8.3 Maxima and Minima

Thm 2: Let $f(a,b)$ be a local extremum for the function f. If both f_x and f_y exist at (a,b), then $f_x(a,b) = 0$ and $f_y(a,b) = 0$

(a,b) called critical point

Ex: Given $f(x,y) = -x^2 + 2xy - 2y^2 - 4x + 12y - 5$

Find the critical value(s) of f
Thm 2: 2nd derivative test for local extrema

Given

1. \(z = f(x, y) \)
2. \(f_x(a, b) = 0 \) and \(f_y(a, b) = 0 \)
3. all 2nd order partial derivatives of \(f \) exists
4. \(A = f_{xx}(a, b), \quad B = f_{xy}(a, b), \quad C = f_{yy}(a, b) \)

Then

1. If \(AC - B^2 > 0 \) and \(A < 0 \) \(\Rightarrow f(a, b) \) is local max
2. If \(AC - B^2 > 0 \) and \(A > 0 \) \(\Rightarrow \) local min
3. If \(AC - B^2 < 0 \) \(\Rightarrow f \) has a saddle pt at \((a, b) \)
4. If \(AC - B^2 = 0 \), the test fails
Ex Use Thm 2 to find local extrema for
\[f(x,y) = x^3 + y^2 - 6xy \]

#36) A rectangular box with no top and two intersecting partitions is to be made to hold a volume of 72 in\(^3\). What should its dimensions be in order to use the least amount of material in its construction?

Ex A rectangular box with eight compartments is to have a volume of 30 in\(^3\). Find the dimensions that will require the least amount of material.
Ex. A store sells two brands of certain item each month. If the total profit (in hundreds of dollars) is given approximately by \(P(x,y) = 15 + 16x + 12y - 4x^2 - 2y^2 \), where \(x \) is the number of units of Brand A and \(y \) is number of units of Brand B. Find the maximum profit possible each month from the sale of these two items.

Ex. The cost function \(C \) (in hundreds of dollars) of producing two products is

\[C(x,y) = 3x^2 + y^2 + 3xy - 3y - 6x + 15 \]

where \(x \) is the quantity of product A and \(y \) is the quantity of product B. Find the minimum cost of producing these products.