4.2 First Derivative and graphs

Increasing (↑) and decreasing (↓) functions

![Graph of a function](image)

- $m > 0$
- $m = 0$
- $m < 0$

In general

- If $f'(x) > 0$ on $(a, b) \rightarrow f(x)$ is \uparrow
- If $f'(x) < 0$ on $(a, b) \rightarrow f(x)$ is \downarrow
Steps for finding where $f(x)$ is \uparrow or \downarrow

1. Find $f'(x)$
2. Set $f'(x) = 0$ and solve for x
3. Construct a sign chart for $f'(x)$ using x values in step 2
4. Pick test values around the values of x found in step 2, and substitute those values into $f'(x)$ to determine where $f'(x) > 0$ and $f'(x) < 0$

Example: Find the intervals where $f(x)$ is \uparrow or \downarrow

1. $f(x) = 8x - x^2$
2. $f(x) = 1 + x$
3. $f(x) = (1-x)^{\frac{1}{3}}$
4. $f(x) = \frac{1}{x-2}$
Critical values of \(f \) (c.v.)

The values of \(x \) in the domain of \(f \) where \(f'(x) = 0 \) or \(f'(x) \) DNE are called the critical values of \(f \).

Note: The c.v. of \(f \) are always partition numbers for \(f' \), but \(f' \) may have partition numbers that are not c.v.'s.

Local Extrema (min. & max.)
Thm 1: Existence of local extrema

If \(f \) is cont. on the interval \((a, b)\) and \(f(c) \) is a local extremum, then either \(f'(c) = 0 \) or \(f'(c) \) DNE.

1st derivative test \([f' \text{ chart}]\)

Let \(c \) be a c.v. of \(f \)

\(f(c) \) defined \(f'(c) = 0 \) \(f'(c) \) DNE

Use \(f' \) chart

If \(f \) is \(\nearrow \) then \(\nearrow \) \(f(c) \) is local max

If \(f \) is \(\searrow \) then \(\searrow \) \(f(c) \) is local min

If \(f \) is \(\nearrow \) \(\searrow \) \(f(c) \) is not local extremum
ex Given \(f(x) = x^3 - 9x^2 + 24x - 10 \)
find local extrema and graph

HW Graph \(f(x) = x - x^3 \)

ex If \(f \) is cont. on \((-\infty, \infty) \)
and
\[
\begin{array}{c|cccc}
& -1 & 0 & 2 & \\
f' & + & ND & - & \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
x & -2 & -1 & 0 & 1 & 2 & 4 & \hline
y & 4 & 2 & 1 & 2 & 1 & 0 & \\
\hline
\end{array}
\]

Graph \(f \)

\[
\frac{41}{256}
\]

If \(f(-2) = 4, \ f(0) = 0, \ f(2) = -4 \)
\[
f'(-2) = 0, \ f'(0) = 0, \ f'(2) = 0
\]
\[
f'(x) > 0 \text{ on } (-\infty, -2) \text{ and } (2, \infty)
\]
\[
f'(x) < 0 \text{ on } (-2, 0) \text{ and } (0, 2)
\]

Graph \(f \)
Given \(y = f'(x) \), find where \(f' \) is positive and negative, local min and max, then sketch possible graph of \(y = f(x) \), \(y = f'(x) \).