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Persistence Modules
In a simple, discrete form (persistence module over Z):

. . . // Vn−1
φn−1 // Vn

φn // Vn+1 // . . .

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a
poset (P,4)

Vector spaces Vt , t ∈ P, and linear mappings ν t
s : Vs → Vt ,

for any s 4 t , satisfying:
(i) ν t

r = ν t
s ◦ νs

r , for any r 4 s 4 t ;
(ii) ν t

t = IVt , ∀t ∈ P

In category theory language, V is a functor

V : (P,4)→ Vec

Example over R: Homology of a continuously filtered space
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Zigzag Modules

Discrete form:

. . . oo // Vn−1 oo
φn−1 // Vn oo

φn // Vn+1 oo // . . .

Sequence of vector spaces with forward or backward mappings

Can we define zigzags over R? Much less clear

We introduce correspondence modules (c-modules) in which
linear mappings are replaced with partial linear relations

Like persistence modules, these will be defined over any poset
(P,4)

But, first, let us introduce the category CVec
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The Category CVec

Objects: vector spaces (over a fixed field)

Morphisms from V to W : linear subspaces of V ×W
The morphisms will be called correspondences

Composition rule: C1 : V1 → V2 and C2 : V2 → V3

Define C2 ◦ C1 : V1 → V3 as the subspace

C2 ◦ C1 ={(v1, v3) ∈ V1 × V3 : ∃v2 ∈ V2 such that
(v1, v2) ∈ C1 and (v2, v3) ∈ V2 × V3}

Linear mappings as correspondences
The graph of T : V →W gives a correspondence

GT : V →W
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Correspondence Modules

A correspondence module V over (P,4) is a functor

V : (P,4)→ CVec

Persistence modules as c-modules: replace linear mappings
with their graphs

Zigzag modules: replace forward mappings with their graphs and
backward mappings with the reverse of their graphs

Correspondence modules over R generalize zigzags and include
many other persistence structures
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Level-Set Persistence

Understand how the topology of the level sets of f : X → R
changes with function values

Interlevel sets: X t
s := f−1([s, t ]), s ≤ t

Level sets: X [t ] := X t
t = f−1(t), t ∈ R

Discrete levels: . . . tn−1 < tn < tn+1 < . . .

H∗(X tn
tn−1

)

H∗(X [tn−1])

φn−1 77
cc

H∗(X [tn])

ψnff
<<

Approach: view interlevel sets as morphisms, not as
objects in the sequence
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Continuous Parameter Level-Set Persistence

For any s ≤ t ,

H∗(X t
s)

H∗(X [s])

φs
88

H∗(X [t ])

ψt
ff

consider the correspondence ν t
s = G∗ψt

◦Gφs

Under some additional assumptions, one can show that
{H∗(X [t ]), ν t

s} yields a c-module over R

Carlsson, de Silva, Kališnik, Morozov have studied level-set
persistence in the framework of zigzags

Botnam and Lesnick give a 2-D formulation via interlevel sets
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Sections of 2-D Modules
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Barcodes Richer in Geometry?

Cartoon of microfibers in
carbon nanotube materials

Sublevel and superlevel filtrations: each gives three infinite bars
and a single finite bar in H0

Extended persistence gets closer (Cohen-Steiner, Edelsbrunner,
Harer)
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Interval c-Modules

As in zigzag persistence, there are up to four types of interval
c-modules associated with an interval I ⊆ R

We denote them 〈I〉, |I〉, 〈I|, and |I|.

If V is any the four, let Vt = k , ∀t ∈ I, and Vt = 0, otherwise

If s, t ∈ I and s ≤ t , then ν t
s = ∆, the graph of the identity

If s, t ∈ R \ I and s ≤ t , then ν t
s = 0

For V = |I〉, ν t
s = 0, if s /∈ I and t ∈ I and

ν t
s = k × 0, if s ∈ I and t /∈ I

The morphisms for the other interval c-modules follow a similar
convention
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From c-Modules to Persistence Sheaves

Approach: look at sections of a c-module over R to obtain a
sheaf-like structure

Sections of a c-module V over an interval I ⊆ R
s = (vt )t∈I , where vt ∈ Vt and (vs, vt ) ∈ ν t

s, for any s ≤ t

F (I) = all sections of V over the interval I
This is a vector space

If I ⊆ J, there is a restriction homomorphism F J
I : F (J)→ F (I)

If I ⊆ J ⊆ K , then
F K

I = F J
I ◦ F K

J
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Persistence Pre-Sheaves

The category Int
Objects: intervals I ⊆ R
Morphisms: inclusion of intervals, I ⊆ J

A persistence pre-sheaf is a (contravariant) functor

F : Intop → Vec

Terminology and notation
An element s ∈ F (I) is called a section over I
Restriction morphism: F J

I := F (J ⊇ I)
If s ∈ F (J), s|I := F J

I (s)
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Persistence Sheaves

A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If I = ∪Iλ, λ ∈ Λ, is a cover of I by intervals and
s ∈ F (I) satisfies s|Iλ = 0, ∀λ, then s = 0.
(ii) (Gluing) If I = ∪Iλ, λ ∈ Λ, is a connected cover of I by intervals
and sλ are sections over Iλ such that sλ|Iλ∩Iµ = sµ|Iλ∩Iµ , for any
λ, µ ∈ Λ, then ∃s ∈ F (I) satisfying s|Iλ = sλ, for every λ ∈ Λ.

The cover [0,2] = [0,1) ∪ [1,2] is not connected

Example. The pre-sheaf of sections of a c-module is a p-sheaf

Through p-sheaves, we can analyze the structure of c-modules in
the friendlier category Vec-valued functors
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A Decomposition Theorem

Theorem
If F is a tame p-sheaf, then

F =
⊕

bounded

F [ I ]m I
⊕

r−bounded

F 〈 I ]m I
⊕

`−bounded

F [ I 〉m I
⊕

all

F 〈 I 〉m I ,

where m I ∈ Z+ ∪ {∞} is the multiplicity of each summand.

Persistence Diagrams: there are four persistence diagrams
associated with a tame p-sheaf, one for each type of interval
module.

The persistence diagrams are stable with respect to interleaving
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A (Mayer-Vietoris) Kernel Construction

f : X → R

X t := f−1(−∞, t ] and Xt := f−1[t ,+∞)

Inclusion induced morphisms
ιt : H∗(X t )→ H∗(X ) and t : H∗(Xt )→ H∗(X )

`t : H∗(X t )⊕ H∗(Xt )→ H∗(X ), where `t (a,b) = ιt (a)− t (b)

Kt := ker `t ⊆ H∗(X t )⊕ H∗(Xt )

Linear relation κt
s ⊆ Ks × Kt , s ≤ t

((as,bs), (at ,bt )) ∈ κt
s ⇐⇒ ιts(as) = at and j ts(bt ) = bs

(Kt , κ
t
s) is a c-module (e.g., if X is a compact polyhedron

and H∗ is Steenrod-Sitnikov)

In the fiber-like example, it gives the desired barcode
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Summary

Main message: partial linear relations add a lot of flexibility to
persistence structures

With c-modules we can do many things, cool stuff
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Thanks!
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