5.2: Trig. Functions: Unit Circle approach:

If $r \neq 1$, find the values for all the Trig functions.

Let $p = (a, b)$ a point on the terminal side of θ that intersects the circle.

$$a^2 + b^2 = r^2$$

1) sine function: $\sin \theta = \frac{b}{r}$
2) cosine function: $\cos \theta = \frac{a}{r}$
3) tangent function: $\tan \theta = \frac{b}{a}$
4) cotangent function: $\cot \theta = \frac{a}{b}$
5) secant function: $\sec \theta = \frac{r}{a}$
6) cosecant function: $\csc \theta = \frac{r}{b}$

Ex: If $(-5, 12)$ is a point on the terminal side of an angle θ, find the exact value for the remaining Trig. Functions.

Note: If $r = 1$, then we have a unit circle. We conclude that $a^2 + b^2 = 1$ and

$$\sin \theta = \frac{b}{r}, \quad \cos \theta = \frac{a}{r}, \quad \tan \theta = \frac{b}{a}, \quad \cot \theta = \frac{a}{b}, \quad \sec \theta = \frac{r}{a}, \quad \csc \theta = \frac{r}{b}$$

Ex: 1) If $p(x, -\frac{\sqrt{2}}{3})$ is on the unit circle such that $x > 0$, find $\cot \theta$ where p is on the terminal side of the angle of θ radians.

Finding the exact values of the six Trig. Functions of quadrant angles.
Ex: Find the coordinate of \(p(x, y) \) on the unit circle and on the terminal side of the angle \(\frac{7\pi}{2} \).

Finding Exact values Trig functions of special angles:

1) \(\theta = \frac{\pi}{4} \) or \(45^\circ \)

2) \(\theta = \frac{\pi}{6} \) or \(30^\circ \)

3) \(\theta = \frac{\pi}{3} \) or \(60^\circ \)
Ex: Find the exact value of each expression.

1) \(\sqrt{3} \tan \frac{\pi}{3} + 2 \cos \frac{\pi}{3} \), 2) \(\sec \pi - \csc \frac{\pi}{2} \), 3) \(\sin \frac{3\pi}{2} + \tan \pi \), 4) \(\csc 60^\circ + \cot 45^\circ \)
5) \(\sec 30^\circ \sin 45^\circ \)

Notes:

1) Odd and even Trig. Functions

2) Trig. Function signs.

REducing Functions of an Angle in Any Quadrant

1) \(\sin(\pi - \theta) = \sin(\pi + \theta) \)
2) \(\cos(\pi - \theta) = \cos(\pi + \theta) \)
3) \(\tan(\pi - \theta) = \tan(\pi + \theta) \)
4) \(\sin(2\pi - \theta) = \sin(2\pi + \theta) \)
5) \(\cos(2\pi - \theta) = \cos(2\pi + \theta) \)
6) \(\tan(2\pi - \theta) = \tan(2\pi + \theta) \)

Note: 1) If \(\theta \) is an acute angle, then any function of \((2\pi - \theta)\), \((2\pi - \theta)\) or \((\theta - \pi)\) is reducible to the same-named function of \(\theta\),

7) \(\sin(\frac{\pi}{2} - \theta) = \sin(\frac{\pi}{2} + \theta) \)
8) \(\cos(\frac{\pi}{2} - \theta) = \cos(\frac{\pi}{2} + \theta) \)
9) \(\tan(\frac{\pi}{2} - \theta) = \tan(\frac{\pi}{2} + \theta) \)
10) \(\sin(\frac{3\pi}{2} - \theta) = \sin(\frac{3\pi}{2} + \theta) \)
11) \(\cos(\frac{3\pi}{2} - \theta) = \cos(\frac{3\pi}{2} + \theta) \)
12) \(\tan(\frac{3\pi}{2} - \theta) = \tan(\frac{3\pi}{2} + \theta) \)

Note: 2) whereas any function of \((\pi/2 - \theta),(\pi/2 + \theta),(3\pi/2 - \theta)\) or \((3\pi/2 + \theta)\) is reducible to the complementary-named function of \(\theta\)

Ex: Evaluate

1) \(\sin 150^\circ \), 2) \(\cos(-\frac{\pi}{3}) \), 3) \(\sec 210^\circ \), 4) \(\tan 300^\circ \), 5) \(\sin(-\pi) \), 6) \(\cos \frac{7\pi}{6} \)

Ex: Find the exact value for \(\tan 60^\circ + \tan 150^\circ \)
Ex: If \(\cos \theta = -0.3 \) find

\[
\cos(-\theta) + \cos(\pi - \theta) + \cos(5\pi + \theta) - \cos(6\pi - \theta)
\]

Ex: Using odd and even function definition evaluate the following.
1) \(\sin(\theta - \pi) = \)
2) \(\cos(\theta - \pi) = \)
3) \(\tan(\theta - 2\pi) = \)

Ex: Find the x coordinate of \(p(x, y) \) on the unit circle and on the terminal side of the angle \(-\frac{7\pi}{6}\)

Ex: If \(\cot \theta = -\frac{1}{\sqrt{3}} \), find all possible values for \(\theta \) for \(0 \leq \theta < 2\pi \)

Ex: Suppose that the terminal point determined by \(\theta \), is the point \(\left(\frac{7}{25}, \frac{24}{25}\right) \) on the unit circle. Find the terminal point determined by \(\theta - 3\pi \).

Ex: Suppose that the terminal point determined by \(\theta \), is the point \(\left(\frac{7}{25}, \frac{24}{25}\right) \) on the unit circle. Find the terminal point determined by \(-\theta - 4\pi \).

Ex: Suppose that the terminal point determined by \(\pi - \theta \), is the point \(\left(-\frac{7}{25}, \frac{24}{25}\right) \) on the unit circle. Find the terminal point determined by \(8\pi - \theta \).

Ex: If \(\theta \) is an acute angle and the terminal side is determined by \(\theta \), then the terminal side determined by \(5\pi + \theta \) will be in quadrant.

Ex: If \(\theta \) is an acute angle and the terminal side is determined by \(\theta \), then the terminal side determined by \(\theta - \frac{11\pi}{2} \) will be in quadrant.

Algebra question: Simplify

\[\frac{-\sqrt{2}}{2} + 1 \]