Chapter 5: Angles and Arcs

5.1: Angles: Set of points determined by two rays.

Terminal side

A

O

B

α

Vertex

Initial side

Positive

Negative

Notes:
1) One unit of measurement for angles is the degree.
2) Angle in standard position obtained by one complete revolution in the counterclockwise direction has measure 360 degree (written 360°)
3) A right angle is a 90° and equal to \(\frac{1}{4} \) revolution
4) A straight angle is a 180° and equal to \(\frac{1}{2} \) revolution
5) Quadrantal angles: 90°, 180°, 270°, …
6) \(1° = \frac{1}{360} \) revolution

EX: Draw each angle
a) 60°, b) −45°, c) 225°, d) −210°, e) 405°

Radian: A central angle has a measure 1 radian if it intercepts an arc with length equal to the radius of the circle.

Notes:
1) \(2\pi \) radian = 1 revolution = 360°
2) \(\pi \) radian = 180°
3) 1 radian = \(\left(\frac{180}{\pi}\right)^\circ \approx 57.2958^\circ\)

4) \(1^\circ = \frac{\pi}{180} \text{ radian} \approx 0.0174533 \text{ radian}\)

Notes:

1) To change radians to degree, multiply by \(\frac{180}{\pi}\)

2) To change degrees to radian, multiply by \(\frac{\pi}{180}\)

EX: Convert the following angles to degree measures
 a) \(-\frac{\pi}{3} \text{ rad.}\) b) \(\frac{3\pi}{4} \text{ rad.}\) c) \(-\frac{5\pi}{6} \text{ rad.}\)

EX: Convert the following angles to radian measures
 a) \(210^\circ\) b) \(-405^\circ\)

Arc Length Formula:

If an arc of length \(S\) on a circle of radius \(r\) subtends a central angle of radian measure \(\theta\) then

\[S = r\theta \]

EX: **Arc Length:**

1) A central angle \(\theta\) is subtended by an arc 10 cm long on a circle of diameter 8 cm. Find the measure of \(\theta\) in a) radian b) degree

2) Find \(S\) given \(r = 3\text{ ft}, \theta = \frac{7\pi}{2}\)

3) Find \(S\) given \(r = 5\text{ ft}, \theta = 144^\circ\)

4) Find the number of radians in \(\frac{3}{8}\) revolution

5) A bike has wheels that are 28 inches in diameter. How far does the bike move as wheels roll through an angle of \(15^\circ\)

Area of a Circular Sector:

\[A = \frac{1}{2} r^2 \theta \]

\(r = \text{radius}\)
\(\theta = \text{central angle measures in radians}\).
EX: Area of a circular Sector:

1) If \(\theta = 50^\circ \), \(r = 8 \text{ m} \) Find a) \(S \) b) \(A \)

2) Find the area of a sector of a circle of diameter 8 ft formed by an angle of 30\(^\circ\)

3) Find the area of a circular sector with central angle 1/4 revolution if the length of intercepted arc is \(\frac{4\pi}{3} \) centimeters.

3) The area of a sector of a circle with radius 3 centimeters is \(\frac{3\pi^2}{4} \) square centimeters. Find the length of

The intercepted arc in centimeters.

Circular Motion:

If an object moves in a circular path, two speeds are involved.

1) The rate at which distance is traveled along the circle, called linear speed \(v \)
2) The rate at which the object revolves about the center of the circle, called angular speed \(w \)

\[
\begin{align*}
 v & = \text{(length/time)} \\
 w & = \text{(radian/time)}
\end{align*}
\]

Also \(v = \)

Notes:

1) The time units in \(v \) and \(w \) must be the same
2) The linear units used in \(v \) and \(r \) must be the same

Ex:

1) A wheel is rotating at 200 revolutions per minute. Find the angular speed in radians per minute
2) An object is traveling around a circle with a radius of 2 m. If in 20 seconds the object travels 5 m, what is its angular speed? what is its linear speed?
3) A rock is spinning at 180 rpm at the end of a 2-foot rope. Find the rock’s linear speed (in ft/min).
4) The windshield wiper of a car is 18 inches long. How many inches will the tip of the wiper move during \(\frac{1}{3} \) revolution.

5) A pendulum swings through an angle of 15\(^\circ\) each second. If the pendulum is 20 inches long, how many inches does its tip move each second?
6) Find the radius (in feet) of a circle, if a central angle of 95\(^\circ\) subtends a 95 foot arc.