Algorithm R iter time (s) RMSE (test) RMSE (train)
Euclidean CG (linemin) 12 592 100.03 1.57e-12 2.03e-12
AltMin 12 67 100.97 8.05e-06 8.09e-06
INDAFAC 12 7 129.91 3.97e-01 4.57e-01
CP-WOPT 12 405 29.96 5.74e-07 6.70e-07
HaLRTC 12 142 15.81 2.19e-07 –
Precon RGD (linemin) 12 96 16.25 3.84e-08 4.79e-08
Precon RCG (linemin) 12 48 8.23 1.96e-08 3.58e-08
Precon RGD (RBB2) 12 65 3.91 9.52e-09 4.74e-07
Euclidean CG (linemin) 14 518 100.11 2.20e-06 3.10e-06
AltMin 14 19 39.27 2.39e-07 4.35e-07
INDAFAC 14 5 125.77 1.35e+00 2.60e+00
CP-WOPT 14 1561 94.29 2.40e-06 3.35e-06
HaLRTC 14 142 15.97 2.19e-07 –
Precon RGD (linemin) 14 82 15.90 1.38e-08 1.99e-08
Precon RCG (linemin) 14 34 6.65 1.29e-08 4.39e-08
Precon RGD (RBB2) 14 39 2.69 9.84e-09 2.38e-08
Euclidean CG (linemin) 16 456 100.01 1.37e-07 1.53e-07
AltMin 16 8 31.79 2.67e-08 3.32e-08
INDAFAC 16 5 154.34 9.78e-01 1.19e+00
CP-WOPT 16 1766 99.02 5.23e-06 7.00e-06
HaLRTC 16 142 16.34 2.19e-07 –
Precon RGD (linemin) 16 40 8.82 1.56e-09 2.51e-09
Precon RCG (linemin) 16 50 11.09 2.59e-09 5.08e-09
Precon RGD (RBB2) 16 39 3.03 1.53e-10 3.14e-10

Low-rank tensor recovery from partial, noisy observations. In the
following experiments, we conduct tensor completion tests under the same set-
tings as in the previous experiment, except that the revealed tensor entries are
observed with additive noise, and the noise level σ in the model (7.30) is set
according to a given signal-to-noise ratio (SNR) of 40 dB.

In this experiment, the regularization parameter λ of the problem (7.3) is
selected from {0, 1/p, 101/2/p, 10/p} (where the scalar p is the sampling rate)
for a rank parameter R = 14 and the selected value of λ is 101/2/p. All the
tested algorithms are terminated if the relative change of the training error
attains a given tolerance value:

relchg =
|E(U t+1)− E(U t)|

|E(U t)| ≤ tol, (7.31)

where E denotes the training RMSE. Also, the algorithms terminates if a
heuristic time budget Tmax is attained. We set the tolerance parameter as
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Table 7.2: Tensor completion with the noiseless observations. Proposed algorithms vs KM16
(r, r, r) with different choices of r. The size of T ? is (100, 100, 200), with a Tucker rank
r? = (3, 5, 7).

Algorithm R #variables iter Time (sec.) RMSE (test)
KM16 (R, R, R) – 7756 29 102.20 2.70e-2
KM16 (12, 12, 12) – 6096 30 88.32 9.00e-4
KM16 (9, 9, 9) – 4086 21 29.63 2.70e-05
KM16 (7, 7, 7) – 2996 22 14.39 2.99e-05

Precon RGD (linemin) 14 5600 82 15.90 1.38e-08
Precon RCG (linemin) 14 5600 34 6.65 1.29e-08
Precon RGD (RBB2) 14 5600 39 2.69 9.84e-09
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Figure 7.2: Average cost of time per-iteration for various rank parameters. The size of T ? is
(100, 100, 200) with a Tucker rank r? = (3, 7, 5). The sampling rate is 12%.

tol = 10−6 and the time budget as Tmax = 300s (seconds).
The performances of the tested algorithms are shown in Figure 7.3. From

these results, we have similar observations as in the previous experiments: (i)
For a polyadic decomposition rank R that is larger than max(r?1 , r?2 , r?3), all
algorithms achieve a recovery performance of the same level (with a test RMSE
around 0.050); (ii) the proposed algorithms (Precon RGD and Precon RCG)
outperform the rest of the algorithms in time with speedups between 4 and 15
times at the several accuracy levels near their respective termination point; (iii)
the time efficiency of KM16 (r, r, r) improves significantly when the core tensor
dimensions (r, r, r) decrease but it remains inferior to those of the proposed
algorithms; see Figure 7.3(d)–7.3(e).

7.4.2 Real data

In this subsection, we conduct experiments on a real-world dataset. We focus
on evaluating the time efficiency of the proposed algorithms under various
choices of the rank parameter R. To ensure a good generalization performance
of the tensor completion model, we activate the regularization terms of the
problem (7.3) with a regularization parameter λ > 0.
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Figure 7.3: Tensor completion from noisy observations. The size of T ? is (300, 500, 200) with
rank r? = (3, 7, 5). The sampling rate is 5%. The rank parameter R = 14.

Dataset and algorithms. The tensor completion tests are conducted on
the MovieLens 1M dataset1, which consists of 1 million movie ratings from
6040 users on 3952 movies and seven-month period from September 19th, 1997
through April 22nd, 1998. Each movie rating in this dataset has a time stamp,
which is the number of week during which a movie rating was given. Therefore,
this dataset has a tensor form T ? of size 6040× 3952× 150, where the first two
indices are the user and movie identities and the third order index is the time
stamp. The dataset contains over 106 ratings, which correspond to the known
entries of the data tensor T ?. For the tensor completion tasks, we randomly
select 80% of the known ratings as the training set. Note that in this case, the
absolute sampling rate p = |Ω|/(m1m2m3) is 2.23%.

Due to the large dimensions of the data tensor of MovieLens 1M, several
aforementioned algorithms in the related work were not tested on this dataset
due to excessive memory requirements. In the implementation of these al-
gorithms, the tensor index filtering operations such as accessing T ?|Ω or T|Ω
in iterations, a dense tensor format is used for the index set Ω, which—for
the same size as T ?—requires the storage of over 3.5 × 109 entries in total;
Such a data format poses a memory requirement bottleneck that blocks the
test. On the other hand, the proposed algorithms and Euclidean GD/CG,
KM16 and AltMin can be run without the memory issue since they use the

1https://grouplens.org/datasets/movielens/1m/
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COO format for the training set Ω, which corresponds to only 106 entries on
the same dataset. Note that for all tensor decomposition-based algorithms,
the memory requirement for the decomposition variables (or factor matrices) is
O((m1+m2+m3)R)—which is bounded by 105 for any rank parameter R < 100
in the experiments on MovieLens-1M—is also memory-efficient. Therefore, the
algorithms that are tested are: the proposed algorithms (Precon RGD/RCG),
Euclidean GD/CG, KM16 and AltMin.

Experiments and results. Given the data tensor T ? and the index set Ω
as the training set, we conduct performance evaluations using various choices
for the rank parameter R, after selection of the regularization parameter λ.
The parameter λ for the CPD-based algorithms is selected among {0, 1/p,
101/3/p, 102/3/p, 10/p, 104/3/p} via 3-fold cross validation using the Euclidean
GD algorithm (instead of the proposed ones), where the rank parameter R
is set to be 5, 10 and 15 respectively; and the values selected by these cross
validation procedures are 102/3/p (when R = 5 and 10) and 104/3/p (when
R = 15). For the Tucker decomposition-based algorithm—KM16—with the
Tucker rank r = (R,R,R), for R ∈ {5, 10, 15}, the values of λ selected after
the same cross validation procedure are 0. Subsequently, we test all algorithms
using the selected parameters. Similar to previous tests, the stopping criteria
for all the tested algorithms use the relative change of training errors, i.e.,
relchg in (7.31), and a large enough time budget Tmax. We set the tolerance
parameter for relchg (7.31) as tol = 10−5 and the maximal time budget as
Tmax = 1800s.

We present the iteration histories of all algorithms under the rank parameter
R = 15 in Figure 7.4(a). We also observe the recovery performances of the algo-
rithms under a series of different rank parameters—for R ∈ {1, . . . , 15, 17, 19}
and λ = 102/3/p; see Figure 7.4(b).
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Figure 7.4: Tensor completion on the MovieLens 1M dataset. Recovery performances with
various rank parameters and comparisons of the algorithms (with R = 15) in time.

Moreover, Figure 7.5 shows the iteration histories of the proposed algorithm
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Precon RGD (using the BB stepsize) in comparison with KM16, with the rank
parameters R ∈ {3, 6, 15}.
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Figure 7.5: Proposed algorithms and KM16 [KM16]. Dataset: MovieLens 1M. The rank
parameters R are {3, 6, 15}. Left: training RMSE by time; Right: test RMSE by time.

From Figure 7.4(a), we observe that (i) the two proposed algorithms have
faster convergence behaviors than all the rest of the tested algorithms, and (ii)
in particular, the proposed algorithms achieve the same recovery error with
speedups of around 10 times compared to KM16, and 6 times compared to
Euclidean CG (linemin). The results in Figure 7.4(b) give an overview of the
performance of our algorithms and KM16 in terms of their trade-offs between
the model complexity (for the minimization of the fitting error) and the gener-
alization of the model for the prediction of missing entries. From these results,
we can see that (under the several randomly generated regularization param-
eters so-far explored), the rank choice of R = 8 provides the best recovery
error on (unknown) test entries. Moreover, for rank choices that are larger
than R = 8, the decrease in the recovery performances of the proposed algo-
rithms (compared to the case with R = 8) is much smaller than that of KM16.
This can be explained by the fact that the search space of our algorithms under
larger rank parameters contain those with smaller ranks, while the search space
of KM16 corresponds to matrix spaces of a fixed column-rank.

7.5 Conclusion

We proposed a new class of Riemannian preconditioned first-order algorithms
for tensor completion through low-rank polyadic decomposition. We have an-
alyzed the convergence properties of Riemannian gradient descent using the
proposed Riemannian preconditioning. The main feature of the proposed al-
gorithms stems from a new Riemannian metric defined on the product space
of the factor matrices of polyadic decomposition. This metric induces a local
preconditioning on the Euclidean gradient descent direction of the PD-based
objective function; the underlying preconditioner has the form of an approxi-
mated inverse of the diagonal blocks of the Hessian of the objective function.

These Riemannian preconditioned algorithms share some characteristics
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with the related work [KM16], which deals with tensor completion with a fixed
Tucker rank. They differ however in the following sense: the polyadic decom-
position model allows for finding a low-rank tensor candidate within a range
of CP ranks, while the algorithm of [KM16] searches a tensor solution with a
fixed (Tucker) rank.

Because of the more flexible decomposition modeling, our algorithms per-
form well with various arbitrary choices of the rank parameter in the tensor
completion tasks on both synthetic and the MovieLens 1M datasets. Moreover,
we have observed that the proposed algorithms provide significant speedup over
several state-of-the-art algorithms for CPD-based tensor completion, while pro-
viding comparable or better tensor recovery quality.
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Appendix

7.A Algorithmic details

Speed-up by using C/MEX-based MTTKRP. Algorithm 7.2.2 is im-
plemented in a mexfunction and has shown significant speedup over the so-far
implemented computations (explicit sparse matricizations times the explicitly
computed Khatri–Rao products). Table 7.A.1 shows comparative results on the
MovieLens 1M dataset, “Naive” corresponds to the implementation where the
gradient computations involve (i) forming sparse matricizations of the residual
tensor, (ii) computing the Khatri–Rao products and (iii) sparse-dense matrix
multiplication. “Proposed” corresponds to the results of the implementation
using sparse MTTKRP (Algorithm 7.2.2).

Table 7.A.1: Speedups of the efficient computational method. The tensor dimensions are
6040× 3952× 150.

iter Time (s) Average RMSE
Naive Proposed speedup Naive/Proposed

1 0.568 0.067 – 4.778 / 4.778
101 71.848 16.199 4.435 0.795 / 0.795
201 142.697 32.333 4.413 0.765 / 0.765
301 213.897 48.508 4.410 0.759 / 0.759
401 285.117 64.609 4.413 0.759 / 0.759
501 356.405 80.712 4.416 0.759 / 0.759

Performance of the three trial stepsize methods. Under the settings
of Section 7.4.1, we show in Figure 7.6 the iterative histories of the proposed
algorithms in RMSE using the three trial stepsize methods for the line search
procedure. The results in the top row is conducted with a low-rank tensor
T ? generated from (7.30) and rescaled such that Ẽ[T ?ijk] = 1 while those in
the bottom row is based on a tensor under the same settings except that it
is rescaled such that Ẽ[T ?ijk] = 10−2. From the empirical iteration and time
performance in these results, we observe that (i) the iteration performance of
our algorithms using exact line minimization (7.16) is stable and comparable
to the rest of the two stepsize rules but it has the largest per-iteration time
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cost; (ii) the iteration and time performance with Armijo backtracking are
comparable to the BB stepsize rule but is not stable under changes in the
“scale” of the tensor entries. From these observations, we choose to represent
our proposed algorithms by Precon RGD (RBB) and Precon RCG (linemin).
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Figure 7.6: Comparisons between the stepsize selection methods. T ? is generated with the
model (7.30) and is partially observed without any noise: Tensor size (100, 100, 100), Tucker
rank r? = (10, 10, 10). The rank parameter R = 15. The sampling rate is set to 0.2.

7.B Experimental details

Synthetic model. The noise level in the synthetic tensor model (7.30) is
determined according to the signal-to-noise ratio (SNR): SNR = E[T 2]/E[E2],
where T and E are the random variables that represent the tensor entries of
the low-rank tensor T and the noise tensor E in (7.30). In the experiments
with T ∼ N (0, 1) and E ∼ N (0,σN ), the parameter σN is computed for a
given SNR. The SNR expressed the logarithmic decibel scale (dB) is defined as
SNR (dB) = 10 log10(SNR).

Initialization. The initial point of all CPD and polyadic decomposition-
based algorithms is a tuple U0 = (U

(1)
0 , . . . ,U

(k)
0 ), where the mi × R factor

matrices are random Gaussian matrices: [U
(i)
0 ]`r ∼ N (0, 1). For the Tucker

decomposition-based algorithm (KM16), we choose to construct an initial point
that is close enough to U0 ∈ M for fair comparisons. For a Tucker rank
(r1, . . . , rk), we initialize KM16 (r1, . . . , rk) with a point in Tucker decomposi-
tion form (G; Ũ (1), . . . , Ũ (k)), such that its tensor representation is close enough
to JU (1)

0 , · · · ,U
(k)
0 K. For this purpose, we set Ũ (i)

0 as random Gaussian matri-
ces of size mi × ri with Ũ

(i)
0 ∼ N (0, 1), and set the core tensor G of size

r1 × · · · × rk as a random Gaussian matrix with Gi1,...,ik ∼ N (0,σ), where
σ =

√
R/r1...rk. The choice of this variance parameter is based on the obser-

vation that the CPD form can be seen as a special Tucker with diagonal core
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tensor D = diag(1, ..., 1) ∈ RR×...×R. Restricting G to have the same Frobenius
norm as D requires that the variance parameter σ =

√
R/r1...rk. In particular,

in the case where ri = R, we set Ũ (i)
0 = U

(i)
0 , for i = 1, . . . , k.

Performance evaluation. In the experiments, we evaluate the quality of
tensor completion with the root-mean-square error (RMSE), for a tensor can-
didate T and a given index set Ω′, RMSE(Ω′) = ‖PΩ′ (T − T ?) ‖F/

√
|Ω′|. The

training and test RMSE refer to RMSE(Ω) and RMSE(Ω̃c) respectively, where
Ω is the (training) index set of the observed entries used in the definition of
the data fitting function fΩ in (7.3) and the test set Ω̃c is the complementary
of Ω in the set of all available entries. In some of the experiments, Ω̃c is a
subset of the complementary set (with uniformly distributed indices) such that
|Ω̃c| = (1/4)|Ω| in order to reduce the time for evaluating the test RMSE, if
the whole complementary set is overwhelmingly large (2.106).
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Chapter 8

Conclusion

In this thesis, we focused on low-rank models and algorithms for matrix and
tensor completion. With respect to modeling, we explored the usage of graph
information in the regularization of matrix and tensor completion problems,
and with respect to optimization, we investigated algorithms on Riemannian
manifolds of low-rank matrices.

Summary of contributions

In the studies about graph-regularized matrix completion, we took an inter-
est in a problem formulation using low-rank matrix factorization and graph
Laplacian-based regularization terms. While the graph-based regularization
has been shown, in a previous work by Rao et al. [RYRD15], to be a promis-
ing way to enhancing the matrix completion performance, we found that the
graph Laplacian-based regularization unavoidably complicates the matrix fac-
torization problem; one way to see this is through the fact that it makes the
traditional alternating minimization more costly in this problem. More pre-
cisely, in the alternating minimization framework for this problem, each of the
two alternating least-squares problems requires solving a Sylvester equation,
instead of a simpler and embarrassingly parallelizable linear problem. To alle-
viate this burden, we went beyond the alternating minimization framework and
proposed gradient descent and conjugate gradient algorithms on the product
manifold of the low-rank factor matrices. The proposed algorithms differ from
alternating minimization in the sense that they update the low-rank factor
matrices simultaneously; furthermore, their search directions (on the product
manifold) are defined through Riemannian conditioning, which is a recently
developed technique that designs a valid Riemannian metric according to the
cost function on the manifold. We provided global convergence analysis of the
proposed Riemannian gradient descent algorithm.

Through extensive experiments on synthetic and real-world data, we ob-
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served that our approach achieves significant speedup compared to the afore-
mentioned alternating minimization algorithm. We also evaluated the matrix
recovery qualities of various matrix completion models under different sam-
pling rates. For example, on the Traffic dataset, we observed that, under the
samplings ranging from 1% to 40%, graph-regularized models always result
in an improvement (Tables 3.2, 3.3 and 4.2) in the completion score over the
Frobenius norm-based model (MMMF) and the unregularized model. Such
improvements depend naturally on the fact that the given graph Laplacian
matrices (in the regularization term) are conformal to the (partially) hidden
matrix.

In view of the different algorithms considered in this thesis: GL-RMC, GL-
LRGeomCG, εNN-LRGeomCG in Chapter 3, and εNN-GRMC in Chapter 4,
it is natural to ask which algorithm to choose to obtain a better completion
result. To answer this: we note that all these algorithms are a hybrid two-stage
procedure, which consists of constructing or learning the graph Laplacian ma-
trices first and conducting the graph-regularized matrix completion step sub-
sequently, and among these two consecutive stages, the graph construction
or graph learning procedure is the determinant step that defines the graph-
regularized matrix completion model. Indeed, we observe that, from Tables 4.2
and 4.3 (column GRMC), once the graph Laplacian matrices are fixed, the dif-
ferent subsequent algorithms (GRALS, Euclidean GD, Qprecon-RGD) produce
almost indistinguishable results. Hence the choice of the graph construction
method is key to the performance of the two-stage algorithms.

From the results in Table 3.3, we observe that the graph learning approach
(GL-LRGeomCG) outperforms the εNN graph model (εNN-LRGeomCG) in
the same experimental setting (sample set Ω, initial point for the matrix com-
pletion step), under all sampling rates tested. Hence graph learning is a more
favorable choice. This comes with a compromise, however, in the computation
time, since the graph learning approach requires a heavier computational effort
than computing directly a εNN graph, as mentioned in Chapter 3. On the
other hand, the time performance comparisons between the matrix completion
algorithms are discussed and shown in the experiments in Chapter 4 and 5.

With respect to algorithms, we have focused on gradient descent on a prod-
uct space of low-rank factor matrices and the manifold of fixed-rank matrices
using Riemannian preconditioning. This preconditioning technique exploits a
closed-form approximation to the second-order information of the optimization
problem. To understand more about this technique, we investigated a gradient
descent algorithm, designed with a particular Riemannian preconditioned met-
ric, on the manifoldMk of fixed-rank matrices. We developed novel results for
analyzing this algorithm and showed that it not only enjoys the same advan-
tages of classical low-rank matrix factorization algorithms (compared to convex
optimization algorithms in the m×n matrix space) but can also be analyzed in
a more convenient way. In particular, we proved that this algorithm minimizes
a class of quadratic functions onMk with a local linear convergence rate, un-
der mild conditions. Moreover, the convergence property of the algorithm has
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desirable invariance properties in contrast to Euclidean gradient descent algo-
rithms. Because of the efficient iteration efficiency and its light per-iteration
cost, the time efficiency of this algorithm is also shown to be much faster than
the Euclidean gradient descent algorithms under various rank choices and is
faster than many other Riemannian algorithms with fixed-rank matrices.

In addition to matrix completion, we extend the graph-based regularization
to low-rank tensor completion, through a CP decomposition-based formula-
tion. In the investigation of the so-called graph-regularized tensor completion,
we developed an alternating minimization algorithm for the underlying tensor
decomposition problem and also found improvements in the tensor recovery
performances when comparing the graph-regularized model to graph-agnostic
ones. Furthermore, we also extend the aforementioned Riemannian precondi-
tioned algorithms to the tensor completion problem and discovered significant
improvements in time efficiency in comparison with several state-of-the-art al-
gorithms. Another nice feature of the proposed algorithm is that the tensor
recovery performances can be ensured under various different choices of the
tensor rank parameter; this feature enables a more flexible and lighter parame-
ter selection procedure, compared to several other tensor decomposition-based
algorithms, such as the ones developed with a fixed tensor rank.

Perspectives and future work

The graph-regularized models for matrix and tensor completion in Chapters 4
and 6 require the knowledge of graph Laplacian matrices that are related to
the partially hidden data in a certain way. However, such relationships remain
obscure. From experimental observations, a graph Laplacian matrix that guar-
antees a relatively small value in the semi-norm of the form (4.2) yields an
improvement in the matrix recovery performance. Rao et al. [RYRD15] pro-
posed an error bound of the graph-regularized matrix completion model and the
improvement in the upper bound is related to the constants that depend on the
graph Laplacian matrices used in the regularization term. Subsequently, they
showed, also through numerical simulations, that a number of graph models en-
sure that the sought constants are better (i.e., smaller) than the counterparts
of the graph-agnostic models. The question of how the magnitude of these
graph-based constants are related to the graph Laplacian matrices, or whether
these constants ensure an improvement over the graph-agnostic model, remains
unanswered. It is therefore interesting to look into this question and develop
more clear criteria for selecting graphs in the matrix and tensor completion
tasks.

In Chapter 5, we investigated convergence properties of quotient manifold-
based algorithms for a class of matrix recovery problems. This analysis depends
on the global or local properties of critical points of the matrix recovery prob-
lem on the manifold Mk. While several recent results made advances in this
line of research specifically about the matrix sensing problem, questions re-
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main for the matrix completion problem. The main challenge in the case of
matrix completion is that the subsampling operator of the matrix completion
problem does not ensure the same conditions as the operator underlying the
matrix sensing problem. Since the subsampling operator usually yields much
smaller computational cost than dense matrix sensing operators, it is inter-
esting to continue exploring the boundaries of matrix recovery performances
of Riemannian algorithms for matrix completion, in both the noiseless and
noisy scenarios. It is also worth noting that we have focused on gradient de-
scent algorithms designed through Riemannian preconditioning, which exploits
a closed-form approximation to the second-order information of the objective
function. This approach is particularly appealing with the matrix and tensor
completion models using the least squares loss function. Furthermore, since
the objective function of such models is in principle a polynomial function of
order 2k, in the case of problems with a kth order tensor (for k ≥ 2), it would
be interesting to explore higher-order information of the matrix and tensor fac-
torization problems; algorithms using higher-order information (e.g., [NP06])
has been shown in previous work to have very good iteration efficiency and
perform well in escaping saddle points of nonconvex problems.

Another direction of future work is related to Riemannian algorithms: it
is interesting to develop Riemannian gradient descent algorithms with acceler-
ation, and investigate its properties in both its applications and convergence
behaviors; it is also interesting to explore randomized variants, or approximate
Riemannian algorithms using randomization techniques for large-scale matrix
optimization problems.
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