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ABSTRACT

The solving of linear systems of equations is often one of the most time-consuming

computational kernels of modern simulations. This thesis investigates a significant trade-off

for a key portion of a state-of-the-art numerical library for solving very large sparse linear

systems of equations based on a multigrid solver developed at Lawrence Livermore National

Laboratory. It tests the hypothesis that the influence of the choice of data structure on

synchronization is a major factor in the performance of the coarsening algorithm. It does

this by examining three approaches to the CLJP multigrid coarsening algorithm from an

analytical point of view and via careful incremental modification of implementations on an

11 processor shared memory machine (Sun Enterprise E4500).
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CHAPTER 1

INTRODUCTION

Many scientific and engineering applications require some type of simulation, such as

the simulation of car bodies or the effect of earthquakes on buildings. In these simulations,

solving very large, sparse linear systems of equations is often one of the most time-consuming

computational kernels. Therefore, any reduction in the time required to solve such systems,

will have far-reaching benefits.

Two important characteristics of any algorithm used to solve very large sparse linear

systems of equations, are computational complexity, measured in number of operations

required to produce a solution, and accuracy. As the size of the problem increases, the

computational complexity of the algorithm must be tractable for problem sizes of interest to

the application scientist or engineer. For example, given an algorithm that requires O(n5)

floating point operations, on an architecture that can perform 5 Gflops, a problem of size

n = 105 will take over 2 years to solve and not be a viewed as a practical approach. In addition

to reasonable computational complexity, it is also required that, when using finite precision

arithmetic, the algorithm produces numerically reliable results i.e. a result with enough

significant digits of accuracy for the application scientist. Given an algorithm with tractable

computational complexity and desired accuracy, the implementation of this algorithm on a

particular architecture must, in the time allowed, produce a valid result. To achieve this goal,

trade-offs between complexity, accuracy, amount of storage, communication requirements,

and number of processors must be considered.

This thesis investigates a significant trade-off for a key portion of a state-of-the-art

numerical library for solving very large sparse linear systems of equations based on a multigrid

solver developed at Lawrence Livermore National Laboratory. It tests the hypothesis that

the influence of the choice of data structure on synchronization is a major factor in the

performance of the coarsening algorithm. It does this by examining three approaches to
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the CLJP multigrid coarsening algorithm from an analytical point of view and via careful

incremental modification of implementations on an 11 processor shared memory machine

(Sun Enterprise E4500).

1.1 Multigrid

Multigrid is a group of methods for solving very large sparse linear systems of equations.

The principles of multigrid are explained in [1] and [7]. In general, multigrid can be divided

into two classes, geometric multigrid, and algebraic multigrid.

Geometric multigrid uses a fixed hierarchy of length scales based on physical properties

of the grid on which the equations are defined. It defines a series of progressively smaller

length scales and associated spatial grids. It then iterates across this series and, by a process

called relaxation, reduces the error on every grid in the series, thereby approximating the

solution. Because of its heavy reliance on the physical properties of the grid, geometric

multigrid requires a problem that provides a grid with a meaningful interpretation in the

physical domain. This is a significant limitation and has driven much of the recent research

into algebraic multigrid.

Development of algebraic multigrid (AMG) began in the 1980’s when the Galerkin-based

coarse-grid correction process was introduced into geometric multigrid. It was found that the

Galerkin coarsening operator could be derived directly from the underlying matrices without

reference to the grids. Although the Galerkin coarsening is still geometrically based, it led

others to look into creating a multilevel method based purely on the underlying matrices[9].

This multilevel method became known as algebraic multigrid. AMG today, is still based

on the same, highly developed, principles as geometric multigrid but, the relaxation and

coarsening schemes are re-defined. In leaving the physical grid behind, AMG looses the

fixed hierarchy of grids. This is replaced by a variable coarsening scheme, based around

a fixed relaxation scheme. The fixed relaxation scheme defines a new algebraic sense of

smoothness, without a reliance on any type of physical grid. AMG can be applied to a much

broader range of problems, making it an enticing field of study.
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1.2 BoomerAMG

BoomerAMG is a well-known AMG implementation, developed by Van Emden Henson,

Ulrike Meier Yang and others at Lawrence Livermore National Laboratory. The details of

the implementation are described in [5]. BoomerAMG is the most recent and complete

piece of research done on parallel AMG libraries. It has been implemented and tested

on problems involving tens of millions of unknowns running on architectures with over a

thousand processors.

BoomerAMG employs a number of different coarsening strategies. The first strategy is

the Cleary-Luby-Jones-Plassman (CLJP) parallel coarsening algorithm. This algorithm uses

a modified parallel maximal independent set algorithm developed by M. Luby[6]. Unlike the

rest of the strategies employed by BoomerAMG, this coarsening is not a modification of the

classical sequential Ruge-Stüben (RS) algorithm [7]. Because of the use of an independent

set algorithm, CLJP allows multiple processors to work in the same domain at the same

time. This eliminates the need for domain partitioning and thus removes the problem of

boundary conditions between processors.

The beginning of the line of RS-based strategies is the RS3 algorithm (Ruge-Stüben

third pass coarsening). RS3 is the simplest type of parallel RS coarsening used in the

implementation of BoomerAMG. It consists of splitting up the domain into sub-domains

each of which is assigned to a processor. The classical RS algorithm is applied by each

processor to its sub-domain. After these independent tasks are complete, a “third pass” is

performed to modify the coarsenings on the boundaries between sub-domains. A significant

disadvantage of this algorithm is that each processor can only coarsen down to a single grid

point per sub-domain. When employing tens of thousands of processors, this leaves the final

coarse grid containing tens of thousands of points. Ideally, the coarsening should continue

with multiple processors cooperating on coarsening the grid formed by the union of their

undetermined points rather than forceing it to be considered coarse because a single point

remains on each processor.

The two other coarsening strategies available in BoomerAMG are hybrids of the RS and

CLJP algorithms. In Falgout coarsening the classical RS algorithm is applied to the interior

of the partitioned domain, then CLJP is applied to the already partially coarse grid. This

3



provides more RS like coarsening throughout the majority of the grid, while CLJP is used

to handle the boundaries between the partitioned domains. BC-RS coarsening is similar

to Falgout, except the order is reversed. In BC-RS coarsening, the boundaries are first

coarsened with CLJP, then RS is used to coarsen the interiors. Experiments have shown

that this strategy leads to worse overall performance than the Falgout and RS3 coarsenings

[5].

BoomerAMG is designed to utilize a distributed memory architecture[3]. There is

a significant potential for increased performance, by adapting BoomerAMG to a shared

memory, or hybrid clustered architecture. This thesis implements and analyzes a shared

memory parallel multigrid coarsening algorithm suitable for use in BoomerAMG.
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CHAPTER 2

COARSENING

This chapter summarizes the two basic coarsening algorithms of interest in this thesis:

RS coarsening and CLJP coarsening.

2.1 Basic Definitions

The concepts of dependence and influence used in AMG are defined in terms of the linear

system of equations, Ax = b, to be solved. Node i is said to depend on node j if the

value of the unknown xj is important in determining the value of xi using the i-th equation.

Influence, is defined as the inverse of dependence, if node i depends on node j then node j

influences node i.

The influence matrix S is defined as:

Sij =

{

1 if j ∈ Si

0 otherwise
(2.1)

Essentially, Sij = 1 only if i depends on j. The matrix S then can be used to construct

the directed graph, G, used by the CLJP algorithm. For every Sij = 1 an edge is added from

node i to node j in the graph G. At first this produces a symmetric graph, however, it is not

a requirement of the algorithm that the graph maintain this property. The edges in G can

be described from two different points of view. Any edge in G can either be defined as the

dependence or influence between two nodes. In terms of the graph G, the edges leaving node

i are said to be the dependencies of i and are contained in the set Si. Conversely the edges

ending at node i are the influences of i and are contained in the set ST
i (note: (Si)

T 6= ST
i ).

The two ways of looking at the graph G (in terms of either dependence:Si or influence:ST
i )

are exploited later in the discussion of row-oriented and column-oriented data structures.
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2.2 RS Coarsening

The key element of AMG is the coarsening step where points on a given grid are selected

to form a coarser grid. This is done recursively in order to define the finest-to-coarsest grid

hierarchy. The term ‘strongly connected’ is used below, this refers to two points a and b,

where there exists a connection from both a to b and b to a.

RS coarsening employs two rules:

(R1) Every point to which a fine point is strongly connected, should either be a coarse

point, or should be strongly connected to a coarse point to which the fine point is

connected.[7]

(R2) The coarse points should be selected such that the final coarsening has the maximum

amount of coarse points where no two coarse points are strongly connected.[7]

It is important that R1 is enforced strictly since it is designed to insure that the final

coarsened grid satisfies the requirements of the AMG interpolation operator. R1 also

improves the convergence factor of each grid level, increasing overall efficiency.

While the coarse points added by R1 improve the convergence factor, too many redundant

coarse points increases the amount of work required during relaxation. By using R2 as a

guide, the final coarsening contains the minimum number of coarse points possible, without

violating R1, and thus preserves the requirements of the interpolation operator.

Sequential RS AMG coarsening produces a grid hierarchy using two passes over the

current grid at each level. In the first pass, a coarse point with a maximal weight is selected

and all points that are strongly connected to that coarse point are set as fine points. For

each new fine point, the weights of all neighboring points are increased. Also the weights of

all points to which the initial coarse point is strongly connected, are decreased. The next

coarse point is selected and the process repeats. This pass terminates when all nodes in the

grid are either coarse or fine.

The second pass of RS insures that R1 is met, while trying to enforce R2 as strictly as

possible. For every dependence between two fine points that do not depend on a common

coarse point, the algorithm tentatively changes the second of those fine points to a coarse

point. The rest of the dependencies of the first fine point (outgoing edges) are then checked.
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If more fine-fine dependencies exist, the first fine point is changed into a coarse point, the

second fine point reverts from coarse to fine, and the algorithm continues with other fine-fine

pairs. This form of coarsening produces the best set of coarse grids. However, due to its

sequential nature, it cannot, without modifications, take advantage of parallelism[5].

2.3 The CLJP Algorithm

Most of the code used in parallel AMG can be adapted from the work done on parallelizing

geometric multigrid. However, a key step in the setup phase of AMG, the coarse-grid

selection, is inherently sequential in nature, and requires a great deal of work to be

parallelized properly. The coarsening method on which this thesis focuses is the CLJP

algorithm.

The CLJP algorithm is a two-pass coarsening algorithm, however, the two passes are

applied to a sequence of graphs Gi, i = 1, · · · , each of which comprises the part of the original

graph G that has not been assigned coarse or fine status as of step i of the algorithm. This

is done by defining a coarse node subset of the current undetermined graph and updating

the graph in response to that selecttion. After updating the algorithm repeats by examining

the set of remaining undetermined nodes and defining the next coarse node subset. The

key components of the algorithm are: the selection of the next set of coarse nodes from the

current set of undetermined nodes; the update of the edges associated with the current set of

undetermined nodes; and the selection of the fine nodes after the updates have been made.

2.3.1 Coarse point selection

The CLJP algorithm determines the set of coarse nodes in a manner that is parallel and

naturally avoids ties. To begin the process, each node in the original graph is assigned a

weight that is equal to the number of its incoming edges (its influences), or equivalently

the count of nonzeros in the corresponding column of the matrix that defines the system to

be solved. The CLJP algorithm modifies each of the weights by adding a random number

between 0 and 1. This effectively breaks any ties between weights assigned to nodes and

allows the definition of local maxima in the graph.
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At each stage of the algorithm, the coarse nodes are selected to be the nodes that are

local maxima of the weights. The set of neighbors that define the local set of v is the set of

nodes, u, that are destinations of an edge (v, u) (an outgoing edge of v) and all those with

v as a destination (an incoming edge of v). If no nodes are found whose weights are greater

than v, v is selected to be in the next coarse set (Ci+1). In general, several sets of coarse

nodes are determined in order to assign a state of coarse or fine to each of the N nodes in

the original graph. These sets are denoted Ci, i = 1, ..., k.

2.3.2 Updating edges and the weights of neighbors

At each step of the CLJP algorithm the graph, Gi, is defined by the undetermined nodes,

Vi, and edges Ei that remain after the processing of edges and coarse nodes in sets Ch | h < i

and the induced fine nodes Fh | h < i. For example, G1 represents the original graph,

C1 ⊂ V1, is the initial coarse set, V2 = V1 − C1 − F1, and E2 ⊂ E1 are the sets of nodes and

edges respectively that result from the update of G1 given C1.

Once the new maximal independent set of coarse points, Ci is selected, the algorithm

updates the weights of nodes that neighbor each new coarse node. This is done according

to two conditions defined in [2].

C1: Values at coarse nodes are not interpolated; hence, neighbors that influence a coarse

node are less valuable as potential coarse nodes themselves.[2]

C2: If k and j both depend on c, a given coarse node, and j influences k, then j is less

valuable as a potential coarse node, since k can be interpolated from c.[2]

Of course, these conditions must be translated into graph updates. The CLJP algorithm

updates edges in Ei based on the selection of Ci by removing all edges, e = (p, v), that are

one of the following three types:

• Type 1 edge has p ∈ Ci.

• Type 2 edge has v ∈ Ci.

• Type 3 edge is such that ∃(p, u) ∈ Ei, (v, u) ∈ Ei such that u ∈ Ci.
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Types 1 and 2 arise from condition C1 and Type 3 arises from condition C2. As the

edges are removed, the weights associated with the destination node of each edge must

be decremented in preparation for the determination of Ci+1. These three types of edges,

combined with the conditions defined above, drive the removal of edges from the graph.

However, some care must be taken when defining what “removing” an edge means and when

it is performed. This definition is formalized by specifying a more rigorous form of the

processing of Gi given Ci.

The process of creating Gi+1, given coarse set Ci can be defined by the following algorithm

and definitions. Ri is defined as the set of edges that are removed from Ei at the end of

the pass that processes Gi given Ci. That is, when identifying edges for removal from Ei by

considering the types above, Ei is not updated immediately after finding an individual edge

to be removed. Those in Ri may be safely removed from Ei after all edges in Gi have been

considered for removal. Due to condition C2 there is also a set that must be maintained

beyond processing Gi, i.e., that are removed from Ei but used in later identifications of

edges of Type 3. The set Q is defined as the set of edges that have been removed from Ei

by condition C2, i.e., Type 3 identification, but must be used to apply condition C2 in to

identify Type 3 edges in subsequent passes processing Cj | j > i. The justification for these

definitions are given in Section 2.3.3. Finally, for notational convenience, Ti is defined as

Ti = Q ∪ Ei.

The CLJP algorithm can be expressed abstractly as in Figure 2.1. The algorithm does

not include the determination of the set of new fine points Fi. Formally, this is determined

after removal of the edges and the update of the weights.

The set Fi is taken to be all nodes with an updated weight less than 1. This implies

that all incoming edges to the node have been removed, i.e., the node no longer influences

any other nodes. Note, however, that this does not imply that all outgoing edges have been

removed and care must be taken to have any destination nodes of such edges processed

correctly and eventually become coarse nodes. There are two basic ways to handle this, first,

a potentially fine node could stay in Gi until all of its outgoing edges have been removed.

Alternatively, the edge could be added a special set, which is processed separately from Gi.

The choice that yields the most efficient implementation depends strongly on the particular

implementation of the CLJP algorithm and its data structures.
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for each c ∈ Ci

Type 1 edges. ∀j | (c, j) ∈ Ei

w(j)← w(j)− 1
Ri ← Ri ∪ (c, j)

Type 2 edges. ∀j | (j, c) ∈ Ei

Ri ← Ri ∪ (j, c)

Type 3 edges. Ti ← Q ∪ Ei

∀j | (j, c) ∈ Ti

∀k | (k, j) ∈ Ei

if (k, c) ∈ Ti

w(j)← w(j)− 1
Q← Q ∪ (k, j)
Ri ← Ri ∪ (k, j)

end for
Ei+1 ← Ei − Ri

Figure 2.1. CLJP Weight and Edge Update Algorithm

The CLJP algorithm repeats the steps in Figure 2.1 until all nodes are defined as either

coarse or fine. An example of the edges removed from a graph is given in Figure 2.2. The

edges that are removed are slashed to indicate their type, i.e., the number of slashes is the

edge type number. The nodes c1 and c2 are coarse nodes in Ci. Only edges (w,p) and (p,x)

are retained in Ei+1.

2.3.3 Edge removal

In the form of the CLJP algorithm given in Figure 2.1 edges are not removed immediately

but instead placed in the set Ri or Q. To show why this must be done this section discusses

the earliest point in the CLJP algorithm each of the three types of edges can be removed

from Ei without affecting correctness. In the following argument, it is shown that edges of

Type 1 can be removed immediately, while edges of Type 2 must remain until the processing

of Ci is complete, and Gi+1 is determined. Edges of Type 3 must remain available until the

end of processing in step j > i during which their destination node is determined to be a
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Figure 2.2. Edge updates

fine node, or the destination node is determined to be coarse, i.e., the Type 3 edge becomes

a Type 2 edge. If an edge is first determined to be Type 3 on step i then it is added to Q

and removed from Ei. Once the condition for final removal is met, but not before, the edge

may be removed from Q.

First, consider the independent local maxima algorithm which produces Ci for pass i and

note that, by definition, there cannot be an edge between any two nodes in the coarse set

Ci. This part of the definition is used several times in the argument below.

Type 1 edges: An edge e = (c, v) where c ∈ Ci is a Type 1 edge, e.g., edge (c2, x) in

Figure 2.2. Suppose e is determined to be Type 1 on while processing Ci during step i of

CLJP. Clearly, this edge cannot affect the detection of other Type 1 edges during step i.

The edge e cannot also be of Type 2, because a Type 2 edge requires that the destination of

the edge be in Ci. The source of this edge is already in Ci, and by the definition of the local

maxima, two nodes in Ci cannot have an edge between them. Since Type 2 edge detection

only involves Type 2 edges and edge e can never be a Type 2 edge, e does not affect the

detection of Type 2 edges during step i. Finally, the edge e cannot be of Type 3, since a

Type 3 edge must be between two undetermined nodes. Since c is in Ci this is not possible.

Furthermore, Type 3 edge detection involves only Type 2 and Type 3 edges. It follows that

edge e cannot affect the detection of a Type 3 edge during step i. Therefore, edge e cannot

affect any other edge detection during pass i. Note that it obviously cannot affect any edge
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detection in any step j > i for the simple reason that c ∈ Ci is removed from the graph and

therefore so is e. Type 1 edges can therfore be removed from Ei immediately after detection

or at any time convenient for the particular implementation.

Type 2 edges: An edge e = (n, c) where c ∈ Ci is a Type 2 edge, e.g., edges (v, c1),

(u, c2), and (w, c2) in Figure 2.2. Clearly, a Type 2 edge can never be a Type 1 edge and

cannot affect the detection of Type 1 edges. Edge e also cannot affect the detecton of other

Type 2 edges. Edge e may, however, affect the detection of a Type 3 edge. Consider edge

e = (u, c2) in Figure 2.2, where c2 ∈ Ci. By the definition of a Type 3 edge, edge (u, c2) is

required to detect the presence of the Type 3 edge (u, w). Therefore, if edge e is detected

and removed from Ei before testing (u, w) for classification as a Type 3 edge, (u, w) would

be erroneously not classified as Type 3. Since type detection occurs in no particular order,

e must remain in the graph until at least the end of step i. As with Type 1 edges, since

c ∈ Ci is removed from the graph, it is not possible for Type 2 edges to affect the detection

of edges in any step j > i. Type 2 edges, therefore, cannot be removed immediately upon

detection but may be removed at the end of step i, or at any point where it is known that

the edge cannot affect any other Type 3 edge detection.

Type 3 edges: An edge e = (n, v) where (v, c) and (n, c) exist and c ∈ Ci is a Type 3

edge, e.g., edge (u, w) in Figure 2.2. By the definition, the nodes of the Type 3 edge, n and

v, must be the sources of Type 2 edges. Since the destination of a Type 2 edge is coarse and

by the definition of the local maxima nodes n and v cannot be coarse. Thus edge e cannot

be Type 1 or Type 2 based on Ci during step i and it cannot affect the detection of Type 1

or Type 2 edges during step i.

There are, however, three possibilities for an edge of Type 3 that must be considered.

The edge e = (n, v) could become a Type 1 edge in step j > i, i.e., n ∈ Cj, or a Type 2

edge, i.e., v ∈ Cj, or either n or v (or both) could be classified as fine. The first case, where

e becomes of Type 1 when n ∈ Cj, does not require e to be kept in the graph beyond step

i since Type 1 edges do not affect any other type of edge detection. So either e could be

removed from the graph at the end of i or it could be kept until it is removed as a Type

1. Care must only be taken when considering the update of the weight v. Since it would

be decremented when e is identified as a Type 3 in step i, its transformation to a Type 1
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must be recognized in j and an additional erroneous update of the weight supressed. This

is important because node v remains in the graph.

If the Type 3 edge e becomes a Type 2 edge when v ∈ Cj then it may be involved in

the detection of other Type 3 edges during step j > i. Since Type 2 edges are required only

until the end of the step on which they are detected, in order to detect Type 3 edges the

edge e can be removed at the end of step j. Note that since v is also removed from the

graph at the end of step j there is no concern about an erroneous update of the weight of v.

This transformation can be seen in Figure 2.2. If the Type 3 edge (u, w) is detected in step

i when c2 ∈ Ci and if w ∈ Cj for j > i, the presence of the edge (u, w) is required in step j

to detect the Type 3 edge (u, z). Once the edge (u, w) fulfills its role as a Type 2 edge, it

can be removed from the graph after step j.

Therefore, since it is not known know whether a Type 3 edge becomes a Type 1 or Type

2 edge later it can be marked for removal from the graph, i.e., included in the set Q in the

form of the algorithm in Figure 2.1 and not removed from that set until it transforms into

a Type 1 or Type 2.

Finally, either the source or the destination, n or v, could eventually become fine. In

this case the edge (n, v) is no longer needed to drive any further removal. Consider the case

where the source and destination of the type 3 edge are fine. If the destination of the edge v

is a fine node, then it cannot be selected as a coarse point in some future Cj therefore, this

edge cannot become a Type 2 edge, and cannot be needed to detect another Type 3 edge.

If the source of the edge n is fine, then all edges ending at n have been removed from

the graph. However, since e is an outgoing edge and v may become coarse and transform

e into a Type 2 edge that can influence Type 3 detection care must be taken. The easiest

approach is to alter the definition of fine nodes to only finally declare them as such when

all edges are removed. This is discussed further later. The fact that all incoming edges are

removed prevents them from ever becoming coarse and influencing the results of CLJP.

In summary, Type 1 edges can be removed immediately, however, because these edges do

not affect any edge detection but themselves, and they are never detected as a Type 1 edge

twice within the same pass, it is safe for these edges to remain in the graph until the end of

the step when Type 2 edges are removed. This may be beneficial to certain implementations

of the CLJP algorithm. Type 2 edges must remain in the graph until the end of the step
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during which they are detected (with a special check whether the edge has already been

detected as a Type 3 to avoid erroneous weight updates). Finally, Type 3 edges may change

to Type 2 edges on a later step and be needed to detect other Type 3 edges. Therefore, a

Type 3 edge must be kept available, but not allowed to drive weight updates, until it resolves

as a Type 1 or 2 edge or until one of its defining nodes become fine. This is done in the

CLJP algorithm of Figure 2.1 by placing such an edge in the set Q.

14



CHAPTER 3

THREE BASIC VERSIONS

This chapter presents the three basic approaches to the CLJP algorithm that are modified

and analyzed during the investigation. The abstract form of CLJP given in Figure 2.1 made

no assumption about the manner in which the various edges were accessed, e.g., ordering,

or represented, e.g., tuples, lists. Sections 3.1, 3.2 and 3.3 present less abstract forms by

making a high-level assumption about the manner in which the graph is represented, e.g.,

the type of information that is easily accessed for a given node and by imposing a particular

choice of the manner in which the graph is scanned, e.g., two passes through all nodes. The

later sections discuss more specific implementation issues such as choice of data structure

and synchronization implications.

3.1 Row-oriented version

This section describes the row-oriented version of the CLJP algorithm. The edge

information is stored in terms of outgoing edges, i.e. the destination nodes of edges leaving

node n are in Sn and easily available. Once the weights have been assigned to all nodes in the

graph Gi and the local maxima has been constructed, the row-oriented algorithm comprises

two passes each involving a loop over the nodes of Gi.

The first pass detects the three types of edges and marks them accordingly based on

the set of coarse points Ci. The first pass of the algorithm is described in Figure 3.1. The

first pass is organized by visiting each node of Gi. No assumption is made in this version

of the order in which the nodes are visited. Each node is processed according to its status.

The coarse nodes of graph Gi are processed by loop 1.1 that marks all of Type 1 edges by

marking the destination node in Sn. Note that only edges specified by unmarked nodes in Sn

are considered in the algorithm given. Any marked node in Sn at this point in the algorithm

must be a Type 3 edge that is detected during a previous step. As discussed earlier, these
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edges can be marked as Type 1 and the weight update suppressed. As is seen later, however,

they can, in fact, be left in Sn when using the pass 1 algorithm in Figure 3.1 since they do

not affect correctness only efficiency. The non-coarse nodes are processed by loops 1.2 and

1.3, this processing is more complicated than loop 1.1. Loop 1.2 detects Type 2 edges by

marking all the nodes in Sn that are in Ci, i.e. the intersection of Sn and Ci. As noted with

loop 1.1, processing only unmarked nodes ignores Type 3 nodes that became Type 2. Loops

1.1 and 1.2 add edges to Ri, the set of edges to be removed at the end of the pass. The

algorithm, however, does not need to maintain explicitly a set Ri, instead only membership

in the set for a given edge is maintained by marking that edge as Type 1 or 2 in Sn.

Once loops 1.1 and 1.2 have processed the edges in Sn, loop 1.3 detects edges of Type 3,

those connecting two non-coarse nodes that depend on a common coarse node, and marks

them in Sn. Given an edge (n, v) this is accomplished by checking to see if there exists a

coarse node c, such that the edges (n, c) and (v, c) exist. Note this exploits the intersection

Sn ∩ Ci computed in loop 1.2. If these edges are present then the edge (n, v) is of Type

3. This part of the algorithm is equivalent to the definition and update of the set Q in

Figure 2.1. Like the set Ri this algorithm does not specifically maintain the set Q, instead

edges of Type 3 are marked in a way that distinguishes them from the edges of Type 1 and

2 and unmarked edges.

A second pass through Gi identifies and removes Ci and Fi, as well as the examining the

weights to determine new local maxima, Ci+1. After the first pass the weights of nodes in

Gi have been updated, but in order to use a simple row-oriented pass through Gi to identify

the local maxima some care must be taken. The implementation must be designed such

that it avoids the need for an extra initialization pass through the vector that is used to

store the status of the node, (fine, coarse, undetermined). The methods used to prevent the

extra pass, are discussed later in Section 3.4. At this point, it is only important to note that

the code assumes that a node currently in Gi is in Ci+1 and the tests given in Figure 3.2

mark it (possibly multiple times) as non-coarse if it is not coarse. Note that in loop 1.6

only unmarked nodes are considered. This is necessary since some may correspond to Type

3 edges that have already updated the appropriate weights and therefore have no role in

determining the local maxima neighborhood for Ci+1.
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for each node n ∈ Gi

1. if n ∈ Ci then (the node is coarse)
1.1 for each node v ∈ Sn including Type 3 edges

1.1.1. if v ∈ Sn is not a Type 3 edge
1.1.1.1. decrement w(v) by 1

1.1.1. end if
1.1.2. mark node v in Sn as a Type 1 edge

1.1 end for
else (the node is undetermined)

1.2 for each node v ∈ Sn ∩ Ci including Type 3 edges
1.2.1 mark node v in Sn as a Type 2 edge

1.2 end for
1.3 for each node v ∈ Sn that has no type

1.3.2 if (Sn ∩ Ci) ∩ (Sv ∩ Ci) 6= ∅ then
1.3.2.1 mark node v in Sn as a Type 3 edge
1.3.2.2 decrement w(v) by 1

1.3.2 end if
1.3 end for

1. end if
end for

Figure 3.1. Row-oriented Pass 1 based on similar algorithm in [4]

There is, however, one complication that arises when using a row-oriented data structure.

This complication involves the handling of fine nodes, and their removal from Gi. Since a

node becomes fine as soon as its weight becomes less than 1, i.e. its column count is 0, it is

possible to have a fine point that still has outgoing edges from the node. The difficulty arises

not with the fine node itself but with the nodes to which it points via the remaining edges

in the row. These destination nodes must become coarse during a subsequent step of the

algorithm. If, however, the fine node is removed from Gi and the weight of the destination

decremented, the destination may become a fine node, possibly violating the constraints of

the coarsening process. As a result, in the row-oriented version, a node is made fine, and

removed from Gi, when its weight drops below 1 and all of its row edges have been removed.

In addition to the removal of fine nodes, this pass is also used to remove the coarse nodes

Ci from Gi+1, and the edges of Type 1 and 2 that are detected during pass 1 step i. Later

17



for each node n ∈ Gi

1. if n ∈ Ci then (the node is coarse)
1.1 remove n from Gi

else if w(n) < 1 & ‖Sn‖ = 0 then (the node is fine)
1.3 add n to Fi and remove it from Gi

else (node stays for Gi+1)
1.5 remove all edges of type 1 and 2 in Sn

1.6 for unmarked v ∈ Sn

1.6.1 if w(n) > w(v) then v /∈ Ci+1

1.6.2 if w(n) < w(v) then n /∈ Ci+1

1.6 end for
1. end if

end for

Figure 3.2. Row-oriented Pass 2 based on similar algorithm in [4]

in the discussion of other implementations, it is shown that nodes in Ci can also be removed

from Gi+1 in the first pass without difficulty.

3.2 Column-oriented version

It is also possible to perform the CLJP coarsening using a column-oriented approach.

The edge information is stored in terms of incoming edges, i.e. the source nodes of edges

ending at node n are stored in ST
n . The weights of the nodes are measured by the number of

incoming edges to a node, therefore this version is potentially much simpler than the CSR

version concerning weight processing. When processing a node n all edge information which

affects the weight of n is stored in ST
n . This simplicity promises to yield a more efficient

parallel implementation.

Like the row-oriented version, this algorithm updates Gi using Ci, by passing through all

nodes in Gi. Nodes in Gi may be either coarse or undetermined and this distinction is used

to define the column-oriented processing.

In loop 1.1 the node n is not coarse, all edges (v, n) where v is a coarse point are Type

1 and are removed immediately.
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for each node n ∈ Gi

1 if n 6∈ Ci then (the node is undetermined)
1.1 for each node v ∈ ST

n ∩ Ci including Type 3 edges
1.1.1. if v ∈ ST

n is not a Type 3 edge
1.1.1. decrement w(n) by 1

1.1.1. end if
1.1.1 remove v from ST

n (Type 1 edge)
1.1 end for

else (node is coarse)
1.2 for each node v ∈ ST

n including Type 3 edges
1.2.1 for each p ∈ S = (ST

n ∩ ST
v )

1.2.1.1 mark node p in ST
v as a Type 3 edge

1.2.1 end for
1.2.2 decrement w(v) by ‖S‖

1.2 end for
1.3 remove n and ST

n from Gi (Type 2 edges)
1 end if

end for

Figure 3.3. Column-oriented Pass 1 based on similar algorithm in [4]

The processing of coarse-points makes up the majority of edge removal in this approach.

In this case, the goal is to remove edges that point to the coarse node (Type 2), and identify

edges between nodes that both depend on the coarse node (Type 3). This can be done

quite simply in terms of the column structures, and the Type 2 edges can be removed

upon completion of processing the coarse node, n, and not after the current step, as in the

row-oriented version.

Essentially, for all coarse nodes n, each node, v, that is in ST
n must be considered. Since it

specifies an edge (v, n) where n is coarse all such edges must be removed (Type 2). Whether

or not they are actually removed is an implementation question since the column and node

n are never used by the algorithm again. Also, note that given a coarse node n, by the

definition of the local maxima, all nodes in ST
n must be non-coarse.

Because the removal of Type 2 edges happens when their coarse node is removed from

the graph, the main goal of the processing coarse nodes is to identify Type 3 edges, such
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as (u, w) in Figure 2.2 and to update, not ST
c , but the ST

w where w ∈ ST
c . In the case of

Figure 2.2, when processing ST
c2, the information in ST

w must be examined and updated since

w ∈ ST
c2. The edge (u, w) is a Type 3 edge and therefore u in ST

w must be marked as Type

3. Since u ∈ ST
c2, the node is easily identified as a member of ST

c2 ∩ ST
w and all nodes in that

set must marked as Type 3 in ST
w (in this case only u).

for each node n ∈ Gi − Ci

1. if w(n) < 1 then
1.1 add n to Fi

1.2 remove n from Gi

1. end if
2. for v ∈ ST

n

2.1 if w(n) < w(v) then n 6∈ Ci+1 end if
2.2 if w(n) > w(v) > 1 then v 6∈ Ci+1 end if

2. end for
end for

Figure 3.4. Column-oriented Pass 2 based on similar algorithm in [4]

The second pass in this algorithm, shown in Figure 3.4 is basically the same as the second

pass in the row-oriented version with the appropriate modifications. In this case, the coarse

points are removed in the first pass. The computation of local maxima must be altered to

use the primarily column information while preserving the bidirectional use of edges when

determining the neighborhood over which the maximum is checked. As before, it is assumed

that all remaining nodes are local maxima and if it is found otherwise, the node is marked

as not in Ci+1.

Fine nodes with outgoing edges must be considered in a way different from the row-

oriented version. When a node, f , becomes fine while an edge (f, v) still exists, care must be

taken. The edge is stored as f ∈ ST
v and the weight of v keeps its contribution. Eventually v

becomes a local maxima and v is made coarse or the edge from f to v becomes Type 3 and v

becomes fine. The only concern, therefore, is when setting the local maxima flag of f while

processing v the code must check if the source of the incoming edge is fine and therefore
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avoid resetting its status to undetermined. Determining the status of f is accomplished in

an implementation-specific fashion.

3.3 A Hybrid Version

The column-oriented algorithm has as its main processing step the update of undeter-

mined nodes that are within the column structure of a coarse node. In that version, for each

coarse node all of the columns of the undetermined nodes are updated based on the column

of the current coarse node. While this form is appealing due to its simplicity, it has some

potential problems with shared and distributed memory parallelism due to synchronization

and communication.

It is possible to reorganize the column-oriented CLJP algorithm to make use of not

only the column-oriented structures, but also the row-oriented ones (see Figure 3.5). In the

hybrid algorithm, the detection of Type 1 edges remains the same as in the column-oriented

algorithm. The difference comes from the manner in which Type 3 edges are detected.

While processing a given node n, the hybrid version uses the Sn structure in combination

with the ST
n structure to detect all Type 3 edges ending at node n. This reorganization of

the algorithm allows the same edge detection to be accomplished while only updating the

weight of the current node n.

In order to understand the reorganization, consider node w in Figure 3.6. The edge from

c1 to w is contained in ST
w and all such Type 1 edges are removed by loop 1 of pass 1 of

the algorithm. The value of w(w) must also be updated accordingly, this can be done after

loop 1 by decrementing w(w) by the number of nodes in ST
w ∩ Ci (details of how this is

handled varies between implementations). The edges of Type 2, from w to c2 and u to c2,

are removed when all edges in ST
c2

are removed by the removal of the coarse node c2 from the

graph. Note that this does not affect w(w) so no weight update is required. When seeking

Type 3, however, the Sn structure must be used. This structure is used to detect the edges

of Type 2 that contribute to the detection of Type 3 edges. Once the edges of Type 2 have

been detected, ST
n is used to find edges of Type 3. Edge (u, w) in Figure 3.6 is representative

of these types of edges. Loop 2 considers edges like (u, w) by visiting each coarse node c ∈ Sn
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for each node n ∈ Gi − Ci

1. for each v ∈ ST
n ∩ Ci including Type 3 edge

1.1. if v ∈ ST
n is not a Type 3 edge

1.1.1. decrement w(n) by 1
1.1. end if
1.2 mark node v in ST

n as a Type 1 edge
1. end for
2. for each c ∈ Sn ∩ Ci including Type 3 edges

2.1 mark node c in Sn as a Type 2 edge
2.2 for each x ∈ ST

n ∩ ST
c

2.2.1 mark node x in ST
n as a Type 3 edge

2.2 end for
2.3 decrement w(n) by ‖ST

n ∩ ST
c ‖

2. end for

Figure 3.5. Hybrid version Pass 1 based on similar algorithm in [4]

c

u

2

w

c
1

Figure 3.6. Hybrid updates
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that is the destination of an edge leaving w. Then every node that is the source of an edge

to c and w is marked in ST
w as a Type 3 edge. Finally w(w) is decremented by ‖ST

w ∩ ST
c ‖.

If Sw is available then its updates are done at the same time as those of ST
w . Keeping

the column and row data structures consistent is only important relative to the coarse nodes

that are selected on each step. In the algorithm above, note that Type 1 edges are marked

in the ST structure while Type 2 edges are marked in the S structure. This does not

cause a problem with the coarsening because there is no interaction between Type 1 and

Type 2 edges. While having these extra edges in each data structure does not effect the

correctness of the coarsening, it can lead to extra processing of edges. Thus increasing the

total execution time of the algorithm. For this reason it is worthwhile to explore the updates

to the data structures and their effects on the execution time of the hybrid algorithm. This

is investigation, however, is not included in this thesis, and is left to future work.

From the algorithm above it is easily seen that the only weight that is affected in

processing a node is the weight of n itself. When implementing a parallel version of the

algorithm this greatly reduces the amount of synchronization required. This topic is discussed

further in Section 4.4

for each node n ∈ Gi

1. if n ∈ Ci then
1.1 remove n from Gi

1. end if
2. if w(n) < 1 and Sn = ∅ then

2.1 add n to Fi

2.2 remove n from Gi

2. end if
3. for v ∈ ST

v

3.1 if w(n) < w(v) then n 6∈ Ci+1

3.2 if w(n) > w(v) > 1 then v 6∈ Ci+1)
3. end for

end for

Figure 3.7. Hybrid Pass 2 based on similar algorithm in [4]

23



The selection of a new Ci and removal of points in Fi from the graph Gi in the hybrid

version, as seen in Figure 3.7, is basically the same as that seen in the column-oriented

version. Nodes with weights less than 1 are removed, and because of this it must be

guaranteed the algorithm does not reset a fine node to an undetermined one. The one

difference between the two versions is that in the hybrid version the coarse nodes are removed

from Gi during the second pass rather than the first pass of step i.

3.4 Implementation

There are several ways to implement each of the versions above based on decisions

concerning supporting data structures, parallelism, and architectural issues. In this section,

preliminary discussions of several important implementation considerations are presented.

These include: experimental framework, membership in Gi, edge storage, coarse-fine

status, intersections, and synchronization. All of these considerations are revisited from

the appropriate point of view in Chapter 4 when specific modifications to the basic

implementations are evaluated.

3.4.1 Experiments

The basis for any multigrid coarsening process is the grid to be coarsened. The

construction of the grid used for experimentation employs the following parameterization.

For each grid, there are four parameters: dimension D, stencil P , boundary condition B and

density K. All grids used in experimentation are square; therefore the dimension, measured

in points, can be expressed as a single parameter, D. Given D, the number of points in the

grid is defined as D ∗D = N . D can take on any range of values, a common value of D is

1,000, yielding an N of 1,000,000.

Once the size of the grid is established, the connectivity of this grid must be defined. The

connectivity of the grid is defined by the three parameters P (stencil type), B (boundary

conditions) and K (density). First, the basic connectivity of the grid is determined by

applying a stencil to each point. This stencil, determined by P , can either be a nine or five

point stencil. Figure 3.8 shows the result of applying either stencil to a single point in a grid

where D = 3 (a 3× 3 grid).
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Figure 3.8. Example of a (a) nine-point and (b) five-point stencil

During the application of the chosen stencil to the grid, some points are on the edge of

the grid. The way in which the construction of the grid handles these edge points is defined

by B, the boundary condition. B differentiates between whether or not periodic boundary

conditions are used. In the case where periodic boundary conditions are used, the stencil

essentially wraps around the edge of the grid and connects to the other side. When periodic

boundary conditions are not used, it can be considered that any points outside the grid do

not exist, therefore no connections that leave the grid exist.

In addition to B, the grid density, K, also modifies the way the stencil, P , is used to

construct connections. K specifies the maximum distance, in terms of the stencil type P ,

between two points that are connected. For example, a value of 2 for K means that the

stencil is applied to a given point, n, creating connections between a number of neighboring

points. Then the stencil is applied again to every one of those points and each point in these

second stencils is connected to the original point, n. This essentially creates a connection

between n and all points that could be reached in 2 steps on the normal graph (where

K = 1). The size of the connectivity neighborhood (the number of points to which a point is

connected plus itself), for a nine-point stencil, can be found based on K using equation 3.1

(2 ∗K + 1)2 (3.1)

Using the above process, a connectivity pattern on the grid is defined. For use in the

coarsening algorithm this grid must be converted to a graph. This conversion process is

simple, and never is actually performed in the code (the actual code constructs the graph

directly). The conversion of the grid to a graph follows two steps: first for every point in
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the grid a node is added to the new graph, then for every connection between two points

in the previous grid, two directional edges (one going each way) are added between the

corresponding nodes in the graph. Once this is complete, the local maxima is determined,

and the algorithm proceeds to coarsen the graph.

The measurement taken for most experiments is total execution time, not including

initialization of the graph. Results are often presented in terms of speedup between two

or more versions of the code. This value is calculated by taking the execution time of the

original code, T (p, orig) where p is the number of processors, and dividing it by the execution

time of the newly presented code, T (p, new), i.e. S(p) = T (p,orig)
T (p,new)

. The function S(p) is then

displayed on a graph. If S(p) is greater than 1 the new code executes faster than the old

code, in fact S(p) is how many times faster the new code is compared to the old code.

In addition to the number of processors, K is also varied for most experiments. As

multigrid coarsening proceeds the coarsening process is recursively executed to define a

hierarchy of coarse grids. Each of these coarse grids is progressively denser. By varying K,

from 1 to 6, this behavior is simulated with only having to perform a single coarsening.

Another common theme throughout the experiments is the value of D. In most

experiments a D of 1000 is used. This value of D is chosen as it represents a typical and

sufficiently large graph. Experiments were run for larger and smaller graphs, with the same

results as the chosen graph. Therefore, the experiments presented use the typical graph.

All experiments are compiled and run on the same Sun Enterprise E4500 server, with 11

processors. Each processor has a 64KB level 1 cache and 2MB of level 2 cache. The total

amount of shared memory is 8GB.

The code for the experiments is compiled using the “Sun WorkShop 6 update 2 C 5.3

(2001/05/15)” cc compiler. The flags -xopenmp and -fast are supplied to the compiler.

-xopenmp turns on OpenMP support, while -fast sets a number of performance options

intended to yield maximum performance, including -x05 (optimzation level 5), and -

xtarget=native (compile for this machine’s ISA only). The sunmath library is required

for compilation (command line option -lsunmath), however, the function call that requires

sunmath is part of the problem setup procedure (which is not timed) and could be easily

replaced for portability reasons. More specifically the function used is d mwcrans (), which

fills the w() array with pseudo random numbers, as required by the CLJP algorithm. This
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function could easily be replaced by a loop and a call to any other pseudo random number

generator.

3.4.2 Membership in Gi

In all versions mentioned in the previous section, membership of a node in Gi, is

maintained. This membership must allow easy association of the nodes in Gi with a loop

schedule that may or may not be parallel. The easiest way to accomplish this is by using an

indirection vector, graph index(1 : N), that is initialized to 1 : N. A loop over all nodes in

Gi is then simply a loop from the position after the removed region to N. Removal from Gi

corresponds to moving an index of a node from the region of the vector that contains nodes

in Gi to one that contains those that have been marked coarse or fine. To allow for easier

removal, assuming sequential processing, this region of coarse and fine nodes is located at

the beginning of graph index. As long as no ordering is assumed on the nodes in Gi, node

removal can be accomplished in O(1) time by swapping the index to be removed with the

first index in Gi and incrementing the initial position of the removed region by 1.

Swapping the nodes with the start rather than the end allows for an easier sequential

implementation. It is known that if node graph index(n+ i), for some positive constant i, is

being processed, then node graph index(n) has already been processed. Therefore if a node

graph index(start + i) is being processed, graph index(start) has already been processed.

graph index(start) can then be swapped with graph index(start+ i) and the algorithm can

move on to processing graph index(start + i + 1). If the inactive region grew from the end

of the list, after swapping, the current position in the active list would have to be processed

again, which is not as simple from an implementation point of view.

During a sequential implementation the order in which the nodes are processed is

guaranteed. In a parallel implementation, however, there is no guaranteed ordering, in

general, to the processing of the nodes. In this case a new method of node removal must be

developed. This new method is discussed in more depth in Section 4.1.
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3.4.3 Edge Storage

For the three basic abstract versions presented in this chapter, edge data is stored in

either the set Sn, the set ST
n or both. These sets are simply a vector containing indices of

the destination or source node in the graph with the second node implicit in the set name.

If edge removal is not used, all edges can be represented by two states (1) active, denoted by

i and (2) marked as removed, denoted by −i. Because these states are a subset of the states

required for edge removal, their discussion is deferred until later in this section. When using

edge removal there are four states in which the edges can exist: (1) active, (2) marked as

Type 1 or 2, (3) marked as Type 3, and (4) removed. In most cases edges move from (1) to

(2) to (4), where they remain. It is only in certain cases that edges must enter State 3, this

is discussed at length in Section 2.3.2. Essentially, edges of Type (g, v) | g, v 6∈ Ci must not

be removed from the graph under the possibility that v could become coarse in a later pass,

and the edge (g, v) would be required to drive the removal of an edge between two other

non-coarse nodes.

Each state requires a unique representation in the edge data structure. The four chosen

representations, for an edge with an index i, are as follows: (1) every edge starts out in State

1, (2) State 2 then can be represented by setting the edge index to N + i, (3) an edge is in

State 3 if its index is −i, and (4) an edge is in State 4 if it is absent from the data structure.

Most edges start in State 1, proceed through State 2 to State 4. This process is

accomplished by, first setting the edge index, i, to N + i. On a later pass, all edges in

State 2 are removed via a swap method similar to the one used for the vector graph index().

When removing the edges it is known that all the edges in State 2 may be removed during a

single pass through Gi, i.e., Type 1 and Type 2 edges can be removed together. Therefore, if

a sorted vector is used to store edge information, there is the option of temporarily allowing

the vector to become unsorted, only to sort it again when the edge removal is complete.

Depending on the number of edge removals required, either choice could lead to better

performance, both are explored further in Section 3.4.4. The remaining state, that of special

edges (State 3), is indicated by negating the value of the edge index, i,. These edges remain

in the graph for further consideration until it is decided that they are to be removed, by the

same test that determines if active edges should be removed. When it is determined that

28



edges in State 3 can be removed, they then enter State 2, just like edges in State 1, and on

the next pass are removed thus entering State 4.

Edges that are marked to be removed (Type 1 and 2) are not used in the determination

of the local maxima edge removal, and therefore, edge removal can be performed during pass

2 of step i as each node in Gi contributes to the construction of Ci+1. When the edges are

detected as Type 1 or Type 2 rather than ignore them, a simple removal process is performed.

Because each node is visited once during pass 2 this process can be done in parallel without

any synchronization.

3.4.4 Edge Removal

Removal from a sorted list can be done in one of three ways: (1) by re-sorting the list

immediately after every edge removal is performed, (2) by waiting until all edges from a list

are removed, then re-sort the list, or (3) by removing edges in such a way that does not

disturb the ordering of the edge list. Due to a more efficient implementation, the latter of

the three is used. This type of edge removal can be achieved using the following method.

The edge list is passed over from the front to back. Once an edge that needs to be

removed is found, it is copied to the temporary storage. At the same time a shift value is

incremented by 1. This shift value is the amount of distance each successive item in the list

must shift, to be in the correct final position. At first, since only one edge has been removed,

the successive edges must only shift by one. As more edges that can be removed are found,

the shift value increases, causing the following edges to be shifted further (to compensate

for the increased size of the gap between active and removed edges). Once the entire list

has been processed, the contents of the temporary storage are copied to the end of the list,

inside the removed region.

3.4.5 Removal Effectiveness experimentation

Figures 3.9-3.12 show the results from the removal effectiveness experimentation for the

three versions. In these experiments both node and edge visits are counted. Note that node

removal does not affect the number of edge visits, and edge removal does not affect the

number of node visits. A node visit is defined as a single iteration of the pass 1 outer loop
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Figure 3.9. Effectiveness of node and edge removal for the row-oriented implementation.

over all nodes in the graph, or in the case of the hybrid, all undetermined nodes in the graph.

An edge visit is similarly defined as a single iteration of an inner loop over all nodes in a

certain edge list (Sn or ST
n ). To clarify this definition, outer and inner loops are defined. In

Figure 3.13 the outer and inner loops of the basic row-oriented algorithm are labeled. This

definition of outer and inner loops is important since it is also used in the discussion of outer

vs. inner loop parallelism in Chapter 4.

In these experiments the number of node and edge visits in a complete coarsening process

of a one million node grid (D = 1000) are recorded for several density levels, K = 1 : 5 with

and without node removal, edge removal, and both removals. The figures show the percent

reduction in the number of node or edge visits caused by node and edge removal, respectively.

This experiment makes a strong case for node removal showing an average of 75% reduction
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Figure 3.10. Effectiveness of node and edge removal for the column-oriented implementa-
tion.

in nodes visits for all levels of density. However, the experiments in Section 4.1.4 show that

this reduction in work, in fact, does not lead to a reduction in execution time.

Edge removal, however, is shown to have little affect on the number of edges visited.

Across all versions less than 5% of the total edge visits are prevented by enabling edge

removal. In order to understand why this is the case, consider what happens when there is

no actual edge removal, only edge pruning. When there is no edge removal all edges can be in

one of two states, mentioned in Section 3.4.3. These two states are, (1) active, denoted by i,

and (2) marked as removed, denoted by −i. In this case, marked as removed is defined as all

edges that have previously driven a weight update (this includes Type 3 edges). Using these

two states, and a simple test of i, edges that have been marked as removed can be excluded

from processing; this method is called edge pruning. The result is that the difference, in
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Figure 3.11. Effectiveness of node and edge removal for the hybrid implementation.

terms of edge visits, between real edge removal and edge pruning is marginal (< 5%). The

lower overhead of the simpler pruning method leads to better overall performance, as seen

in Figure 3.14, than the original edge removal implementation.

The experiment in Figure 3.14 is performed using a standard D = 1000 graph with a

nine point stencil. K is varied from 1 to 3, and the experiment is run on 1 to 11 processors.

T (p, K, prune) is defined as the basic parallel implementation with edge pruning, while the

actual edge removal is defined as T (p, K, remove). The speed up S(p, K) = T (p,K,prune)
T (p,K,remove)

is presented in Figure 3.14. This experiment shows that when the number of processors

is low the extra overhead of actual edge removal inflicts a greater loss in performance. As

the number of processors increases, the total overhead cost lessens. However, due to the

asymptotic nature of the curve, it is unlikely that edge removal is ever be faster than edge

pruning, even on a large number of processors.
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Figure 3.12. The number of edge visits for each version without edge removal (logarithmic
scale). Same instrumented statistics used in the measure of effectiveness (Figures 3.9-3.11)

The performance difference between edge removal and edge pruning verifies that edge

removal does not prevent a significant amount of additional work, when compared to edge

pruning. The 5% additional edge visits do not account for enough work to make the

complicated edge removal worthwhile.

3.4.6 Coarse-Fine Status

Coarse-fine status is represented by a special status vector, denoted the cf vector. The

cf vector is used to indicate the status of a particular node in any of 3 states: (1) coarse,

(2) fine, and (3) undetermined. Membership in each of the 3 states is indicated by the value

of cf(n) for node n. The corresponding values, for a given step i, are as follows: (1) if

node is a member of the coarse set Ch, then cf(n) = h | 0 < h ≤ i, (2) if the node is fine,
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begin outer

for each node n ∈ Gi

1. if n ∈ Ci then (the node is coarse)
begin inner

1.1. for each node v ∈ Sn that has no type
...

1.1. end for
end inner

else (the node is undetermined)
begin inner

1.2. for each node v ∈ Sn ∩ Ci that has no type
...

1.2. end for
end inner

begin inner

1.3. for each node v ∈ Sn

...
1.3. end for
end inner

1. end if
end for
end outer

Figure 3.13. Abbreviated row-oriented pass 1. With outer and inner loops marked.

then cf(n) = 0, and (3) if the node is undetermined, then during step i, cf(n) = i + 1.

The design of this structure is motivated by the aim to avoid an extra pass through the

undetermined nodes of Gi, in order to reinitialize the values of cf that are updated during

the determination of the next set of coarse nodes.

The extra pass is prevented by using the following method for determining coarse and

fine nodes. At the start all nodes have values of 1 in cf , this indicates their presence in C1,

the first set of coarse nodes. The checks on the weights of the nodes are performed by going

through each node of the graph, and determining which nodes should not be in the coarse

set. The value in cf for these non-coarse nodes is incremented to 2, in preparation for the

34



1 2 3 4 5 6 7 8 9 10 11
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
CSR Speed Up for actual vs simulated edge removal

S
pe

ed
 u

p

Number of processors

Edge removal K = 1
Edge removal K = 2
Edge removal K = 3
base
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next pass through cf when C2 is needed, i.e., the earliest that the nodes can be made coarse

is step 2.

If the non-coarse nodes are denoted by a 0, then another pass would be required at each

level, to reinitialize the cf vector. Consider this example, say 0 represents a coarse node in

Ci for pass i, -1 represents a fine node, and 1 represents an undetermined node. The whole cf

vector can be initialized to 1 to start, representing that all nodes are undetermined until they

are found to be coarse. The local maxima algorithm is applied to graph, a set Ci of coarse

nodes is determined and denoted by 0s in the cf vector. The CLJP algorithm is applied,

and then a new set of coarse nodes must be determined based on the resulting graph. Now

because 0 denotes the old coarse nodes, these values must be changed in preparation for a

determination of a new coarse set. A simple reinitialization strategy a pass over the entire

cf , which is of size N . This can be improved by noting that only active nodes are of interest
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in cf . The vector, graph index, used to store the indices of the active nodes could be used to

reinitialize the subset of cf still of interest. By defining a sequence of coarse nodes with the

value of i, the current pass, and defining undetermined nodes as i+1, the cf is automatically

initialized on each pass of the algorithm and therefore no additional reinitialization activity

is needed.

3.4.7 Intersections

In the sequential versions of the algorithm the vector cf can be used to identify

intersections. In particular, the intersection of a set with Ci is easily determined by checking

the value of cf(v) where v ∈ Sn, if it is found that cf(v) = i then it is know that v ∈ Ci.

Additionally when processing non-coarse nodes later in the algorithm, the intersection of

several sets, say: for each v ∈ Sn find Sn∩Sv, can be found for little work by performing the

following. First the values of cf(m) where m is a node in Sn are temporarily set to −cf(m).

The nodes that are in Sn ∩ Sv for several different v’s can be found by checking cf(w) for

each w ∈ Sv. This method also applies directly to the column data structure, ST
n .

Intersections need not always be found using information scattered into a vector of length

N. If the indices in the row or column are sorted, an intersection is easily computed using one

pass through the row or column pair. As seen earlier in this section, maintaining sorted order

does complicate the removal process when an array-based data structure is used. A more

in-depth analysis of implementation specific methods for sorted edge removal and computing

intersections are discussed later in Chapter 4.

3.4.8 Synchronization

When parallelizing any algorithm, attention must be paid to the cost of performing

synchronization between processors. With OpenMP there are two fundamental types of

synchronization, lock-based and barrier. Several key differences exist between these two

types, and with these differences come tradeoffs.

Lock-based synchronization Lock-based synchronization is used to protect critical

blocks of code which modify objects in the shared data space. Before entering a critical
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block of code, the processor sets a certain lock, the lock remains set until the processor

unlocks it, usually when it is done updating the shared data. Any other processors that

try to acquire the same lock, while it is set, are forced to wait until the lock is released.

Lock-based synchronization is the simplest form of synchronization and tends to require less

modification to the algorithm than other forms of synchronization.

Barrier synchronization Barrier synchronization involves a point in the code, usually

after a loop, where all processors must complete the work above the barrier, namely the

loop, before any processor can proceed past the barrier. In order to take advantage of

barrier synchronization it is required that updates to the global shared data be delayed until

after the current parallel loop. A common method of delaying the update to the shared data

is to add processor local storage where updates can be accumulated before they are merged

with the global data at the end of the loop. This, however, requires an additional parallel,

or sequential loop to be added after the barrier. Chapter 4 contains more detailed specifics

about various implementations that take advantage of barrier synchronization.

Experiments A simulation is used to estimate the amount of time required by each of

the two possible synchronization methods. The model represents the cost of acquiring and

releasing a single lock, when there is no possibility of contention for that lock. The model

is run on a single processor/thread, using an OpenMP parallel-for-loop. The loop performs

a series of non-trivial updates of a shared array, one of which is protected by a lock. The

operations, while they serve no purpose, are designed to prevent the compiler from optimizing

them away. For each type of synchronization two versions of the code are compiled and run;

one with synchronization, and one without. The difference between the execution time of

these two loops divided by the number of iterations (twenty million) yields the average cost

per set/unset pair of lock operations.

For barrier synchronization the same loop is used, except instead of locks a barrier

is added. After the barrier there is a second loop with a single update operation. This

represents the pass over the temporary storage and the update of the global data structure

required when using barrier synchronization. So that barrier synchronization could be

compared with lock-based synchronization the difference between the two loops is once again
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divided by the number of iterations. While the cost per loop iteration has no meaning for

barrier synchronization, it still represents the average affect of barrier synchronization on

the execution time of the loop.

The final measurements in Table 3.1 are the averages of ten runs. While critical sections

are also included in the testing, they are not used or discussed in Chapter 4 since, in OpenMP,

they can only be differentiated by symbolic compile-time constants. As a result, in order to

use critical sections effectively in the CLJP algorithm the nodes must be partitioned into a

number of groups that are independent of the number of processors used at run-time. Critical

sections are included in this model to determine if the cost is low enough to warrant further

inspection. Given the small difference in cost, especially compared to barrier synchronization,

a critical section implementation is not investigated.

Type of sync Time(ms) % Slower Cost per unit: (ns) (cycles)
No sync 1070.117 Baseline N/A N/A
Critical 2342.285 118.88% 159 63
Locks 2492.141 132.88% 177 71
Barrier 1753.801 63.89% 85 34

Table 3.1. Times for various methods of synchronization (average of 10 runs)

From the results shown in Table 3.1 it is apparent that the cost of a lock is quite

significant. Even without competition between processors the average cost per lock set

is 177ns. Given the clock rate of the machine (400Mhz), that translates to approximately 71

cycles per set of locks. Barriers, on the other hand, cost 34 cycles when the overall cost of

the barrier is divided by the number of loop iterations. Section 4.1 discusses in more detail

the tradeoffs between locks and barriers, and various methods to employ a combination of

the two to achieve maximum performance.
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CHAPTER 4

MODIFICATIONS

4.1 Compressed Sparse Row

This section explores the various modifications that are made to the row-oriented version

of the CLJP algorithm during implementation. For each version a number of defining features

are discussed, including data structure choices and algorithmic changes. Arguments are given

for the choices made, and experimental data is provided to support or reject these arguments.

For all of the following versions, the cf vector is implemented as discussed earlier, therefore

it is not mentioned. Any other aspects that are not mentioned can be assumed to be

implemented in a way corresponding to previous descriptions.

4.1.1 Data structure definition

For the row-oriented algorithm the choice of data structure is simple. The desire to be

compatible with BoomerAMG, and to have a simple and flexible data structure suggests a

compressed sparse row (CSR) format[8]. The CSR format allows a matrix with with several

zero elements, i.e. a sparse matrix, to be represented in a compressed format, thus saving

memory and reducing access costs. The standard CSR format consists of three arrays. The

first array AA contains all the non-zero elements of the original matrix, a(i,j). However, since

the matrix is a connectivity matrix and all non-zero elements are 1, this array does not need

to be represented in this implementation. The second array JA contains the column indices

of the non-zero elements that are in AA. This array, JA, is similar to S mentioned before,

the column indices of the connectivity matrix are the node ids of nodes with incoming edges,

represented by a 1 in the connectivity matrix. The third, and final array IA consists of
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pointers to the beginning of each row in both AA and JA. Thus, IA(i) is the location in

JA of the list of non-zeros of the ith row of a (the edge list).

For this implementation a few adaptations to this general definition of CSR are made.

The JA array, which is now referred to as S, is exactly the same as defined. The chosen

method for performing intersections of edge lists (each row of the original matrix), requires

that the edge lists in S are sorted. Therefore, the column indices associated with a row are

stored in increasing order in S. A slight modification is also made to the IA array. Instead

of having a single IA array to point to the start of the edge lists, in S, two arrays of pointers

S ps and S pe are created. These contain the starts and ends of each edge list in S. The

second array of pointers is added to simplify the processing and removal of edges from the

edge list.

The edge list is processed by starting at the front, and moving across each node in the list,

until the end of the list is reached. Intersections are performed by simultaneously moving

across two lists only processing nodes that are in both lists. This method of computing

the intersection does require that the edge lists are sorted, this is why this implementation

imposes an order requirement on the S array. If there is no actual edge removal, sorted order

can be maintained throughout the coarsening process for free. During coarsening without

edge removal, the only changes made to the edge list are the various edge type classifications,

and the marking of an edge as removed. As described in Section 3.4, this is accomplished by

negating the node id in the edge list which represents the edge that should not be considered.

When edge removal is performed the method of maintaining a sorted list of edges explored

in Section 3.4.3 is used.

4.1.2 Level of Parallelism

This section describes the various choices presented when parallelizing the algorithm.

The first of these choices being, what loop to parallelize. Each pass of the CLJP algorithm

consists of two types of loops, as defined in Section 3.4.5, the outer loop over the nodes n

from 1 to N , and the inner loops over the edges of node n. Either of these loops can be

parallelized with various tradeoffs between the two options.

Outer loop parallelism When the outer loop of each pass is parallelized the amount
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of code inside the parallel section is much larger, greatly reducing the overhead to real

work ratio. Including most of the algorithm inside of a single parallel block also increases

the number of instructions that can be executed while in parallel, thus making the most

efficient use of the available resources. Even though this method is the most efficient from

the scheduling overhead point of view, it presents a few problems. When an edge is removed

from the graph the weight of its destination node must be updated. In the CSR algorithm,

due to the fan-out nature of coarse-driven edge removal, and the removal of Type 3 edges, it

is possible that two different processors could remove two different edges whose destination is

the same node. The weight information for each node is stored in the shared data structure,

therefore the update of a weight must be protected by a lock. This locking behavior is the

most significant source of non-work delay in the algorithm at this level of parallelism.

After weight updates, the second most important concern with outer loop parallelism

is the processing of intersections. When working in parallel, using a scatter vector for the

intersection would require a different vector of size N for each processor. The alternative to

this excessive use of memory, is to require the edge list to be sorted. If edge pruning, which

is faster than edge removal, is used, then no action is required to maintain sorted order. Due

to the excessive size requirements of the first method for intersections and the simplicity of

the second method, the latter is used.

Inner loop parallelism Many of the concerns about the parallelization of the outer loops

can be avoided completely when working with inner loops. When the parallelism is over the

inner loops, weight updates do not require locks. Since there is no parallelism across different

nodes, two edges that point to the same node can not be removed by different processors at

the same time.

Inner loop parallelism also allows for more efficient intersections, the use of the scatter

vector in combination with inner loop parallelism can be beneficial. The nature of intersec-

tions performed in the CLJP algorithm are such that a single set can be scattered into a work

vector, in parallel. That work vector can then be used to perform a number of intersections,

also in parallel. As long the density of the graph is sufficiently high, i.e. the number of edges

per node is sufficiently larger than the number of processors, this method can be efficient.
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Figure 4.1. Speed up comparison for outer loop parallelism and inner loop parallelism

Comparison between levels of parallelism

This experiment is run on on the standard graph D = 1000, with K = 1 : 4, and on 1-10

processors. The synchronization calls are left in for all numbers of processors, including 1.

For T (p, orig) the outer loop, as defined above, is parallelized. For T (p, new) the inner loop,

also defined above, is parallelized. The speedup S(p) = T (p,orig)
T (p,new)

for various densities (K), is

shown in Figure 4.1.

Because of the extremely small amount of work done in the inner loops, only the loop

that detects edges of Type 3 could be parallelized in such a way that the execution time

of the algorithm was reduced by parallelism. When detection of Type 1 or Type 2 edges

is parallelized with inner loop parallelism the execution time increased from the sequential

version. The loop overhead of processing across 10 processors is considerably larger than
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the work done inside either of these loops. The significant overhead in processing a parallel

loop causes the inner loop parallelism to be only beneficial for very dense graphs, and on a

limited number of processors.

The graph in Figure 4.1 shows the speed up achieved when using inner loop parallelism

instead of outer loop parallelism. At first, even for low density graphs there is a significant

speedup when running the parallel code on 1 processor. There are two reasons for

this speedup, the first reason is because weights can be updated without lock-based

synchronization. As shown in previous experiments concerning the locking behavior of the

Sun Enterprise E4500, even if there is no collision, as is the case on one processor, locking

takes a significant number of cycles. When the work being done inside the lock takes only

a few cycles, a penalty of 71 cycles affects performance considerably. The second reason for

a speed up on 1 processor is because the intersections in the inner loop version are slightly

faster than those performed in the outer loop version.

As the density of the graph increases, the speed up for 1 processor increases as well. When

the density is increased the number of edges per node goes up, thus increasing the amount

of weight updates that must be performed per node. The major performance increase in

the inner loop version comes from the removal of locks on weight updates. Therefore, as the

number of weight updates increases so does the performance.

This trend holds true as the number of processors increases. The most significant cost of

inner loop parallelism is the loop overhead required to start processing on several processors.

Though the reduction in the number of locks helps to offset this overhead, there just is not

enough work done in the inner loop to make up for the overhead, even at high levels of

density. As a result of this performance analysis, outer loop parallelism is used throughout

all parallel implementations of the algorithm.

4.1.3 Parallelization

The use of outer loop parallelism, forces all weight updates to be protected by a lock.

This is due to the fan-out nature of the CSR algorithm, and the method by which Type

3 edges are detected. This aspect of the algorithm sets up the possibility that two edge

removals on different processors may try to update the same weight at the same time. To
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prevent conflicting updates to the shared data structure, a lock must be acquired before a

weight can be updated safely.

Intersections When using outer-loop parallelism care must be taken in choosing an

efficient method of computing the intersection of two edge lists. By using an ordered edge

list intersections can be performed in a single pass over both lists. Additionally, as long as

there is no edge removal, no time is spent maintaining sorted order of the edge list. For the

reasons mentioned above, this algorithm uses the sorted edge list method of intersection.

Lock granularity When using locks for synchronization, a key choice must be made

involving the lock granularity, or ratio between the number of locks and the number nodes.

Through analysis of the algorithm, it can be determined that different processors can be

in the same block of code at the same time, as long as they are not updating the same

shared data. Therefore, since only weight updates require protection from locks, the finest

granularity that can be used is one lock for each weight, i.e. one lock per node. However,

while this extreme measure reduces contention, it also hurts cache performance. By requiring

each processor to acquire a lock for every node that it updates, the number of writes to

memory per weight update is doubled (from 1 to 2). This increases false sharing, in that

when one processor writes to a cache line, all other locks on that line are flushed from the

other processors’ cache, thus causing an increase in the total number of cache misses.

Figure 4.2. The bi-directional connections between a single node in a graph constructed
with a nine point stencil and a value of 1 for K.

44



The effects of this fine lock granularity can, however, be mitigated by using a mapping

of nodes to locks, where there are LG nodes per lock. This method of mapping more than

one node onto a lock is meant to exploit the locality of weight updates found in the CSR

algorithm when removing Type 1 edges. Consider Figure 4.2, if the center node is coarse then

the edges leaving that node will be removed as Type 1 edges, thus causing the weight update

of every node to which the center node is connected. Using the natural ordering the graph,

it is known that each of the three rows of nodes will have consecutive node ids. Therefore, if

these three nodes are mapped to a single lock, by a simple node id/LG operation, then the

update of these three nodes, while still requiring three separate lock operations, will use the

same lock each time thus improving cache performance. Also, as the density, K, increases

the rows of consecutive node ids will grow larger, allowing more nodes to be mapped to a

single lock. It would be even more beneficial if a single lock operation could be used to

update all of the weights that map to a certain lock, however, as the density of the graph

increases and the stencil becomes more complex, the method for accomplishing this becomes

increasingly difficult, and is expected to lead to an overall decrease in performance.

Lock granularity experiments This experiment is run on on the standard graph

D = 1000 constructed using the standard nine-point stencil, with K = 1 : 6, and on 10

processors. The version tested is the basic parallel implementation described above, with a

modification to the locks protecting the weight updates. The basic parallel implementation

uses, by default a lock granularity of 1. In this implementation there is an array of locks of

size N indexed by the node id whose weight is to be updated. When that lock is set, no

other processor can update that weight. The modification made in this experiment defines

an array of size N/LG, where LG is the lock granularity, which varies from 1 to 16 in variable

increments. The array of locks is then indexed by a new mapping n/LG, where n is the node

id of the weight to be updated. Because of the round off in the integer divide operation, this

maps LG nodes to a single lock.

The execution time can be parameterized in terms of a time function T (p = 10, K, LG).

The speed up: S(LG) = T (p=10,K,1)
T (p=10,K,LG)

for varying lock granularities and different values of K

is shown in Figure 4.3.
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Figure 4.3. Speed up over granularity of 1 for varying lock granularities on the CSR
algorithm. 10 processors, 1 million nodes, Ninepoint laplace operator

From Figure 4.3 it can be seen that varying lock granularities have distinct effects on

the execution time of the algorithm. The effects however, appear to be random for all lock

granularities, except 2 and 4. A first glance it is expected that a power of 2 is the cause of

this increased performance, however, the pattern is not repeated for granularities of 8 or 16.

At this time, the effect of lock granularity on the CSR algorithm is unknown, and left to

future work.

4.1.4 Node removal

Despite the overall efficiency of node removal (see Section 3.4.5), the presence of leftover

nodes in the graph results in a minimal amount of extra work, therefore finding a suitable
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node removal method was difficult. This section analyzes the best method of node removal,

the processor local active list.
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Figure 4.4. Speed up for processor local active list, for various list sizes, vs the base version
without node removal.

Processor local active list By using a vector of size N on each processor, a list of active

nodes is maintained without the need for explicit synchronization. The initial version of this

implementation allowed for a smaller vector per processor. When the vector filled up, a lock

is performed and the vector is emptied. However, as seen in Figure 4.4 and discussed below,

a list of size N , where locks are not required, is the best choice for this implementation.

Processor local active list experiment This experiment uses a standard graph D =

1000 constructed using the standard nine point stencil. The experiment is run with K = 1 : 4,
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and on 10 processors. T (K, orig) is defined as the basic parallel implementation with no

edge or node removal, lock granularity of 1, and no delayed weight updates. The version

being examined, the processor local active list, is defined above. The execution time of this

version is represented by T (K, S, local). Where S is the size of the active list (values 1 to

SIZE = 1million in factors of 10). The speed up S(K, S) = T (p=10,K,orig)
T (p=10,K,S,local)

is presented in

the bar graph in Figure 4.4

Figure 4.4 shows that there is little difference in performance once the list reaches a

considerable size. Therefore, the processor local active list that does not require lock-based

synchronization is used. This decision is motivated by the desire to limit synchronization,

while keeping the algorithm both simple and efficient.

4.1.5 CSR Edge Removal

In edge removal the overall effectiveness of preventing edge visits is low. Therefore, in

order for edge removal to be beneficial, the cost of removing an edge must be sufficiently

small. This section discusses the choices made during the implementation of edge removal.

Edge removal In this version, when it is detected that an edge can be removed from the

graph, it is set to the proper type, as described in Section 3.4. The edges can be removed

in parallel during the second pass when the local maxima are determined. If there is no

ordering requirement on the edge list, this removal can be performed in O(1) time. The

chosen method for finding intersections, however, requires a sorted edge list; therefore, when

removing one or more edges from a list, sorted order must be maintained. This is achieved

by using the process described in Section 3.4.4.

Node removal with edge removal A combination of the described version of node

removal with that of edge removal yields the complete removal implementation of the CSR

algorithm. The only synchronization required by this version, other than synchronization of

weight updates, is the use of an implicit barrier between pass 2 and the subsequent pass 1.

Complete removal experiment This experiment is run on on the standard graph

D = 1000 constructed using the standard nine point stencil. The experiment is run
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Figure 4.5. Speed up for node and edge removal vs base implementation. Density: K=1

with K = 1 : 3, and on 1 to 11 processors. T (p, K, base) is defined as the basic

parallel implementation using edge pruning, no node removal, outer loop parallelism, a lock

granularity of 1, and no delayed weight updates. The version being examined, the processor

local active list with actual edge removal, is defined above. From this version, there are three

possible configurations: (1) node removal only, which is defined by T (p, K, node), (2) edge

removal only, which is defined by T (p, K, edge), and (3) node and edge removal, which is

defined by T (p, K, node+ ege. The speed ups for these three configurations can be found by

using the following equations:

S(p, K, node) =
T (p, K, base)

T (p, K, node)

S(p, K, edge) =
T (p, K, base)

T (p, K, edge)
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Figure 4.6. Speed up for node and edge removal vs base implementation. Density: K=2

S(p, K, node + edge) =
T (p, K, base)

T (p, K, node + edge)

The results are then presented in Figures 4.5-4.7

From Figures 4.5-4.7 it can be seen that on their own neither node nor edge removal

provide any performance improvement at all. In fact, they cause a decrease in performance.

However, when combined, node and edge removal show a small increase in performance.

Unfortunately this small increase is not a significant one. Regardless, considerable effort was

put into determining the source of this small improvement. At the time of writing this thesis,

no solution has been found, and thus further investigation must be left to future work.
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Figure 4.7. Speed up for node and edge removal vs base implementation. Density: K=3

4.1.6 Weight updates

In the row-oriented algorithm weight updates require synchronization. It has been shown,

in Section 3.4.8, that the Sun Enterprise E4500 architecture has a significant cost for lock

synchronization, even if there is no collision; while barrier synchronization, can provide

synchronization for much less. This tradeoff motivated the following modifications to the

CSR algorithm, where the weight update locks are either minimized, or completely eliminated

Scatter vector for weight updates By creating a unique identifier for each edge leaving

a given node. It is possible to create a temporary E ×N matrix, where E is the number of

edges per node, and perform weight updates in parallel. The temporary matrix is indexed by

the node id and unique edge id to provide a unique storage location for every possible weight
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update. Therefore, weight decrements can be applied to this matrix, in parallel, without the

need for locks. At the end of the pass, the weight decrements of each node, stored in the

matrix, are coalesced into a single update of the shared weight vector. Since each processor

only reads and updates the weights of the node it was assigned, this can also be done in

parallel. However, the experiments show that this is a poor choice, as the pass over the

vector of size E×N is too great a cost to be absorbed by the performance increase resulting

from the removal of locks.

Hash table for weight updates The poor performance of the scattered weight updates

motivated an investigation into a way of reducing the size of the temporary storage. By

using a hash table, and exploiting the locality of edge updates, several weight decrements

can be collected in a small amount of space. The hash table is implemented with a fixed

block size of 2, 8 bit decrement counters. The first 17 low order bits are used for the index

(16 bits) and offset (1 bit). The 15 remaining high order bits are used for the tag.

The process of performing a weight update proceeds as follows. When a processor finds

that it needs to perform a weight update, it checks its hash table. If the block, to which

the weight update maps, is empty then a weight update block is created and one of the

decrement counters is increased. If the block contains an entry already, the tag is compared,

if it matches then the local decrement counter is updated. Otherwise the processor is forced

to perform a lock and update the weight in the shared weight vector.

Experiments This experiment is run on on the standard graph D = 1000, constructed

using a nine point stencil. The number on processors vary from 1 to 10. Three separate

graphs show the results for the three different implementations. The base used for comparison

is a basic parallel implementation with no other enhancements, T (p, K, base). The weight

vector implementation, T (p, K, wv) is implemented as described above, as well as the inverse

of the weight vector, T (p, K, wv2). Finally, the hash table, T (p, K, wh) is also implemented

as described. The speedup S(p, ver) is achieved by the following equations:

S(p, wh) =
T (p, K, base)

T (p, K, wh)

S(p, wv) =
T (p, K, base)

T (p, K, wv)
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Figure 4.8. Performance of the Weight Vector modification. Speed up for Weight Vector
vs. the base implementation.

S(p, wv2) =
T (p, K, base)

T (p, K, wv2)

The resulting S(p, wh), S(p, wv), and S(p, wv2) can be seen in Figures 4.8-4.10. From these

figures, it can be shown that that these methods do not provide any improvement in the

execution time of the code.

4.1.7 Conclusion

From the analysis of the modifications made to the CSR algorithm, it is apparent that

the performance of the algorithm on this architecture, is dominated by the synchronization

costs and excessive number of unnecessary edge visits. The experiments in this section show

that as long as removed nodes and edges are marked as such, they do not have to be removed
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Figure 4.9. Performance of the Weight VectorT modification. Speed up for Weight VectorT

vs. the base implementation.

from the data structure. As the presence of these marked nodes and edges, does not affect

the execution time of the algorithm enough to warrant the extra work and synchronization

required to remove them from the graph. Additionally, both the weight vector and hash table

did not produce any benefits. It is suspected that the benefit from reduction in number of

locks is not great enough to offset the work that is required after the pass. Both of these

methods add the equivalent of a third pass over all the nodes in the graph.

Given the experiments in this section the final version of the CSR algorithm is defined as

follows. The parallelism is over the outer loop of the algorithm. Node removal is not used,

all nodes remain in the graph but are marked as coarse, fine, or undetermined (only the

current set of coarse nodes and undetermined nodes are processed). Edge pruning is used

to reduce wasteful edge visits. The simplest, lock per weight update locking scheme is used
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Figure 4.10. Performance of Hash table modification. Speed up for the Hash table vs. the
base implementation.

with a lock granularity of 1. This final CSR algorithm is later compared to the other two

algorithms defined in Sections 4.2 and 4.4.

4.2 Compressed Sparse Column

This section explores the modifications that can be made to the basic column-oriented

version of the CLJP algorithm. This section discusses if and how each of these techniques

applied to the CSR-based code can be used to develop a high-performance column-oriented

version.
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4.2.1 Data structure definition

The CSR data structure had several problems that led to an overall inefficient paralleliza-

tion. In hopes of avoiding these these problems, a different data structure organization is

used. This format is in many ways similar to the previous one (CSR), but it is also has key

differences, which allow for a more efficient implementation of the CLJP algorithm. This

new format is called compressed sparse column, or CSC[8]. The standard CSC format is

defined much in the same way as the CSR format is in the last section, except now the

non-zero elements of the matrix are stored in column order. In this format AA would be the

list of all non-zero elements in the array stored in column order, and once again, just like

in CSR, this array filled with 1’s and unneeded for the algorithm. JA then would be the

row-indices, i in a(i,j), of each element in AA. Finally, the IA array contains the pointers to

the start of columns in AA or JA.

For the implementation, the same adaptations that are made in the CSR discussion, are

made to this CSC format. The JA array is referred to as ST , and as before the edge lists of

ST are initially sorted, this time by the value of j in a(i,j). The IA array, now called ST ps is

augmented with an additional array ST pe which points to the end of edge lists. This plays

significant role in the column-oriented version of the algorithm, as all Type 2 edges for a

given coarse node c can be removed from the edge list by performing the following operation:

ST pe(c) = ST ps(c) (i.e. the end of the list is set to the beginning, so this edge list is now

empty, just as if all edges are removed by conventional edge removal).

4.2.2 Similarities between the CSR and CSC algorithms

Much of what was learned from the modification of the CSR algorithm can be applied

to the CSC algorithm. The following discussions from the CSR algorithm apply directly to

this CSC algorithm: (1) the discussion of data structure choices, (2) the level of parallelism

discussion, (3) the poor performance of edge removal, and (4) the implementation of node

removal.

In the CSC algorithm the data structure is used in much the same way as in the

CSR algorithm. Therefore, the performance trend for the array-based data, in the CSC

algorithm, is similar to what is observed in the analysis of the CSR algorithm. Additionally,

56



1 3 5 7 9 11

0.94

0.96

0.98

1

1.02

1.04

1.06

Speed Up for size 1mill nodes base over node removal
S

pe
ed

up

# of Processors

CSC K2
CSC K4
CSC K6
base

Figure 4.11. Speed up for Node removal (CSC). A simple comparison between the execution
time of the CSC algorithm with and without node removal for a number of densities (K).
This figure shows that node removal has no significant impact on the execution time of the
CSC algorithm.

since the loop structure between the CSR and CSC algorithms is nearly identical, the

parallelism discussions map equally well onto the CSC algorithm. Instrumented statistics

(Figures 3.9-3.11) show that node and edge removal have the same effectiveness as in the

CSR algorithm, making edge removal equally impractical across both versions. Finally, the

implementation of node removal is the same as in the CSR algorithm, and as would be

expected there are similarities in the performance, see Figure 4.11.

Node removal experiment This experiment uses the standard graph where D = 1000

the connectivity is constructed using the standard nine point stencil. The experiment is

run with K =2,4, and 6. The number of processors is varied from 1 to 11 in increments
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of 2. T (p, K, base) can be defined as the basic parallel CSC implementation using edge

pruning, no node removal, a lock granularity of 1, and no delayed weight updates. The

version being examined, the processor local active list, is defined in the previous section.

The execution time of the processor local active list is defined as T (p, K, local). The speed

up S(p, K) = T (p,K,base)
T (p,K,local)

is show in Figure 4.11.

From Figure 4.4 it can be seen that, like the CSR algorithm, the CSC algorithm also

does not lend itself to node removal.

4.2.3 Differences between the CSR and CSC algorithms

While many of the observations from the CSR algorithm apply to the CSC algorithm,

there are two aspects of the implementation that are notably different. These are, fan-in

edge traversal and delayed weight updates. First of all, the CSC algorithm, employs a fan-in,

instead of fan-out method for weight updates. The fan-in method provides two distinct

performance advantages: (1) less wasted edge visits, and (2) improved synchronization.

A large difference in edge visits performed by the CSC algorithm compared to the CSR

algorithm results from the method by which the CSC algorithm detects Type 3 edges. In the

CSR algorithm, Type 3 edges are detected from the undetermined nodes of the graph. While

in the CSC algorithm, because edges are stored based on thier destination node, Type 3 edges

are detected from the point of view of a coarse node. By the definition of coarsening, there

will typically be a much larger number of undetermined nodes than coarse nodes, and for

high densities, the number of undetermined nodes can reach in excess of 80 times the number

of coarse nodes. In both versions, the CSR and CSC algorithms, the detection of Type 3

nodes is a complicated process requiring a the traversal of at least # edges per node2 and

at most # edges per node3 edges. In the CSC algorithm, however, this deep edge traversal

only happens for the coarse nodes in the graph, which are not only much fewer in number

than undetermined nodes, but also are more likely to drive a useful removal of Type 3 edges.

In addition to decreased edge visits, the CSC algorithm, using a more natural method for

Type 1 edge detection, exhibits improved synchronization. In the CSR algorithm a fan-out

method is used for edge removal. When processing a coarse node, the CSR algorithm removes

all edges leaving that coarse node. This causes the weights of several different nodes to be

updated. For each of these weight updates a lock operation is performed. This leads to a high
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contention rate, as well as a large overall number of lock operations. The CSC algorithm,

however, employs a fan-in approach for edge removal. In the CSC algorithm, coarse-driven

weight updates are performed during the processing of undetermined nodes. This allows,

in a single pass over the incoming edges, the detection of all Type 1 edges, those with a

coarse node as the source. Each of the Type 1 edges causes a weight update, but, unlike

the CSR algorithm, in the CSC algorithm these weight updates are all performed on the

node that is being processed. This difference provides a number of performance benefits for

the CSC algorithm; such as (1) reduction in the number of locks required, (2) better cache

performance, and (3) less lock contention.

The reduction in the number of locks comes from the fact that in one pass over the

structure ST
n several Type 1 edges, that each cause an update of w(n), can be detected. By

using a temporary counter the weight updates caused by these edges can be accumulated

and applied to w(n) after the pass over ST
n is complete. This only requires a single lock,

instead of several, as in the CSR algorithm. At first it would seem that this update does not

need a lock. However, because Type 3 edge updates take place on coarse nodes, and affect

the weights of undetermined nodes. It can be the case that two processors, even though they

are performing Type 1 and Type 3 edge updates, could update the same weight. Therefore

a lock is required on Type 1 edge updates as well as Type 3 edge updates.

The fan-in approach also improves cache performance. By only updating a single element

of the global data structure less shared cache lines are changed. This means that less cache

lines are flushed from the caches of other processors, leading to a greater probability of cache

hits.

Lastly, in addition to the reduction in the number of lock operations required, which

reduces contention on its own, the fan-in method reduces lock contention directly. Consider

the fact that all weight updates driven by Type 1 edges are performed on the node that is

currently being processed. Because the sets of nodes given to each processor are disjoint,

no two processors performing weight updates based on Type 1 edges can update the same

weight. Therefore, there can be no lock contention between two Type 1 driven weight

updates. Since Type 2 edges do not cause weight updates, the only possible contention

comes from the weight updates of Type 3 edges. This leads to a reduction in the chance of

lock contention in the CSC algorithm by #Type1
#Type1+#Type3
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Unlike the CSR algorithm, delayed weight updates cannot be performed in the CSC

algorithm. In the CSC algorithm, while detecting Type 3 edges, two different triangle

conditions that would drive the removal of the same edge can be processed at the same

time, by different processors. Therefore, a final test of the edge status before the edge is

updated is required to prevent the edge from erroneously being marked as Type 3 twice,

thus decrementing the weight of its destination node twice. However, even with this final

test, it is still possible for one processor to reach the test, when another processor has passed

the test, but not updated the status of the edge. In this case, the weight of the destination

node is still decremented twice. To solve this problem a lock, indexed by the node-id of

the node whose weight is updated, must be acquired before the test and update of the edge

status is performed. Thus increasing, relative to the CSR algorithm, the size of the critical

section associated with the weight update. While this is not a significant problem for the

CSC algorithm, it does prevent any form of delayed weight update from being useful.

4.3 Summary of the CSR and CSC algorithms

Figure 4.12 shows the results of a simple experiment, which is performed to compare the

execution time of the CSR and CSC algorithms. As shown in previous discussions, node

removal and delayed weight updates have insignificant impact on the execution time of these

versions, therefore they are not included in this comparison. The experiment is performed

on a graph with D = 1000 the connectivity is constructed using a nine-point stencil, with no

boundary conditions. The number of processors, as well as the density of the graph is varied

to show the performance of the CSR and CSC algorithms under a wide range of conditions.

The execution times of the two versions are defined as T (p, K, CSR) and T (p, K, CSC) for

CSR, and CSC respectively. The figure shows the speed up S(p, K) = T (p,K,CSR)
T (p,K,CSC)

, or the

number of times faster the CSC algorithm is than the CSR algorithm.

As shown in the previous section, the CSR algorithm has a number of problems. Without

deviating too far from the original design of the algorithm a column-oriented (CSC) data

structure can be used to greatly simplify the coarsening process. This has been shown in

the case of the CSC algorithm. Figure 4.12 shows that the CSC algorithm is up to 15 times

faster than the CSR algorithm on one processor, and for K = 6 up to 4 times faster on

60



1 3 5 7 9 11

1

2

3

4

5

7

9

11

13

15

Improvement of the CSC algorithm
S

pe
ed

up

# of processors

K = 6 

K = 5 

K = 4 

K = 3 

K = 2 

K = 1 

Figure 4.12. Improvement of the CSC algorithm over the CSR algorithm.

11 processors. The downward trend of the CSC algorithm’s speed up, as the number of

processors increases, is attributed to the parallel efficiency of the CSC algorithm, which is

discussed later in Section 5.1

4.4 Modified Version

This section explores the modifications than can be made to the hybrid version of the

algorithm, as discussed in Section 3.3 this version uses a combined data structure, called

MOD. This data structure has 2 copies of the required edge information. One copy is made

up of the row information from the CSR data structure, while the other contains the columns

in the CSC data structure. This section discusses how this extra edge information effects

the modifications made to the algorithm.
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4.4.1 Similarities between CSR, CSC, and MOD

As in the CSC algorithm, much of what was learned in the discussion of the CSR

algorithm applies directly to the MOD algorithm. This includes data structure choices,

level of parallelism, and poor performance of edge removal. The reasons for these applying

across versions is given in the previous section, and is repeated here.
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Figure 4.13. Speed up for Node removal (MOD). A simple comparison between the
execution time of the MOD algorithm with and without node removal for a number of
densities. This figure shows that node removal has no significant impact on the execution
time of the MOD algorithm.

In the CSC and MOD algorithms, the data structure, despite storing different data,

is used the same way as in the CSR algorithm. Therefore, it is safe to reason that the

array-based data structure yields performance trends similar to what is observed in the

analysis of the CSR algorithm. Additionally, since the loop structure between the CSR,
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CSC, and MOD algorithms is nearly identical, the parallelism discussions map equally well

onto the CSC and MOD algorithms. Instrumented statistics in Figures 3.9-3.11 show that,

in the MOD algorithm, removal has the same overall effectiveness. Making removal equally

impractical across all versions. Finally, in addition to the effectiveness, the implementation

and performance of node removal in the MOD algorithm is observed to be consistent with

both the CSC and CSR algorithms, see Figure 4.13.

Node removal experiment This experiment uses the standard graph where D = 1000

the connectivity is constructed using the standard nine point stencil. The experiment is run

with K = 2, 4, and 6. The number of processors is varied from 1 to 11 in increments of

2. T (p, K, base) can be defined as the basic parallel MOD implementation with, no node

removal, and a lock granularity of 1. The version being examined, the processor local active

list, is defined in Section 4.1. The execution time of the processor local active list is defined

as T (p, K, local). The speed up S(p, K) = T (p,K,base)
T (p,K,local)

is show in Figure 4.13. From this figure

it can be seen that, like the CSR and CSC algorithms, the MOD algorithm also does not

lend itself to node removal.

4.4.2 Differences between all three algorithms

Many observations apply across all versions, however, there is one important difference

between the MOD algorithm and the other two algorithms. In the MOD algorithm, there are

no locks required to protect weight updates. This stems from the fact that all information is

present to determine the weight updates of each node, from the point of view of that node.

Therefore as the algorithm proceeds through the graph, weight updates are only applied to

the node that is currently being processed by a particular processor. This allows all weight

updates to proceed in parallel.

4.4.3 MOD algorithm performance

Figure 4.14 shows the results from the experiment in Figure 3.12 presented in terms of

the increase in number of edge visits between the CSC and MOD algorithms. This figure

shows that the while the MOD algorithm has removed all lock-based synchronization from
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Figure 4.14. Increase in edge visits for the MOD algorithm vs the CSC algorithm. Number
shown is how many times more edge visits MOD performs.

the algorithm, it does so at the cost of adding over twice the edge visits. These edge visits,

translate to added work, which results in increased execution time.

Figure 4.15 and 4.16 show the results of a simple experiment, which is performed to

compare the execution time of all three algorithms, CSR, CSC and MOD. As shown in

previous discussions node removal and delayed weight updates have insignificant impact on

the execution time of these versions, therefore they are not included in this comparison. The

experiment is performed on a graph with D = 1000, which is constructed using a nine point

stencil. The number of processors, as well as the density of the graph are varied to show

the performance of the three versions under a wide range of conditions. The execution of

the three versions can be defined as T (p, K, CSR), T (p, K, CSC), and T (p, K, MOD). The

speed up, displayed in the figures can be calculated by the following equations:
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S(p, K, CSC) =
T (p, K, CSR)

T (p, K, CSC)

S(p, K, MOD) =
T (p, K, CSR)

T (p, K, MOD)

S(p, K, CvM) =
T (p, K, MOD)

T (p, K, CSC)

Note, there is no significant difference in the execution time of the CSC and MOD

algorithms. This clearly demonstrates the cost of the increased number of edge visits. The

MOD algorithm contains more work than the CSC algorithm, but no synchronization at

all. This clear trade-off between the two algorithms is very important. In a system where

lock costs are low, the CSC algorithm can be used to reduce total work, at the cost of

moderate synchronization. Conversely, in a system where lock costs are very high, the MOD
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Figure 4.16. Improvement of the CSC algorithm. Speed up, S(p, K, CvM), shows how
many times faster CSC is than MOD.

algorithm can be used to eliminate lock-based synchronization altogether, at the cost of over

twice the edge visits performed in the CSC algorithm. As the number of processors in a

shared memory system grows, the synchronization costs will also increase. For this reason,

the MOD algorithm is expected to be the better choice for large shared memory systems.

The MOD algorithm, however, has the opportunity to lead to even better overall

execution times. Further optimizations could be explored in the updating of the MOD

algorithm’s data structure. Because, each copy of the data structure (the CSR and CSC

versions) is used to detect specific types of edges, it is possible that these two data structure

do not need to be maintained consistently. This could further reduce the number of edge

visits performed by the MOD algorithm, leading to better overall execution time, and a

significant improvement over the CSC algorithm on the Sun E4500 server.
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CHAPTER 5

CONCLUSIONS

This thesis has shown that the choice of data structure used in the implementation of the

CLJP algorithm can greatly influence performance. Three data structures were analyzed,

this chapter first summarizes the main points of this thesis, explores the parallel efficiency of

all three algorithms, presents a number of conclusions, and finally discusses possible topics

of future work.

5.1 Summary

The first data structure, chosen due to its widespread use in existing algebraic multigrid

solvers, is the compressed sparse row or CSR data structure. This data structure stores

the information from a sparse matrix in a row-oriented compressed format (storing only

non-zero entries). Using the row-oriented CLJP algorithm in [4] as a basis, a shared memory

CSR-based algorithm was defined. Because the CSR data structure is the standard for

algebraic multigrid solvers, the CSR algorithm was given a extra attention in terms of

attempts to improve its performance. The various attempted improvements made to the

CSR algorithm include: the removal of unneeded nodes, the removal of unneeded edges, using

delayed weight updates to reduce synchronization costs, and various lock granularities. The

results of these attempts show that even with a great deal of effort, little actual improvement

in performance can be gained over the basic parallel implementation of the CSR algorithm.

The second data structure, chosen as the more natural fit for multigrid coarsening, is

the compressed sparse column or CSC data structure this data structure stores the matrix

in column-oriented compressed format. Using the column-oriented CLJP algorithm in [4]

as a basis, a shared memory CSC-based algorithm was defined. It was expected that the

fan-in approach of the CSC algorithm would lead to a significant performance increase over

the fan-out based CSR algorithm. As Figure 4.15 shows, this was the case, the CSC
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algorithm is up to 4 times faster than the CSR algorithm when run on 11 processors.

This performance improvement comes from the fan-in nature of the CSC algorithm. Which

provides two key improvements, the reduction of edge visits, and a number of improvements

in synchronization.

The third data structure, a combination of the first two structures, is the modified or MOD

data structure. This data structure contains a copy of both of the first two data structures.

Using the hybrid CLJP algorithm in [4] as a basis, a shared memory MOD-based algorithm

was defined. It was expected that a large increase in edge visits and the elimination of

lock-based synchronization would lead to an algorithm with significant trade-offs verses the

CSC algorithm. Figures 4.15 and 4.16 show that, this was indeed the case. Despite the large

increase in number of edge visits the MOD algorithm has essentially the same performance as

the CSC algorithm. This is due to the complete removal of lock-based synchronization from

the MOD algorithm. Because the resulting execution time is close to the CSC algorithm,

this presents a clear trade off. On systems where the lock cost is relatively high, the MOD

algorithm is the best choice, however, on systems where lock cost is low enough the CSC

algorithm should be used.

Figures 5.1, 5.2, and 5.3 show the results of a simple experiment, which is performed

to determine the parallel efficiency of all three algorithms, CSR, CSC and MOD. Previous

discussions have shown that edge removal, node removal and delayed weight updates have an

insignificant impact on the execution time of these versions, therefore they are not included

in this comparison.

The experiment is performed on a graph with D = 1000, which is constructed using a

nine point stencil. The number of processors as well as the density of the graph are varied

to explore the characteristics of the three versions under a wide range of conditions. In this

experiment two different implementations are timed. The first implementation, T (p, K, x)p

is the basic parallel implementation with edge pruning and a lock granularity of 1. The

second, denoted by T (K, x)seq, is the same implementation but with all synchronization

removed. The speed up, S(K, x) = T (K,x)seq

T (p,K,x)p

, where x is either CSR, CSC, or MOD, is shown

in Figures 5.1, 5.2, and 5.3.

The graphs in Figures 5.1-5.3 show the speed up of the parallel implementation for

increasing numbers of processors, and densities. A line with a slope of 1 represents a linearly
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Figure 5.1. True speed up for parallel CSR algorithm, compared to the sequential CSR
algorithm (has no synchronization calls).

scalable implementation, which is ideal. In other words, it is desirable for a particular

implementation to be 10 times faster on 10 processors than on 1 processor. The closest to

this ideal is the CSR algorithm.

In the CSR algorithm the cost of synchronization, which increases with the number

of processors, is relatively small compared to the overall work. For this reason the CSR

algorithm scales very well with the number of processors.

Conversely, in the CSC algorithm there is much less work, and despite the reduction in

lock-based synchronization, the ratio of work to synchronization is much greater than in the

CSR algorithm. Therefore the increase in synchronization costs causes a higher percentage

increase in total execution time, and thus the CSC algorithm’s parallel efficiency is the lowest

of all three algorithms.
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Figure 5.2. True speed up for parallel CSC algorithm, compared to the sequential CSR
algorithm (has no synchronization calls).

The MOD algorithm, having the minimum amount of synchronization possible, and twice

the work of the CSC algorithm, comes out close to CSR in terms of speedup. The MOD

algorithm still lacks the very large amount of parallelizable work that is present in the CSR

algorithm, but this is a good thing, since much of that work in CSR is not necessary. This

is also why the MOD algorithm does not show as close to linear scalability as the CSR

algorithm.

Figure 5.4 shows part of the results from the previous experiment, presented in a different

way. The speed up, S(K, x) = T (1,K,x)p

T (K,x)seq)
, shown in the figure is the parallel overhead of a

certain algorithm for varying values of K. As discussed in the previous experiments, the

CSR algorithm has a low synchronization to work ratio, and therefore shows a low parallel

overhead, especially as K increases. On the other hand, the CSC algorithm, due to its high
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Figure 5.3. True speed up for parallel MOD algorithm, compared to the sequential CSR
algorithm (has no synchronization calls).

synchronization to work ratio, shows a high parallel overhead that increases as K increases.

Finally, the MOD algorithm shows negative parallel overhead, this is an anomaly. It is

suspected that the compiler has performed some optimizations that could not be performed

when the code was compiled sequentially. Based on the results in Figure 5.3 and the structure

of the algorithm, the MOD algorithm should have low parallel overhead similar to the CSR

algorithm.

5.2 Conclusion

In this thesis it has been shown that the influence of the choice of data structure on

synchronization is a major factor in the performance of algebraic multigrid coarsening on
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Figure 5.4. Parallel overhead, measured in speed up of the sequential version.

a shared memory architecture. From the execution times observed during this analysis,

on large shared memory systems, with high synchronization costs, the MOD algorithm is

the best choice. On smaller systems, with lower synchronization costs, the CSC algorithm

has a small advantage over the MOD algorithm. The data structure used by the algebraic

multigrid solver should also be taken into consideration. If a CSR data structure is used in

the AMG solver either a costly conversion process is required, or the solver must be re-written

to use a CSC or MOD based data structure. Despite these problems, the improvement in

performance gained when switching to a CSC or MOD based algorithm is large enough to

warrant exploration of these options.
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5.3 Future Work

In the analysis of the three algorithms, CSR, CSC, and MOD, two performance anomalies

were encountered. These anomalies are not fully understood, and thus require further

investigation. These anomalies are: 1) the interaction of node and edge removal and its

affect on performance, and 2) the abnormal performance trends of lock granularity. Finally

the possibility of further improving the execution time of the MOD algorithm warrants

further investigataion.

The first issue, interaction between node and edge removal, was noticed first while testing

the CSR algorithm. Node removal, and edge removal alone lead to a decrease in performance,

however, when both are used they cause a small increase in performance. This not only

applies to the CSR algorithm, but also the CSC algorithm. This interaction between node

and edge removal was investigated when it was first discovered, but the reason behind the

synergism could not be found. If this synergism could be understood, it would lead to better

understanding of some of the lower level performance effects of these modifications, and the

possibility of exploiting them to improve overall performance thus this is a viable are for

future work.

The second issue, abnormal performance trends of lock granularity, was also noticed

during the testing of the CSR algorithm, but, like the first issue also applies to the other

algorithms. In this case, when node removal is not used, lock granularities of 2, 4, and 8 give

spikes in performance, but the trend does not continue on to a granularity of 16. Additionally,

when node removal is used, the spikes invert, leading to sharp dips in performance at these

lock granularities. Like the first issue, better understanding of this performance trend could

lead to lock granularity being used to improve overall performance, and is a good source of

future work.

The third, and most important area of future work, is the possibility of further improving

the execution time of the MOD algorithm. While the MOD algorithm maintains two copies

of the required data structures (a CSR and CSC version) it is possible that both copies do

not have to be kept consistent. Each copy of the data structure handles the detection of

different types of edges. The CSR copy handles Type 1 and Type 3 edges, while the CSC

copy handles Type 2 edges. Therefore, which edges actually need to be maintained in which
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data structure, should be carefully investigated. If a significant number of edge visits could

be prevented in the MOD algorithm, a significant decrease in execution time of the MOD

algorithm is expected. This decrease would also show that the MOD algorithm is the best

choice for a Sun E4500 server with 11 processors.
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