Correspondence Modules and Their Persistence Diagrams

Haibin Hang and Washington Mio

Department of Mathematics
Florida State University
AMS Southeastern Sectional Meeting
University of Florida
Fall 2019

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_{t}^{t}=I_{V_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \mathrm{Vec}
$$

- Example over \mathbb{R} : Homology of a continuously filtered space

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t, t} \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$; (ii) $\nu_{t}^{t}=I_{V_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor

$$
(P, \preccurlyeq) \rightarrow \mathrm{Vec}
$$

- Example over \mathbb{R} : Homology of a continuously filtered space

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$,
for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for
- In category theory language, \mathbb{V} is a functor

- Example over \mathbb{R} : Homology of a continuously filtered space

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for
(ii) $\nu_{t}^{t}=I_{v_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor $(P, \prec) \rightarrow V / \mathrm{ec}$
- Example over \mathbb{R} : Homology of a continuously filtered space

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$;
- In category theory language, \mathbb{V} is a functor

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_{t}^{t}=I_{V_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_{t}^{t}=I_{V_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \mathrm{Vec}
$$

- Example over \mathbb{R} : Homology of a continuously filtered space

Persistence Modules

- In a simple, discrete form (persistence module over \mathbb{Z}):

$$
\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_{n} \xrightarrow{\phi_{n}} V_{n+1} \longrightarrow \ldots
$$

Sequence of vector spaces and linear mappings

- Persistence modules \mathbb{V} over \mathbb{R}, or more generally, over a poset (P, \preccurlyeq)
Vector spaces $V_{t}, t \in P$, and linear mappings $\nu_{s}^{t}: V_{s} \rightarrow V_{t}$, for any $s \preccurlyeq t$, satisfying:
(i) $\nu_{r}^{t}=\nu_{s}^{t} \circ \nu_{r}^{s}$, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_{t}^{t}=I_{V_{t}}, \forall t \in P$
- In category theory language, \mathbb{V} is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \mathrm{Vec}
$$

- Example over \mathbb{R} : Homology of a continuously filtered space

Zigzag Modules

- Discrete form:

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

Zigzag Modules

- Discrete form:

$$
\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_{n} \stackrel{\phi_{n}}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots
$$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce correspondence modules (c-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, \preccurlyeq)
- But, first, let us introduce the category CVec

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$

The morphisms will be called correspondences

- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$

Define $C_{2} \circ C_{4}: V_{1} \rightarrow V_{3}$ as the subsnace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

$$
G_{T}: V \rightarrow W
$$

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$

The morphisms will be called correspondences

- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$

Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$

The morphisms will be called correspondences

- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$

Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subsnace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$ The morphisms will be called correspondences
- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$

Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(V_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(V_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$ The morphisms will be called correspondences
- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$

Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$ The morphisms will be called correspondences
- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$ Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$ The morphisms will be called correspondences
- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$ Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

The Category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W : linear subspaces of $V \times W$ The morphisms will be called correspondences
- Composition rule: $C_{1}: V_{1} \rightarrow V_{2}$ and $C_{2}: V_{2} \rightarrow V_{3}$ Define $C_{2} \circ C_{1}: V_{1} \rightarrow V_{3}$ as the subspace

$$
\begin{aligned}
C_{2} \circ C_{1}= & \left\{\left(v_{1}, v_{3}\right) \in V_{1} \times V_{3}: \exists v_{2} \in V_{2}\right. \text { such that } \\
& \left.\left(v_{1}, v_{2}\right) \in C_{1} \text { and }\left(v_{2}, v_{3}\right) \in V_{2} \times V_{3}\right\}
\end{aligned}
$$

- Linear mappings as correspondences

The graph of $T: V \rightarrow W$ gives a correspondence

$$
G_{T}: V \rightarrow W
$$

Correspondence Modules

- A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \mathrm{CVec}
$$

- Persistence modules as c-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

Correspondence Modules

- A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \text { CVec }
$$

- Persistence modules as c-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

Correspondence Modules

- A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \text { CVec }
$$

- Persistence modules as c-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

Correspondence Modules

- A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \text { CVec }
$$

- Persistence modules as c-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

Correspondence Modules

- A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

$$
\mathbb{V}:(P, \preccurlyeq) \rightarrow \text { CVec }
$$

- Persistence modules as c-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discreta levels: ... $t_{n-1}<t_{n}<t_{n+1}<\ldots$

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels:

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels:

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels:

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels: ... $t_{n-1}<t_{n}<t_{n+1}<\ldots$
- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels: ... $t_{n-1}<t_{n}<t_{n+1}<\ldots$

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Level-Set Persistence

- Understand how the topology of the level sets of $f: X \rightarrow \mathbb{R}$ changes with function values
- Interlevel sets: $X_{s}^{t}:=f^{-1}([s, t]), s \leq t$

Level sets: $X[t]:=X_{t}^{t}=f^{-1}(t), t \in \mathbb{R}$

- Discrete levels: $\ldots t_{n-1}<t_{n}<t_{n+1}<\ldots$

- Approach: view interlevel sets as morphisms, not as objects in the sequence

Continuous Parameter Level-Set Persistence

- For any $s \leq t$,

consider the correspondence $\nu_{s}^{t}=G_{\psi_{t}}^{*} \circ G_{\phi_{s}}$
- Under some additional assumptions, one can show that $\left\{H_{*}(X[t]), \nu_{s}^{t}\right\}$ yields a c-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Continuous Parameter Level-Set Persistence

- For any $s \leq t$,

consider the correspondence $\nu_{s}^{t}=G_{\psi_{t}}^{*} \circ \boldsymbol{G}_{\phi_{s}}$
- Under some additional assumptions, one can show that $\left\{H_{*}(X[t]), \nu_{s}^{t}\right\}$ yields a c-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Continuous Parameter Level-Set Persistence

- For any $s \leq t$,

consider the correspondence $\nu_{s}^{t}=\boldsymbol{G}_{\psi_{t}}^{*} \circ \boldsymbol{G}_{\phi_{s}}$
- Under some additional assumptions, one can show that $\left\{H_{*}(X[t]), \nu_{s}^{t}\right\}$ yields a c-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Continuous Parameter Level-Set Persistence

- For any $s \leq t$,

consider the correspondence $\nu_{s}^{t}=G_{\psi_{t}}^{*} \circ \boldsymbol{G}_{\phi_{s}}$
- Under some additional assumptions, one can show that $\left\{H_{*}(X[t]), \nu_{s}^{t}\right\}$ yields a c-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Continuous Parameter Level-Set Persistence

- For any $s \leq t$,

consider the correspondence $\nu_{s}^{t}=G_{\psi_{t}}^{*} \circ \boldsymbol{G}_{\phi_{s}}$
- Under some additional assumptions, one can show that $\left\{H_{*}(X[t]), \nu_{s}^{t}\right\}$ yields a c-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Sections of 2-D Modules

Barcodes Richer in Geometry?

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_{0}
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Barcodes Richer in Geometry?

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_{0}
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Barcodes Richer in Geometry?

$$
0123456
$$

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_{0}
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Barcodes Richer in Geometry?

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_{0}
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Barcodes Richer in Geometry?

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_{0}
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
o If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash /$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{T}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\pi\rangle, v_{s}^{t}=0$, if $s \notin \mid$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{T}\rangle, \nu_{s}^{t}=0$, if $s \notin \mid$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash /$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

Interval c-Modules

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval $I \subseteq \mathbb{R}$
- We denote them $\langle\mathbb{I}\rangle,|\mathbb{I}\rangle,\langle\mathbb{I}|$, and $|\mathbb{I}|$.
- If \mathbb{V} is any the four, let $V_{t}=k, \forall t \in I$, and $V_{t}=0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_{s}^{t}=\Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \backslash I$ and $s \leq t$, then $\nu_{s}^{t}=0$
- For $\mathbb{V}=|\mathbb{I}\rangle, \nu_{s}^{t}=0$, if $s \notin I$ and $t \in I$ and
$\nu_{s}^{t}=k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t-1}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval /

This is a vector snace

- If $I \subseteq J$, there is a restriction homomorphism $F_{I}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{l}^{J} \circ F_{J}^{K}
$$

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in 1}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval ! This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_{I}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{I}^{J} \circ F_{J}^{K}
$$

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$
$s=\left(v_{t}\right)_{t \in I}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval $/$

This is a vector space

- If $I \subseteq J$, there is a restriction homomorphism $F_{j}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{I}^{J} \circ F_{J}^{K}
$$

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in I}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval I This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_{/}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in l}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval I

This is a vector space

- If $I \subseteq J$, there is a restriction homomorphism F_{l}^{J} :

- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{I}^{J} \circ F_{J}^{K}
$$

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in l}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval I

This is a vector space

- If $I \subseteq J$, there is a restriction homomorphism $F_{l}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{I}^{J} \circ F_{J}^{K}
$$

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in l}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval I

This is a vector space

- If $I \subseteq J$, there is a restriction homomorphism $F_{I}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

From c-Modules to Persistence Sheaves

- Approach: look at sections of a c-module over \mathbb{R} to obtain a sheaf-like structure
- Sections of a c-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s=\left(v_{t}\right)_{t \in l}$, where $v_{t} \in V_{t}$ and $\left(v_{s}, v_{t}\right) \in \nu_{s}^{t}$, for any $s \leq t$
- $F(I)=$ all sections of \mathbb{V} over the interval I

This is a vector space

- If $I \subseteq J$, there is a restriction homomorphism $F_{I}^{J}: F(J) \rightarrow F(I)$
- If $I \subseteq J \subseteq K$, then

$$
F_{I}^{K}=F_{l}^{J} \circ F_{J}^{K}
$$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{Int}{ }^{0 p} \rightarrow V e c
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over /
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{Int}^{\mathrm{OP}} \rightarrow \mathrm{Vec}
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over /
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Pre-Sheaves

- The category Int Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$
- A persistence pre-sheaf is a (contravariant) functor $F: \mathrm{Int}^{\mathrm{OP}} \rightarrow \mathrm{Vec}$
- Terminology and notation

An element $s \in F(I)$ is called a section over /
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor $F: \mathrm{Int}^{\mathrm{op}} \rightarrow \mathrm{Vec}$
- Terminology and notation

An element $s \in F(I)$ is called a section over /
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{lnt}^{\mathrm{Op}} \rightarrow \mathrm{Vec}
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over $/$
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{I}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{lnt}^{\mathrm{Op}} \rightarrow \mathrm{Vec}
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over I
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{I}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{lnt}^{\mathrm{Op}} \rightarrow \mathrm{Vec}
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over I
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Pre-Sheaves

- The category Int

Objects: intervals $I \subseteq \mathbb{R}$
Morphisms: inclusion of intervals, $I \subseteq J$

- A persistence pre-sheaf is a (contravariant) functor

$$
F: \operatorname{lnt}^{\mathrm{Op}} \rightarrow \mathrm{Vec}
$$

- Terminology and notation

An element $s \in F(I)$ is called a section over I
Restriction morphism: $F_{l}^{J}:=F(J \supseteq I)$
If $s \in F(J),\left.s\right|_{I}:=F_{l}^{J}(s)$

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=U \Lambda, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\lambda_{\lambda} \cap I_{\mu}}=\left.s_{\mu}\right|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=U I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of $/$ by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}| |_{\lambda} \cap\right|_{\mu}=\left.s_{\mu}| |_{\lambda} \cap\right|_{\mu}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{I_{\lambda}}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=U I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\lambda} \cap I_{\mu}=\left.s_{\mu}\right|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\lambda_{\lambda} \cap I_{\mu}}=\left.s_{\mu}\right|_{\lambda_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\iota_{\lambda} \cap I_{\mu}}=\left.s_{\mu}\right|_{\iota_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\lambda_{\lambda} \cap I_{\mu}}=\left.s_{\mu}\right|_{\iota_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

Persistence Sheaves

- A persistence pre-sheaf F is a p-sheaf if:
(i) (Locality) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $\left.s\right|_{\lambda}=0, \forall \lambda$, then $s=0$.
(ii) (Gluing) If $I=\cup I_{\lambda}, \lambda \in \Lambda$, is a connected cover of I by intervals and s_{λ} are sections over I_{λ} such that $\left.s_{\lambda}\right|_{\lambda_{\lambda} \cap I_{\mu}}=\left.s_{\mu}\right|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $\left.s\right|_{\lambda}=s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2]=[0,1) \cup[1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through p-sheaves, we can analyze the structure of c-modules in the friendlier category Vec-valued functors

A Decomposition Theorem

where $m_{\mathbb{I}} \in \mathbb{Z}^{+} \cup\{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame p-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A Decomposition Theorem

Theorem
If F is a tame p-sheaf, then

$$
F=\bigoplus_{\text {bounded }} F[\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{\text {r-bounded }} F\langle\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{\ell-\text { bounded }} F[\mathbb{I}\rangle^{m_{\mathbb{I}}} \bigoplus_{\text {all }} F\langle\mathbb{I}\rangle^{m_{\mathbb{I}}},
$$

where $m_{\mathbb{I}} \in \mathbb{Z}^{+} \cup\{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame p-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A Decomposition Theorem

Theorem
If F is a tame p-sheaf, then

$$
F=\bigoplus_{\text {bounded }} F[\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{r-\text { bounded }} F\langle\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{\ell-\text { bounded }} F[\mathbb{I}\rangle^{m_{\mathbb{I}}} \bigoplus_{\text {all }} F\langle\mathbb{I}\rangle^{m_{\mathbb{I}}},
$$

where $m_{\mathbb{I}} \in \mathbb{Z}^{+} \cup\{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame p-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A Decomposition Theorem

Theorem
If F is a tame p-sheaf, then

$$
F=\bigoplus_{\text {bounded }} F[\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{\mathrm{r}-\text { bounded }} F\langle\mathbb{I}]^{m_{\mathbb{I}}} \bigoplus_{\ell-\text { bounded }} F[\mathbb{I}\rangle^{m_{\mathbb{I}}} \bigoplus_{\text {all }} F\langle\mathbb{I}\rangle^{m_{\mathbb{I}}},
$$

where $m_{\mathbb{I}} \in \mathbb{Z}^{+} \cup\{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame p-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A Fiber-Like Structure

- How to get such barcodes?

A Fiber-Like Structure

- How to get such barcodes?

A Fiber-Like Structure

- How to get such barcodes?

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~ H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota t: ~ H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and ${ }_{t t}: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $k_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and ${ }_{t t}: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
e $\ell_{t}: H\left(X^{t}\right) \oplus H_{t}\left(X_{t}\right) \rightarrow H_{t}(X)$ where $\ell_{t}(a, b)=u_{t}(a)-j_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $k_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow i_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t:: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear rolation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow i_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~_{t} H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~_{t} H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \mu_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron
and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath_{t}: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$
$\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow i_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~_{t} H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$ $\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow i_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~_{t} H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$ $\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, K_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t: ~_{t} H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$ $\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, K_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t:: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$ $\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)

A (Mayer-Vietoris) Kernel Construction

- $f: X \rightarrow \mathbb{R}$
$X^{t}:=f^{-1}(-\infty, t]$ and $X_{t}:=f^{-1}[t,+\infty)$
- Inclusion induced morphisms
$\iota_{t}: H_{*}\left(X^{t}\right) \rightarrow H_{*}(X)$ and $\jmath t:: H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$
- $\ell_{t}: H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right) \rightarrow H_{*}(X)$, where $\ell_{t}(a, b)=\iota_{t}(a)-\jmath_{t}(b)$
- $K_{t}:=\operatorname{ker} \ell_{t} \subseteq H_{*}\left(X^{t}\right) \oplus H_{*}\left(X_{t}\right)$
- Linear relation $\kappa_{s}^{t} \subseteq K_{s} \times K_{t}, s \leq t$ $\left(\left(a_{s}, b_{s}\right),\left(a_{t}, b_{t}\right)\right) \in \kappa_{s}^{t} \Longleftrightarrow \iota_{s}^{t}\left(a_{s}\right)=a_{t}$ and $j_{s}^{t}\left(b_{t}\right)=b_{s}$
- $\left(K_{t}, \kappa_{s}^{t}\right)$ is a c-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

Summary

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With c-modules we can do many things, cool stuff

Summary

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With c-modules we can do many things, cool stuff

Summary

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With c-modules we can do many things, cool stuff

Summary

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With c-modules we can do many things, cool stuff

Thanks!

