The dynamics of mapping classes on surfaces

Eriko Hironaka

January 31, 2012

10 Coxeter mapping classes and graphs with tails.

In this lecture, we will study examples of mapping classes coming from Coxeter graphs (see, for example, [Lab], [LP], [Mat], [Hir2]). In particular, we will investigate the dilatation of mapping classes associated to graphs with tails. We will show how such mapping classes can lie on fibered faces.

A (simply-laced) Coxeter graph is a graph $\Gamma = (\mathcal{V}, \mathcal{E})$ with vertices \mathcal{V} and edges \mathcal{E} . Assume that each edge connects two distinct vertices, and there is at most one edge between each pair of vertices. We will also consider *mixed-sign Coxeter graphs*, which are Coxeter graphs with labels + or - on each of the vertices. A graph Γ is ordered if there is an ordering of the vertices:

$$\mathcal{V} = \{v_1, \ldots, v_k\}.$$

A 1-dimensional subcomplex A of S fills S if every connected component of $S \setminus A$ is a disk or a boundary parallel annulus.

Let S be an oriented surface and $\gamma_1, \ldots, \gamma_n$ be a configuration of simple closed curves. The pair $(S, \{\gamma_1, \ldots, \gamma_n\})$ is called a *realization* of an ordered graph Γ if

- (i) $i_{alg}(\gamma_i, \gamma_j) = 1$ if and only if i > j, and
- (ii) the union of curves $\gamma_1 \cup \cdots \cup \gamma_n$ fills S.

Let δ_i be right Dehn twist centered at γ_i , $i = 1, \ldots, n$. Let

$$\phi_{\Gamma}: S \to S$$

be given by

$$\phi_{\Gamma} = \delta_n \circ \cdots \circ \delta_1.$$

We call ϕ_{Γ} , the *Coxeter mapping class* associated to Γ .

Coxeter systems. We give here a brief review of the definition of Coxeter systems associated to a simply-laced Coxeter graph Γ . For further references, see [Bour] [Hum] [A'C].

Let A_{Γ} be the adjacency matrix for Γ . That is,

$$A_{\Gamma} = [a_{i,j}],$$

where

$$a_{i,j} = \begin{cases} 1 & \text{if there is an edge from } v_i \text{ to } v_j \\ 0 & \text{otherwise} \end{cases}$$

Let $B_{\Gamma} = 2I - A$. This defines a symmetric bilinear form on $V_{\Gamma} = \mathbb{R}^n$, where we identify standard basis vectors e_1, \ldots, e_n with the vertices of Γ .

To each vertex v_i we associate a reflection $s_i : V_{\Gamma} \to V_{\Gamma}$ through the hyperplane transverse to e_i with respect to B_{Γ} . In equations

$$s_i : \mathbb{R}^n \to \mathbb{R}^n$$
$$v_j \mapsto v_j - 2\operatorname{Proj}_{e_i} e_j$$
$$= v_i - B(e_i, e_j) v_i$$

The *Coxeter element* associated to Γ is the product

$$\omega_{\Gamma} = s_1 \cdots s_n.$$

Mixed-sign Coxeter graphs We define a mixed-sign Coxeter graph Γ to be a Coxeter graph Γ where vertices are labeled with +1 or -1. Let $B_{\Gamma} = I_s - A_{\Gamma}$, where I_s is the diagonal matrix with entries 1 or -1 depending on the sign of the *i*th vertex of Γ . Let W_{Γ} be the reflection system defined by B_{Γ} as in the classical case.

For any realization $(S, \{\gamma_1, \ldots, \gamma_n\})$ of the underlying graph of Γ , let

$$\phi_{\Gamma} = d_{\gamma_1}^{s_1} \circ \cdots \circ d_{\gamma_n}^{s_n}.$$

where s_i is the label of v_i .

Relation between ω_{Γ} and ϕ_{Γ} . Although ω_{Γ} preserves a bilinear form, while the action $(\phi_{\Gamma})_*$: $H_1(S;\mathbb{R}) \to H_1(S;\mathbb{R})$ preserves a symplectic form defined by the intersection form in $H_1(S;\mathbb{R})$, there two transformations are conjugate.

Given a square matrix T over \mathbb{R} , let $\lambda(T)$ be the spectral radius of T.

Theorem 1 The homological action $(\phi_{\Gamma})_*$ of ϕ_{Γ} on $H_1(S; \mathbb{R})$ is conjugate to minus the Coxeter element ω_{Γ} of Γ . That is, there is an isomorphism

$$\beta: V_{\Gamma} \simeq H_1(S; \mathbb{R})$$

so that the diagram

commutes.

Theorem 1 is useful in the context of dilatations of pseudo-Anosov mapping classes in light of the following.

Theorem 2 ([**Ryk**]) The homological dilatation is a lower bound for geometric dilatation. That is, if ϕ is a pseudo-Anosov mapping class then

$$\lambda(\phi_*) \le \lambda(\phi),$$

with equality if and only if the invariant foliations $(\mathcal{F}^{\pm}, \nu^{\pm})$ are orientable.

Furthermore, Theorem 1 can be used to prove the following.

Theorem 3 If Γ is a connected mixed-sign Coxeter graph and $\lambda(\omega_{\Gamma}) > 1$, then ϕ_{Γ} is pseudo-Anosov, and $\lambda(\phi_{\Gamma}) \geq \lambda(\omega_{\Gamma})$.

Proof. If Γ is connected, then ω_{Γ} has no invariant subspaces. Therefore, ϕ_{Γ} is irreducible. By the Thurston-Nielsen classification, the only possibilities are ϕ_{Γ} is periodic or pseudo-Ansoov. Since periodic maps have homological dilatation equal to 1, ϕ_{Γ} cannot be periodic. The rest follows from Theorem 2.

Example: A_n -graph. A spherical Coxeter system is one where the graph $W(\Gamma)$ generated by the reflections s_i is finite. This is equivalent to the requirement that B_{Γ} defines a positive or negative definite form. In particular, all the elements of $W(\Gamma)$ are periodic. The spherical (classical) Coxeter systems are completely classified. One sequence of spherical Coxeter systems is defined by the graphs A_n shown in Figure 1. The Coxeter group $W(A_n)$ is isomorphic to the symmetric group on n + 1 elements, and the Coxeter element ω_{A_n} corresponds to an n + 1-cycle.

Figure 1: A_n graph with n = 8 vertices

The A_n graph has realization shown in Figure 2.

A bipartite ordering of the vertices of a graph $\{v_1, \ldots, v_n\}$ is one where for some 1 < s < n, the subgraphs of Γ generated by $\{v_1, \ldots, v_s\}$, and by $\{v_{s+1}, \ldots, v_n\}$ have no edges.

Figure 2: Realization of A_n graph, n = 6 and n = 7

Proposition 4 Let A_n have either the sequential or the bipartite order. For n odd, $(\phi_{A_n})^{n+1}$ is a Dehn twist on a curve parallel to the boundary of S_{A_n} . For n even, $(\phi_{A_n})^{n+1}$ is a composition of Dehn twists on the boundary components composed with the hyperelliptic involution.

The surface S_{A_n} and mapping class ϕ_{A_n} can also be pictured as a periodic map on a closed surface (see Figure 3). This picture of S_{A_n} is due to Veech, and emphasizes a flat structure preserved by the action of ϕ_{A_n} . The surface is a union of two symmetric polygons attached along parallel edges. (Only parallel edges from the two different polygons are identified.) The mapping class ϕ_{A_n} is a roatation by one-click composed composed with the involution given by interchanging the polygons.

Figure 3: Realization of A_n graph on a closed surface: Veech construction n = 7.

Murasugi Sum A *Murasugi sum* of two mapping classes (S_1, ϕ_1) and (S_2, ϕ_2) is defined as follows. Let K be a polygon with sides s_1, \ldots, s_k and let $\iota_i : K \hookrightarrow S_i$ be embeddings so that

1. $\iota_1(s_i) \subset \partial S_1, \, \iota_2(s_i) \subset \operatorname{Int}(S_2)$ for *i* even, and 2. $\iota_1(s_i) \subset \operatorname{Int}(S_1), \, \iota_2(s_i) \subset \partial S_2.$

Then the Murasugi sum of (S_1, ϕ_1) and (S_2, ϕ_2) with respect to (K, ι_1, ι_2) , is (S, ϕ) , where S is obtained by attaching S_1 and S_2 along the image of K by ι_1 and ι_2 , and ϕ is the composition of mapping classes $\tilde{\phi}_2 \circ \tilde{\phi}_1$, where $\tilde{\phi}_i$ is the extension of ϕ_i by the identity. For n = 1, (S_{A_1}, ϕ_{A_1}) is an annulus with a positive Dehn twist along its core curve. The mapping torus for (S_{A_1}, ϕ_{A_1}) is the complement of a neighborhood of the Hopf link in the three sphere S^3 .

Let (S, ϕ) be any mapping class, and let α be any path on S whose endpoints lie on ∂S . Then by thickening α one obtains the embedded image of a square of the required type to do a Murasugi sum. Take a path β on the annulus S_{A_1} that has endpoints on each of the boundary components of S_{A_1} . Then β is determined up to isotopy. The *Hopf plumbing* of (S, ϕ) determined by α is the Murasugi sum of (S, ϕ) and (S_{A_1}, ϕ_{A_1}) along the images of the square determined by α and β .

Coxeter links Let $D \subset S^3$ be an embedded disk in S^3 . A *chord diagram* is an ordered union of distinct line segments ℓ_1, \ldots, ℓ_k on D. Then there is an associated mapping class (S, ϕ) obtained by Hopf plumbing along ℓ_1, \ldots, ℓ_k . The ℓ_i determine core loops $\alpha_1, \ldots, \alpha_k$ on S that generate $H_1(S; \mathbb{Z})$.

Theorem 5 ([Hir1], cf. Murasugi [Mur]) The mapping class (S, ϕ) corresponding to an ordered chord diagram has mapping torus homeomorphic to $S^3 \setminus L$, where L is the boundary of the surface in S^3 obtained by attaching positively twisted bands to D along thickenings of ℓ_1, \ldots, ℓ_k . If the ordering of the lines preserves the order of their slopes, then $\alpha_1, \ldots, \alpha_k$ is a realization of the incidence graph of ℓ_1, \ldots, ℓ_k , and (S, ϕ) is the corresponding Coxeter mapping class.

Figure 4 gives a chord diagram together with its dual graph.

Figure 4: Chord diagram and dual graph.

Figure 5 gives a picture of a Coxeter link.

Figure 5: Coxeter link associated to a chord diagram.

Figure 6 shows the effect of iterated Hopf plumbing on fibered links.

Graphs with tails. From the above discussion, it follows that joining two graphs along a vertex amounts to doing a Murasugi sum along squares. Figure 7 gives an example of a chord diagrams associated to a join.

Figure 6: Two iterations of Hopf plumbing.

Figure 7: The join of two graphs at a vertex, and the corresponding chord diagarm.

In particular, we can attach A_n to any graph at a vertex (Figure 8).

Figure 8: A graph with a tail.

Homological dilatation of Coxeter mapping classes with tails. Let M be the mapping torus for (S, ϕ) and let (S_n, ϕ_n) be the Murasugi sum of (S, ϕ) with (S_{A_n}, ϕ_{A_n}) . We say that (S_n, ϕ_n) is obtained from (S, ϕ) by iterated Hopf plumbing.

Theorem 6 ([Hir1]) Let (S_n, ϕ_n) be obtained by iterated Hopf plumbing from a single mapping class. Then the characteristic polynomial for the homological action of ϕ_n is given by

$$\Delta_n(x) = x^n f(x) + f^*(x),$$

for some polynomial f(x).

Corollary 7 The sequence $\lambda_{hom}(\phi_n)$ converges, and the limit is greater than 1.

Coxeter mapping classes with tails and fibered faces. Mapping classes with tails naturally lie on fibered faces of a single 3-manifold.

Lemma 8 Let M be the mapping torus for (S, ϕ) , and let (S_1, ϕ_1) be the monodromy of a fibered link. Let M_1 be the mapping torus for the Murasugi sum of (S, ϕ) and (S_1, ϕ_1) . Then the Dehn fillings of M and M_1 induced by the fibrations are homeomorphic manifolds.

Proof. The filling of M_1 is obtained from the filling of M by removing a ball, and then gluing it back in by a homeomorphism that fixes the boundary.

Theorem 9 Let (S_n, ϕ_n) be obtained by iterated Hopf plumbing. Then for large n, (S_n, ϕ_n) has a singular orbit \mathcal{O}_n of order 2 corresponding to the center of the polygons making up S_{A_n} . Let M_n be the mapping torus for (S_n, ϕ_n) , and let M'_n be M_n minus the suspension of \mathcal{O}_n . Then there is a smooth point on S with orbit \mathcal{O} under ϕ so that $M \setminus \mathcal{O}$ is homeomorphic to $M_n \setminus \mathcal{O}_n$.

Corollary 10 The sequence (S_n, ϕ_n) is made up of convergent subsequences on fibered faces of a single 3-manifold, and all accumulation points lie on the boundary of a fibered face.

Proof. Since the homological dilatation is a lower bound for geometric dilatation, the normalized dilatations of the mapping classes must go to infinity. \Box

Adding more than one tail. For the graph given in Figure 9, we have the following (cf. [Tsa])

Theorem 11 (H-Kin [HK])

Figure 9: Brinkman example.

It follows that these mapping classes also accumulate toward the boundary of fibered faces of two 3-manifolds (depending on the relative parity of m, n).

Question 12 Do mapping classes obtained by adding less than or equal to two tails always accumulate on the boundary?

References

- [A'C] N. A'Campo. Sur les valeurs propres de la transformation de Coxeter. Invent. Math. 33 (1976), 61–67.
- [Bour] N. Bourbaki. Groupes et algèbres de Lie. Hermann, Paris, 1968.
- [Hir1] E. Hironaka. Chord diagrams and Coxeter links. J. London Math. Soc. 69 (2004), 243–257.
- [Hir2] E. Hironaka. Mapping classes associated to mixed-sign Coxeter graphs. arXiv:1110.1013v1 [math.GT] (2011).
- [HK] E. Hironaka and E. Kin. A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol. 6 (2006), 699–738.
- [Hum] J. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press, Cambridge, 1990.
- [Lab] C. Labruère. Generalized braid groups and mapping class groups. J. Knot Theory Ramifications 6 (1997), 715–726.
- [LP] C. Labruère and L. Paris. Presentations for the punctured mapping class groups in terms of Artin groups. *Algebr. Geom. Topol.* **1** (2001), 73–114.
- [Mat] M. Matsumoto. A simple presentation of mapping class groups in terms of Artin groups. Sugaku Expositions 15 (2002), 223–236.
- [Mur] K. Murasugi. On the genus of the alternating knot. I,II. J. Math.Soc. Japan 104 (1958), 94–105,235–248.
- [Ryk] E. Rykken. Expanding factors for pseudo-Anosov homeomorphisms. Michigan Math. J. 46 (1999), 281–296.
- [Tsa] C. Tsai. The aymptotic behavior of least pseudo-Anosov dilatations. Geometry and Topology 13 (2009), 2253–2278.