Correspondence Modules and Their Persistence Diagrams

Haibin Hang and Washington Mio

Department of Mathematics Florida State University

AMS Southeastern Sectional Meeting University of Florida Fall 2019

A > + = + + =

• In a simple, discrete form (persistence module over \mathbb{Z}):

$$\ldots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \ldots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_r^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

```
\mathbb{V}: (P,\preccurlyeq) \rightarrow \mathsf{Vec}
```

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over \mathbb{Z}):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_r^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

● In category theory language, V is a functor

```
\mathbb{V}: (P,\preccurlyeq) \rightarrow \mathsf{Vec}
```

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over \mathbb{Z}):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_r^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_s}, \forall t \in P$

● In category theory language, V is a functor

```
\mathbb{V}\colon (P,\preccurlyeq) 
ightarrow \mathsf{Vec}
```

• Example over R: Homology of a continuously filtered space

• In a simple, discrete form (persistence module over Z):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_t^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

```
\mathbb{V}: (P,\preccurlyeq) \rightarrow \mathsf{Vec}
```

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over Z):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_r^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_s}, \forall t \in P$

 \mathbb{V} : $(P,\preccurlyeq) \rightarrow \mathsf{Vec}$

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over Z):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_r^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

In category theory language, V is a functor

```
\mathbb{V}: (P,\preccurlyeq) \rightarrow \mathsf{Vec}
```

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over Z):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_t^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

In category theory language, V is a functor

$$\mathbb{V}$$
: $(P,\preccurlyeq) \rightarrow \mathsf{Vec}$

• Example over \mathbb{R} : Homology of a continuously filtered space

• In a simple, discrete form (persistence module over Z):

$$\dots \longrightarrow V_{n-1} \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} V_{n+1} \longrightarrow \dots$$

Sequence of vector spaces and linear mappings

Persistence modules V over R, or more generally, over a poset (P, ≼)

Vector spaces V_t , $t \in P$, and linear mappings $\nu_s^t \colon V_s \to V_t$, for any $s \preccurlyeq t$, satisfying:

(i)
$$\nu_t^t = \nu_s^t \circ \nu_r^s$$
, for any $r \preccurlyeq s \preccurlyeq t$;
(ii) $\nu_t^t = I_{V_t}, \forall t \in P$

In category theory language, V is a functor

$$\mathbb{V}$$
: $(P,\preccurlyeq) \rightarrow \mathsf{Vec}$

• Example over \mathbb{R} : Homology of a continuously filtered space

• Discrete form:

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over R? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

不同 とうきょうき

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \xleftarrow{\phi_{n-1}} V_n \xleftarrow{\phi_n} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over ℝ? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

< 回 > < 三 > < 三 >

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \xleftarrow{\phi_{n-1}} V_n \xleftarrow{\phi_n} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over R? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

< 回 > < 三 > < 三 >

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \xleftarrow{\phi_{n-1}} V_n \xleftarrow{\phi_n} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over ℝ? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

< ロ > < 同 > < 回 > < 回 >

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_n \stackrel{\phi_n}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_n \stackrel{\phi_n}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

Discrete form:

 $\ldots \longleftrightarrow V_{n-1} \stackrel{\phi_{n-1}}{\longleftrightarrow} V_n \stackrel{\phi_n}{\longleftrightarrow} V_{n+1} \longleftrightarrow \ldots$

Sequence of vector spaces with forward or backward mappings

- Can we define zigzags over \mathbb{R} ? Much less clear
- We introduce *correspondence modules* (*c*-modules) in which linear mappings are replaced with partial linear relations
- Like persistence modules, these will be defined over any poset (P, ≼)
- But, first, let us introduce the category CVec

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: C₁: V₁ → V₂ and C₂: V₂ → V₃
 Define C₂ ∘ C₁: V₁ → V₃ as the subspace

 $C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: C₁: V₁ → V₂ and C₂: V₂ → V₃
 Define C₂ ∘ C₁: V₁ → V₃ as the subspace

 $C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: C₁: V₁ → V₂ and C₂: V₂ → V₃
 Define C₂ ∘ C₁: V₁ → V₃ as the subspace

 $C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: C₁: V₁ → V₂ and C₂: V₂ → V₃
 Define C₂ ∘ C₁: V₁ → V₃ as the subspace

 $C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: $C_1 : V_1 \rightarrow V_2$ and $C_2 : V_2 \rightarrow V_3$

Define $C_2 \circ C_1 : V_1 \rightarrow V_3$ as the subspace

 $C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: $C_1: V_1 \rightarrow V_2$ and $C_2: V_2 \rightarrow V_3$ Define $C_2 \circ C_1: V_1 \rightarrow V_3$ as the subspace

$$C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \\ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

イロト イポト イラト イラト

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: $C_1: V_1 \rightarrow V_2$ and $C_2: V_2 \rightarrow V_3$ Define $C_2 \circ C_1: V_1 \rightarrow V_3$ as the subspace

$$C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 \colon \exists v_2 \in V_2 \text{ such that} \ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$$

Linear mappings as correspondences
 The graph of *T*: *V* → *W* gives a correspondence

$$G_T\colon V\to W$$

イロト イポト イラト イラト

- Objects: vector spaces (over a fixed field)
- Morphisms from V to W: linear subspaces of V × W
 The morphisms will be called *correspondences*
- Composition rule: $C_1: V_1 \rightarrow V_2$ and $C_2: V_2 \rightarrow V_3$ Define $C_2 \circ C_1: V_1 \rightarrow V_3$ as the subspace

$$C_2 \circ C_1 = \{ (v_1, v_3) \in V_1 \times V_3 : \exists v_2 \in V_2 \text{ such that} \ (v_1, v_2) \in C_1 \text{ and } (v_2, v_3) \in V_2 \times V_3 \}$$

Linear mappings as correspondences
 The graph of *T* : *V* → *W* gives a correspondence

$$G_T \colon V \to W$$

イロト イポト イラト イラト

• A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

 $\mathbb{V} \colon (P, \preccurlyeq) \to \mathsf{CVec}$

- Persistence modules as *c*-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

A (10) > A (10) > A (10)

• A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

 \mathbb{V} : $(P, \preccurlyeq) \rightarrow \mathsf{CVec}$

- Persistence modules as *c*-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

A (10) > A (10) > A (10)

• A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

 \mathbb{V} : $(P, \preccurlyeq) \rightarrow \mathsf{CVec}$

- Persistence modules as *c*-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

• A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

 \mathbb{V} : $(P, \preccurlyeq) \rightarrow \mathsf{CVec}$

- Persistence modules as *c*-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over $\mathbb R$ generalize zigzags and include many other persistence structures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A correspondence module \mathbb{V} over (P, \preccurlyeq) is a functor

 \mathbb{V} : $(P, \preccurlyeq) \rightarrow \mathsf{CVec}$

- Persistence modules as *c*-modules: replace linear mappings with their graphs
- Zigzag modules: replace forward mappings with their graphs and backward mappings with the reverse of their graphs
- Correspondence modules over \mathbb{R} generalize zigzags and include many other persistence structures

< ロ > < 同 > < 回 > < 回 > < 回 > <

Mio (FS

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

iU)	<i>c</i> -Modules

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

FSU	

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: X^t_s := f⁻¹([s, t]), s ≤ t
 Level sets: X[t] := X^t_t = f⁻¹(t), t ∈ ℝ
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

Mio (FSU)

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$

• Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

Mio	(FSU)

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

Mio	(FSU)
IVIIO I	(100)

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

Mio	
IVIIO	(FSU)

- Understand how the topology of the level sets of *f* : *X* → ℝ changes with function values
- Interlevel sets: $X_s^t := f^{-1}([s, t]), s \le t$ Level sets: $X[t] := X_t^t = f^{-1}(t), t \in \mathbb{R}$
- Discrete levels: ... $t_{n-1} < t_n < t_{n+1} < ...$

Mio	(FSU)

• For any $s \leq t$,

consider the correspondence $u_{m{s}}^t = m{G}^*_{\psi_t} \circ m{G}_{\phi_s}$

- Under some additional assumptions, one can show that $\{H_*(X[t]), \nu_s^t\}$ yields a *c*-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

• For any $s \leq t$,

consider the correspondence $\nu_{s}^{t} = G_{\psi_{t}}^{*} \circ G_{\phi_{s}}$

- Under some additional assumptions, one can show that $\{H_*(X[t]), \nu_s^t\}$ yields a *c*-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

• For any $s \leq t$,

consider the correspondence $u_{s}^{t} = \textit{G}_{\psi_{t}}^{*} \circ \textit{G}_{\phi_{s}}$

- Under some additional assumptions, one can show that $\{H_*(X[t]), \nu_s^t\}$ yields a *c*-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

• For any $s \leq t$,

consider the correspondence $u_{s}^{t} = \textit{G}_{\psi_{t}}^{*} \circ \textit{G}_{\phi_{s}}$

- Under some additional assumptions, one can show that $\{H_*(X[t]), \nu_s^t\}$ yields a *c*-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

• For any $s \leq t$,

consider the correspondence $\nu_{s}^{t} = \textit{G}_{\psi_{t}}^{*} \circ \textit{G}_{\phi_{s}}$

- Under some additional assumptions, one can show that $\{H_*(X[t]), \nu_s^t\}$ yields a *c*-module over \mathbb{R}
- Carlsson, de Silva, Kališnik, Morozov have studied level-set persistence in the framework of zigzags
- Botnam and Lesnick give a 2-D formulation via interlevel sets

Sections of 2-D Modules

Mio	(FSU)

UF 2019 8/18

• • • • • • • • • • • •

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_0
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_0
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in H_0
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in *H*₀
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

Cartoon of microfibers in carbon nanotube materials

- Sublevel and superlevel filtrations: each gives three infinite bars and a single finite bar in *H*₀
- Extended persistence gets closer (Cohen-Steiner, Edelsbrunner, Harer)

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle I \rangle$, $|I \rangle$, $\langle I|$, and |I|.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval *c*-modules associated with an interval *I* ⊆ ℝ
- We denote them $\langle I \rangle$, $|I \rangle$, $\langle I|$, and |I|.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- As in zigzag persistence, there are up to four types of interval *c*-modules associated with an interval *I* ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $| \mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $| \mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval *c*-modules follow a similar convention

- As in zigzag persistence, there are up to four types of interval c-modules associated with an interval I ⊆ ℝ
- We denote them $\langle \mathbb{I} \rangle$, $|\mathbb{I} \rangle$, $\langle \mathbb{I} |$, and $|\mathbb{I} |$.
- If \mathbb{V} is any the four, let $V_t = k$, $\forall t \in I$, and $V_t = 0$, otherwise
- If $s, t \in I$ and $s \leq t$, then $\nu_s^t = \Delta$, the graph of the identity
- If $s, t \in \mathbb{R} \setminus I$ and $s \leq t$, then $\nu_s^t = 0$
- For $\mathbb{V} = |\mathbb{I}\rangle$, $\nu_s^t = 0$, if $s \notin I$ and $t \in I$ and $\nu_s^t = k \times 0$, if $s \in I$ and $t \notin I$
- The morphisms for the other interval c-modules follow a similar convention

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s = (v_t)_{t \in I}$, where $v_t \in V_t$ and $(v_s, v_t) \in v_s^t$, for any $s \leq t$
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J : F(J) \to F(I)$
- If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s = (v_t)_{t \in I}$, where $v_t \in V_t$ and $(v_s, v_t) \in v_s^t$, for any $s \leq t$
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J : F(J) \to F(I)$
- If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$

 $s = (v_t)_{t \in I}$, where $v_t \in V_t$ and $(v_s, v_t) \in v_s^t$, for any $s \le t$

- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J : F(J) \to F(I)$

• If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

周レイモレイモ

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s = (v_t)_{t \in I}$, where $v_t \in V_t$ and $(v_s, v_t) \in \nu_s^t$, for any $s \le t$
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J : F(J) \to F(I)$

• If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

周 ト イ ヨ ト イ ヨ ト

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module V over an interval *I* ⊆ R
 s = (*v*_t)_{t∈I}, where *v*_t ∈ *V*_t and (*v*_s, *v*_t) ∈ *v*^t_s, for any *s* ≤ *t*
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J : F(J) \to F(I)$

• If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

伺 ト イヨ ト イヨト

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module V over an interval *I* ⊆ R
 s = (*v*_t)_{t∈I}, where *v*_t ∈ *V*_t and (*v*_s, *v*_t) ∈ *v*^t_s, for any *s* ≤ *t*
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J \colon F(J) \to F(I)$

• If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

周 ト イ ヨ ト イ ヨ ト

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module \mathbb{V} over an interval $I \subseteq \mathbb{R}$ $s = (v_t)_{t \in I}$, where $v_t \in V_t$ and $(v_s, v_t) \in \nu_s^t$, for any $s \le t$
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J \colon F(J) \to F(I)$

• If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Approach: look at sections of a *c*-module over ℝ to obtain a sheaf-like structure
- Sections of a *c*-module V over an interval *I* ⊆ R
 s = (*v*_t)_{t∈I}, where *v*_t ∈ *V*_t and (*v*_s, *v*_t) ∈ *v*^t_s, for any *s* ≤ *t*
- *F*(*I*) = all sections of V over the interval *I* This is a vector space
- If $I \subseteq J$, there is a restriction homomorphism $F_I^J \colon F(J) \to F(I)$
- If $I \subseteq J \subseteq K$, then

$$F_I^K = F_I^J \circ F_J^K$$

The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*

• A persistence pre-sheaf is a (contravariant) functor

 $F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$

The category Int

Objects: intervals $I \subseteq \mathbb{R}$ Morphisms: inclusion of intervals, $I \subseteq J$

• A persistence pre-sheaf is a (contravariant) functor

 $F \colon \mathsf{Int}^{\mathsf{op}} \to \mathsf{Vec}$

The category Int Objects: intervals *I* ⊆ ℝ

Morphisms: inclusion of intervals, $I \subseteq J$

• A persistence pre-sheaf is a (contravariant) functor

 $F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$

- The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*
- A persistence pre-sheaf is a (contravariant) functor

 $F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$

- The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*
- A persistence pre-sheaf is a (contravariant) functor

$$F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$$

- The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*
- A persistence pre-sheaf is a (contravariant) functor

$$F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$$

Terminology and notation

- The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*
- A persistence pre-sheaf is a (contravariant) functor

$$F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$$

 Terminology and notation
 An element s ∈ F(I) is called a section over I Restriction morphism: F_I^J := F(J ⊇ I)
 If s ∈ F(J), s|_I := F_I^J(s)

- The category Int
 Objects: intervals *I* ⊆ ℝ
 Morphisms: inclusion of intervals, *I* ⊆ *J*
- A persistence pre-sheaf is a (contravariant) functor

$$F: \operatorname{Int}^{\operatorname{op}} \to \operatorname{Vec}$$

Terminology and notation
An element s ∈ F(I) is called a section over I Restriction morphism: F_I^J := F(J ⊇ I)
If s ∈ F(J), s|_I := F_I^J(s)

• A persistence pre-sheaf *F* is a *p*-sheaf if:

(i) (Locality) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a cover of I by intervals and $s \in F(I)$ satisfies $s|_{I_{\lambda}} = 0$, $\forall \lambda$, then s = 0.

(ii) (Gluing) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a *connected* cover of *I* by intervals and s_{λ} are sections over I_{λ} such that $s_{\lambda}|_{I_{\lambda} \cap I_{\mu}} = s_{\mu}|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $s|_{I_{\lambda}} = s_{\lambda}$, for every $\lambda \in \Lambda$.

- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a *c*-module is a *p*-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If *I* = ∪*I*_λ, λ ∈ Λ, is a cover of *I* by intervals and *s* ∈ *F*(*I*) satisfies *s*|_{*I*_λ} = 0, ∀λ, then *s* = 0.
(ii) (Gluing) If *I* = ∪*I*_λ, λ ∈ Λ, is a *connected* cover of *I* by intervals and *s*_λ are sections over *I*_λ such that *s*_λ|_{*I*_λ∩*I*_μ} = *s*_μ|_{*I*_λ∩*I*_μ}, for any λ, μ ∈ Λ, then ∃*s* ∈ *F*(*I*) satisfying *s*|_{*I*_λ} = *s*_λ, for every λ ∈ Λ.

- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a *c*-module is a *p*-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

< ロ > < 同 > < 回 > < 回 >

Mio (FSU)

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a cover of *I* by intervals and $s \in F(I)$ satisfies $s|_{I_{\lambda}} = 0$, $\forall \lambda$, then s = 0.

(ii) (Gluing) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a *connected* cover of *I* by intervals and s_{λ} are sections over I_{λ} such that $s_{\lambda}|_{I_{\lambda} \cap I_{\mu}} = s_{\mu}|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $s|_{I_{\lambda}} = s_{\lambda}$, for every $\lambda \in \Lambda$.

- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a *c*-module is a *p*-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a cover of *I* by intervals and $s \in F(I)$ satisfies $s|_{I_{\lambda}} = 0$, $\forall \lambda$, then s = 0.

(ii) (Gluing) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a *connected* cover of *I* by intervals and s_{λ} are sections over I_{λ} such that $s_{\lambda}|_{I_{\lambda} \cap I_{\mu}} = s_{\mu}|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $s|_{I_{\lambda}} = s_{\lambda}$, for every $\lambda \in \Lambda$.

- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a *c*-module is a *p*-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a cover of *I* by intervals and $s \in F(I)$ satisfies $s|_{I_{\lambda}} = 0$, $\forall \lambda$, then s = 0.

(ii) (Gluing) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a *connected* cover of *I* by intervals and s_{λ} are sections over I_{λ} such that $s_{\lambda}|_{I_{\lambda} \cap I_{\mu}} = s_{\mu}|_{I_{\lambda} \cap I_{\mu}}$, for any $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $s|_{I_{\lambda}} = s_{\lambda}$, for every $\lambda \in \Lambda$.

- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a cover of *I* by intervals and $s \in F(I)$ satisfies $s|_{I_{\lambda}} = 0$, $\forall \lambda$, then s = 0. (ii) (Gluing) If $I = \bigcup I_{\lambda}$, $\lambda \in \Lambda$, is a *connected* cover of *I* by intervals and s_{λ} are sections over I_{λ} such that $s_{\lambda}|_{I_{\lambda} \cap I_{\mu}} = s_{\mu}|_{I_{\lambda} \cap I_{\mu}}$, for any

- $\lambda, \mu \in \Lambda$, then $\exists s \in F(I)$ satisfying $s|_{I_{\lambda}} = s_{\lambda}$, for every $\lambda \in \Lambda$.
- The cover $[0,2] = [0,1) \cup [1,2]$ is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

イロン イロン イヨン イヨン 二日

A persistence pre-sheaf F is a p-sheaf if:

(i) (Locality) If *I* = ∪*I*_λ, λ ∈ Λ, is a cover of *I* by intervals and *s* ∈ *F*(*I*) satisfies *s*|_{*I*_λ} = 0, ∀λ, then *s* = 0.
(ii) (Gluing) If *I* = ∪*I*_λ, λ ∈ Λ, is a *connected* cover of *I* by intervals and *s*_λ are sections over *I*_λ such that *s*_λ|_{*I*_λ∩*I*_μ} = *s*_μ|_{*I*_λ∩*I*_μ}, for any λ, μ ∈ Λ, then ∃*s* ∈ *F*(*I*) satisfying *s*|_{*I*_λ} = *s*_λ, for every λ ∈ Λ.

- The cover [0, 2] = [0, 1) ∪ [1, 2] is not connected
- Example. The pre-sheaf of sections of a c-module is a p-sheaf
- Through *p*-sheaves, we can analyze the structure of *c*-modules in the friendlier category Vec-valued functors

Theorem

If F is a tame p-sheaf, then

where $m_{\mathbb{I}} \in \mathbb{Z}^+ \cup \{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame *p*-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

Theorem

If F is a tame p-sheaf, then

where $m_{\mathbb{I}} \in \mathbb{Z}^+ \cup \{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame *p*-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A (10) A (10)

Theorem

If F is a tame p-sheaf, then

where $m_{\mathbb{I}} \in \mathbb{Z}^+ \cup \{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame *p*-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A (10) A (10)

Theorem

If F is a tame p-sheaf, then

where $m_{\mathbb{I}} \in \mathbb{Z}^+ \cup \{\infty\}$ is the multiplicity of each summand.

- Persistence Diagrams: there are four persistence diagrams associated with a tame *p*-sheaf, one for each type of interval module.
- The persistence diagrams are stable with respect to interleaving

A (10) A (10)

A Fiber-Like Structure

• How to get such barcodes?

Mio ((FSU)

A Fiber-Like Structure

• How to get such barcodes?

- 3 →

A Fiber-Like Structure

• How to get such barcodes?

• $f: X \to \mathbb{R}$

 $X^t := f^{-1}(-\infty, t]$ and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$
- $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$
- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

• $f: X \to \mathbb{R}$

 $X^t := f^{-1}(-\infty, t]$ and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$
- $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$
- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } \jmath_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$
- $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$
- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$
- $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$
- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$

• $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$
- $K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$
- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

くロン 不通 とくほ とくほ とうほう

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } \jmath_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) j_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t (a_s) = a_t$ and $j_s^t (b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

Mio (FSU)

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms

 *ι*_t: *H*_{*}(*X*^t) → *H*_{*}(*X*) and *j*_t: *H*_{*}(*X*_t) → *H*_{*}(*X*)
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) j_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (K_t, κ^t_s) is a *c*-module (e.g., if X is a compact polyhedron and H_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

Mio (FSU)

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) j_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \le t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (*K_t*, κ^t_s) is a *c*-module (e.g., if *X* is a compact polyhedron and *H*_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

Mio (FSU)

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) \jmath_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (*K_t*, κ^t_s) is a *c*-module (e.g., if *X* is a compact polyhedron and *H*_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

(日本)(日本)(日本)(日本)

• $f: X \to \mathbb{R}$

$$X^t := f^{-1}(-\infty, t]$$
 and $X_t := f^{-1}[t, +\infty)$

- Inclusion induced morphisms $\iota_t \colon H_*(X^t) \to H_*(X) \text{ and } j_t \colon H_*(X_t) \to H_*(X)$
- $\ell_t \colon H_*(X^t) \oplus H_*(X_t) \to H_*(X)$, where $\ell_t(a, b) = \iota_t(a) j_t(b)$

•
$$K_t := \ker \ell_t \subseteq H_*(X^t) \oplus H_*(X_t)$$

- Linear relation $\kappa_s^t \subseteq K_s \times K_t$, $s \leq t$ $((a_s, b_s), (a_t, b_t)) \in \kappa_s^t \iff \iota_s^t(a_s) = a_t$ and $j_s^t(b_t) = b_s$
- (*K_t*, κ^t_s) is a *c*-module (e.g., if *X* is a compact polyhedron and *H*_{*} is Steenrod-Sitnikov)
- In the fiber-like example, it gives the desired barcode

Mio (FSU)

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With *c*-modules we can do many things, cool stuff

 Main message: partial linear relations add a lot of flexibility to persistence structures

• With *c*-modules we can do many things, cool stuff

Mio ((EQUIN
IVIIO	(FSU)

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With *c*-modules we can do many things, cool stuff

< (□) < 三 > (□)

- Main message: partial linear relations add a lot of flexibility to persistence structures
- With *c*-modules we can do many things, cool stuff

< (□) < 三 > (□)

Thanks!

Min	(EOLIN
Mio ((FSU)