Section 7.2: The Law of Sines

If none of the angles of a triangle is right angle. The triangle is called **Oblique**.

- Three acute angles
- Two acute and one obtuse

To Solve Oblique Triangle:

Case I:

SAA or ASA

Case II:

SSA (angle opposite to one of the sides)

Use law of sine

Law Of Sines:
\[
\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}
\]

Ex: In the triangle ABC, if \(\alpha = 40^\circ \), \(\beta = 60^\circ \), \(a = 4 \). Find \(b, c \)?

Ex: In the triangle ABC, if \(\sin \beta = \frac{3}{4} \), \(b = 3 \), \(a = 2 \). Find \(\sin \alpha \)?

The Ambiguous Case:

I) If \(x < y \)

1) \(y \sin \theta < x \) \(\Rightarrow \) 2 triangles
2) \(y \sin \theta = x \) \(\Rightarrow \) 1 triangle (right)
3) \(y \sin \theta > x \) \(\Rightarrow \) No triangle

II) If \(x \geq y \) \(\Rightarrow \) 1 triangle

EX: How many triangles ABC can be constructed

1) with \(b = 2\sqrt{2} \), \(c = 4 \), \(\beta = 45^\circ \) ?
2) with \(a = 1 \), \(b = \sqrt{3} \), \(\alpha = 30^\circ \) ?
3) with \(a = \sqrt{3} \), \(c = 1 \), \(\gamma = 60^\circ \) ?
4) with \(a = 3 \), \(b = 2 \), \(\alpha = 140^\circ \) ?

Note: In navigation and surveying, the direction or bearing from a point O to a point P equal to the acute angle \(\theta \) between the ray OP and the Vertical line through O, the North-South line
1- A point P on the level ground is 3 kilometers due north of a point Q. A runner proceeds in the direction $N 25^\circ E$ from Q to a point R, then from R to P in the direction $S 70^\circ W$. Find the distance run.

2- Consult the figure. To find the length of the span of a proposed ski lift from A to B to, a surveyor measures the angle DAB to be 25° and then walks off a distance of 1000 feet to C and measures the angle ACB to be 15°. What is the distance from A to B?

3- The angle of elevation of an airplane observed by two observers from two points A and B on level ground are 40° and 35° respectively. Point A and B are 1000 ft apart and the airplane is between the points, in the same vertical plane. a- How high is the airplane? b- Find the distance between the airplane and the observer at point A.

4- The angle of depression from a balloon to two points A and B on level ground are 52° and 28° respectively. Points A and B are 14 miles apart and the balloon is between the points, in the same vertical plane. Find the distance in miles between the balloon and the point A.