The properties of \(\| \mathbf{v} \| \):

- \(\| \mathbf{v} \| > 0 \)
- \(\| \mathbf{v} \| = 0 \iff \mathbf{v} = \mathbf{0} \)
- \(\| \mathbf{v} \| = \| -\mathbf{v} \| \)
- \(\| a \mathbf{v} \| = |a| \| \mathbf{v} \| \)

Note: a vector \(\mathbf{v} \) for which \(\| \mathbf{v} \| = 1 \) is called a unit vector.

Representing vectors in the plane:

Two unit vectors:
- One \(\| \) to the x-axis, \(\mathbf{i} \)
- One \(\| \) to the y-axis, \(\mathbf{j} \)

\[\mathbf{v} = a \mathbf{i} + b \mathbf{j} \]

\(a \) and \(b \) called components of the vector \(\mathbf{v} \).

\(a \) is in the direction \(\mathbf{i} \)

\(b \) is in the direction \(\mathbf{j} \).