
The dynamics of mapping classes on surfaces

Eriko Hironaka

January 31, 2012

10 Coxeter mapping classes and graphs with tails.

In this lecture, we will study examples of mapping classes coming from Coxeter graphs (see, for
example, [Lab], [LP], [Mat], [Hir2]). In particular, we will investigate the dilatation of mapping
classes associated to graphs with tails. We will show how such mapping classes can lie on fibered
faces.

A (simply-laced) Coxeter graph is a graph Γ = (V, E) with vertices V and edges E . Assume that
each edge connects two distinct vertices, and there is at most one edge between each pair of vertices.
We will also consider mixed-sign Coxeter graphs, which are Coxeter graphs with labels + or − on
each of the vertices. A graph Γ is ordered if there is an ordering of the vertices:

V = {v1, . . . , vk}.

A 1-dimensional subcomplex A of S fills S if every connected component of S \ A is a disk or a
boundary parallel annulus.

Let S be an oriented surface and γ1, . . . , γn be a configuration of simple closed curves. The pair
(S, {γ1, . . . , γn}) is called a realization of an ordered graph Γ if

(i) ialg(γi, γj) = 1 if and only if i > j, and

(ii) the union of curves γ1 ∪ · · · ∪ γn fills S.

Let δi be right Dehn twist centered at γi, i = 1, . . . , n. Let

φΓ : S → S

be given by
φΓ = δn ◦ · · · ◦ δ1.

We call φΓ, the Coxeter mapping class associated to Γ.
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Coxeter systems. We give here a brief review of the definition of Coxeter systems associated to
a simply-laced Coxeter graph Γ. For further references, see [Bour] [Hum] [A’C].

Let AΓ be the adjacency matrix for Γ. That is,

AΓ = [ai,j ],

where

ai,j =

{
1 if there is an edge from vi to vj
0 otherwise

Let BΓ = 2I −A. This defines a symmetric bilinear form on VΓ = Rn, where we identify standard
basis vectors e1, . . . , en with the vertices of Γ.

To each vertex vi we associate a reflection si : VΓ → VΓ through the hyperplane transverse to ei
with respect to BΓ. In equations

si : Rn → Rn

vj 7→ vj − 2Projeiej

= vi −B(ei, ej)vi.

The Coxeter element associated to Γ is the product

ωΓ = s1 · · · sn.

Mixed-sign Coxeter graphs We define a mixed-sign Coxeter graph Γ to be a Coxeter graph Γ
where vertices are labeled with +1 or −1. Let BΓ = Is − AΓ, where Is is the diagonal matrix
with entries 1 or −1 depending on the sign of the ith vertex of Γ. Let WΓ be the relfection system
defined by BΓ as in the classical case.

For any realization (S, {γ1, . . . , γn}) of the underlying graph of Γ, let

φΓ = ds1γ1
◦ · · · ◦ dsnγn .

where si is the label of vi.

Relation between ωΓ and φΓ. Although ωΓ preserves a bilinear form, while the action (φΓ)∗ :
H1(S;R) → H1(S;R) preserves a symplectic form defined by the intersection form in H1(S;R),
there two transformations are conjugate.

Given a square matrix T over R, let λ(T ) be the spectral radius of T .

Theorem 1 The homological action (φΓ)∗ of φΓ on H1(S;R) is conjugate to minus the Coxeter
element ωΓ of Γ. That is, there is an isomorphism

β : VΓ ' H1(S;R)
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so that the diagram

VΓ

β
��

(φΓ)∗ // VΓ

β
��

H1(S;R)
−ωΓ // H1(S;R)

commutes.

Theorem 1 is useful in the context of dilatations of pseudo-Anosov mapping classes in light of the
following.

Theorem 2 ([Ryk]) The homological dilatation is a lower bound for geometric dilatation. That
is, if φ is a pseudo-Anosov mapping class then

λ(φ∗) ≤ λ(φ),

with equality if and only if the invariant foliations (F±, ν±) are orientable.

Furthermore, Theorem 1 can be used to prove the following.

Theorem 3 If Γ is a connected mixed-sign Coxeter graph and λ(ωΓ) > 1, then φΓ is pseudo-
Anosov, and λ(φΓ) ≥ λ(ωΓ).

Proof. If Γ is connected, then ωΓ has no invariant subspaces. Therefore, φΓ is irreducible. By the
Thurston-Nielsen classification, the only possibilities are φΓ is periodic or pseudo-Ansoov. Since
periodic maps have homological dilatation equal to 1, φΓ cannot be periodic. The rest follows from
Theorem 2.

Example: An-graph. A spherical Coxeter system is one where the graph W (Γ) generated by the
reflections si is finite. This is equivalent to the requirement that BΓ defines a positive or negative
definite form. In particular, all the elements of W (Γ) are periodic. The spherical (classical)
Coxeter systems are completely classified. One sequence of spherical Coxeter systems is defined by
the graphs An shown in Figure 1. The Coxeter group W (An) is isomorphic to the symmetric group
on n+ 1 elements, and the Coxeter element ωAn corresponds to an n+ 1-cycle.

Figure 1: An graph with n = 8 vertices

The An graph has realization shown in Figure 2.

A bipartite ordering of the vertices of a graph {v1, . . . , vn} is one where for some 1 < s < n, the
subgraphs of Γ generated by {v1, . . . , vs}, and by {vs+1, . . . , vn} have no edges.
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Figure 2: Realization of An graph, n = 6 and n = 7

Proposition 4 Let An have either the sequential or the bipartite order. For n odd, (φAn)n+1 is a
Dehn twist on a curve parallel to the boundary of SAn. For n even, (φAn)n+1 is a composition of
Dehn twists on the boundary components composed with the hyperelliptiic involution.

The surface SAn and mapping class φAn can also be pictured as a periodic map on a closed surface
(see Figure 3). This picture of SAn is due to Veech, and emphasizes a flat structure preserved by
the action of φAn . The surface is a union of two symmetric polygons attached along parallel edges.
(Only parallel edges from the two different polygons are identified.) The mapping class φAn is a
roatation by one-click composed composed with the involution given by interchanging the polygons.

Figure 3: Realization of An graph on a closed surface: Veech construction n = 7.

Murasugi Sum A Murasugi sum of two mapping classes (S1, φ1) and (S2, φ2) is defined as follows.
Let K be a polygon with sides s1, . . . , sk and let ιi : K ↪→ Si be embeddings so that

1. ι1(si) ⊂ ∂S1, ι2(si) ⊂ Int(S2)) for i even, and

2. ι1(si) ⊂ Int(S1), ι2(si) ⊂ ∂S2.

Then the Murasugi sum of (S1, φ1) and (S2, φ2) with respect to (K, ι1, ι2), is (S, φ), where S is
obtained by attaching S1 and S2 along the image of K by ι1 and ι2, and φ is the composition of
mapping classes φ̃2 ◦ φ̃1, where φ̃i is the extension of φi by the identity.
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For n = 1, (SA1 , φA1) is an annulus with a positive Dehn twist along its core curve. The mapping
torus for (SA1 , φA1) is the complement of a neighborhood of the Hopf link in the three sphere S3.

Let (S, φ) be any mapping class, and let α be any path on S whose endpoints lie on ∂S. Then by
thickening α one obtains the embedded image of a square of the required type to do a Murasugi
sum. Take a path β on the annulus SA1 that has endpoints on each of the boundary components
of SA1 . Then β is determined up to isotopy. The Hopf plumbing of (S, φ) determined by α is the
Murasugi sum of (S, φ) and (SA1 , φA1) along the images of the square determined by α and β.

Coxeter links Let D ⊂ S3 be an embedded disk in S3. A chord diagram is an ordered union of
distinct line segments `1, . . . , `k on D. Then there is an associated mapping class (S, φ) obtained
by Hopf plumbing along `1, . . . , `k. The `i determine core loops α1, . . . , αk on S that generate
H1(S;Z).

Theorem 5 ([Hir1], cf. Murasugi [Mur]) The mapping class (S, φ) corresponding to an or-
dered chord diagram has mapping torus homeomorphic to S3 \ L, where L is the boundary of the
surface in S3 obtained by attaching positively twisted bands to D along thickenings of `1, . . . , `k. If
the ordering of the lines preserves the order of their slopes, then α1, . . . , αk is a realization of the
incidence graph of `1, . . . , `k, and (S, φ) is the corresponding Coxeter mapping class.

Figure 4 gives a chord diagram together with its dual graph.

Figure 4: Chord diagram and dual graph.

Figure 5 gives a picture of a Coxeter link.

Figure 5: Coxeter link associated to a chord diagram.

Figure 6 shows the effect of iterated Hopf plumbing on fibered links.

Graphs with tails. From the above discussion, it follows that joining two graphs along a vertex
amounts to doing a Murasugi sum along squares. Figure 7 gives an example of a chord diagrams
associated to a join.
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Figure 6: Two iterations of Hopf plumbing.

Figure 7: The join of two graphs at a vertex, and the corresponding chord diagarm.

In particular, we can attach An to any graph at a vertex (Figure 8).

Figure 8: A graph with a tail.

Homological dilatation of Coxeter mapping classes with tails. Let M be the mapping torus
for (S, φ) and let (Sn, φn) be the Murasugi sum of (S, φ) with (SAn , φAn). We say that (Sn, φn) is
obtained from (S, φ) by iterated Hopf plumbing.

Theorem 6 ([Hir1]) Let (Sn, φn) be obtained by iterated Hopf plumbing from a single mapping
class. Then the characteristic polynomial for the homological action of φn is given by

∆n(x) = xnf(x) + f∗(x),

for some polynomial f(x).

Corollary 7 The sequence λhom(φn) converges, and the limit is greater than 1.
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Coxeter mapping classes with tails and fibered faces. Mapping classes with tails naturally
lie on fibered faces of a single 3-manifold.

Lemma 8 Let M be the mapping torus for (S, φ), and let (S1, φ1) be the monodromy of a fibered
link. Let M1 be the mapping torus for the Murasugi sum of (S, φ) and (S1, φ1). Then the Dehn
fillings of M and M1 induced by the fibrations are homeomorphic manifolds.

Proof. The filling of M1 is obtained from the filling of M by removing a ball, and then gluing it
back in by a homeomorphism that fixes the boundary.

Theorem 9 Let (Sn, φn) be obtained by iterated Hopf plumbing. Then for large n, (Sn, φn) has a
singular orbit On of order 2 corresponding to the center of the polygons making up SAn. Let Mn

be the mapping torus for (Sn, φn), and let M ′n be Mn minus the suspension of On. Then there is a
smooth point on S with orbit O under φ so that M \ O is homeomorphic to Mn \ On.

Corollary 10 The sequence (Sn, φn) is made up of convergent subsequences on fibered faces of a
single 3-manifold, and all accumulation points lie on the boundary of a fibered face.

Proof. Since the homological dilatation is a lower bound for geometric dilatation, the normalized
dilatations of the mapping classes must go to infinity.

Adding more than one tail. For the graph given in Figure 9, we have the following (cf. [Tsa])

Theorem 11 (H-Kin [HK])

log λ(φn,n) � log(n)

n
.

nm

Figure 9: Brinkman example.

It follows that these mapping classes also accumulate toward the boundary of fibered faces of two
3-manifolds (depending on the relative parity of m,n).

Question 12 Do mapping classes obtained by adding less than or equal to two tails always accu-
mulate on the boundary?
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