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2 Train tracks, transition matrices

In this lecture, we define train tracks on surfaces, and show how they can be used to find the
dilatation of a mapping class. Some references are [BH] and [PH].

A retraction of a space X onto a subspace A ⊂ X is a continuous map r : X → A so that the
restriction of r to A is the identity map. The map r is a deformation retract if there is a continuous
map

h : X × I → X

such that h(x, 0) = x and h(x, 1) = r(x), in other words, a deformation retract is a retraction that
is homotopic to the identity map on X.

A graph Γ is a finite union of points V called vertices, and line segments E called edges so that the
end points of each edge lie in V. Then Γ has a natural topological structure. Assigning positive
length values to each edge gives Γ a metric structure. An edge-path on Γ is a path [0, 1]→ Γ that
is the composition of a finite sequence of edges on Γ that are connected end-to-end, so that no two
consecutive edges are the same, but traversed in the opposite direction. If each edge has a length
value, then the length of an edge-path γ is the sum of the lengths of edges (counting multiplicity)
that make up γ.

Let S be a surface (compact, oriented) and let Γ ⊂ S be an embedded graph. We call Γ a spine of
S if S has a deformation retract r : S → Γ.

Given a closed curve γ on S, and a spine Γ of S, r(γ) defines an isotopy class of closed edge-paths
on Γ. We define the length of γ to be the minimum length of elements in the isotopy type of r(γ).

A half-edge is an edge together with a choice of endpoint (ε, v). The degree of a vertex v is the
number of distinct half-edges (ε, v) with endpoint v. If Γ lies on a surface S, then for every vertex
v of Γ, the orientation on S induces a cyclic ordering of the half-edges meeting at v. A graph with
this cyclic structure at vertices is called a fat graph.

Exercise 1 Given a fat graph, there is a corresponding oriented surface S such that Γ embeds in
S as a spine, and the fat graph structure on Γ is the same as the one induced by S.
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A train track τ is an embedded trivalent graph with the following extra structure. At each vertex
v, let (εi, v) be the half-edges with endpoint v, i = 1, 2, 3. A smoothing of Γ at v is a choice of
tangent line L at v so that each (εi, v) is tangent to L at v, and (εi, v) meets (εj , v) either in a cusp
or smoothly as in Figure 1.

Figure 1: The edges e1, and e2 meet in a cusp, while e1, e3 and e2, e3 meet smoothly at v

An edge-path on a train track is an edge-path on the underlying graph of τ such that each pair of
consecutive edges meet smoothly at a vertex. An edge-path is closed if its initial and endpoints are
the same. By the definition of edge-paths on train tracks it is not possible for an edge-path to back
track.

Let τ ⊂ S be a train track, with a deformation retract r : S → τ . A closed curve γ on S is carried
by τ if r(τ) is isotopic to a closed edge-path on τ .

A train track map is the isotopy class of a continuous map f : τ → τ that permutes the vertices
of τ and sends each edge in τ to an edge-path with no backtracks. We do not require that the
isotopies preserve the image of vertices. Let V be the R-span of the edges of τ . Then train track
maps induce linear maps F : V → V . If we fix an ordering on the edges of τ , then F has a matrix
representation, which is called the transition matrix for the train track map f . Closed curves γ
carried by τ are in one-to-one correspondence with vectors vγ ∈ V with non-negative integer values.
By the definitions, for each closed curve γ on S carried by τ ,

vφ(γ) = Fvγ . (1)

Given a mapping class φ : S → S, a train track τ is compatible with φ if there is a deformation
retraction r : S → τ so that r ◦ φ|τ is a train track map.

Lemma 0.1 If τ is compatible with φ, then for each essential closed curve γ on S carried by (τ, r),
r(φ(γ)) has no backtracks.

Theorem 0.2 A mapping class φ : S → S is pseudo-Anosov if and only if there is a train track τ
in S that is compatible on S, so that for all essential closed curves γ on S, we have

(i) for large enough n, φn(γ) is carried on τ ;
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(ii) for large enough n, vφn(γ) has strictly positive entries; and

(iii) |φn(γ)| has growth rate λ > 1.

Here the length function |γ| on curves γ carried by τ is defined in terms of any fixed choice of positive
length values for the edges of τ , and λ is independent of this choice and equals the dilatation of φ.

Example 1. Consider again the example φ from Lecture 1 known as the ”smallest” hyperbolic
mapping class. As you iterate the map, you can see that the edges map to edge-paths that are
carried on the train track. The transition matrix is given by[

1 1
1 2

]
.

This implies that the lengths of essential curves on S are growing, with growth rate equal to the
largest root of

x2 − 3x+ 1.

Thus, λ = 3+
√
5

2 .

Figure 2: The “smallest” hyperbolic mapping class

Example 2. A right Dehn twist along an essential simple closed curve γ on a surface S is the
map obtained by ”cutting” S along γ, and then regluing after a full right hand twist.

c
c

Figure 3: Right Dehn twist

A left Dehn twist turns the other direction. Consider the mapping class φ̃ on the torus with
one boundary component (g, n) = (1, 1) given by doing a right Dehn twist along the meridian
composed with a left Dehn twist along a longitude. The transition matrix for this example is the
same transition matrix as in Example 1. There is an easy explanation using covering space. One
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can think of the punctured torus as the double cover of a disk branched along 3 points. Then φ̃ is
the “lift” of the mapping class φ from Example 1. That is, there is commutative diagram

S1,1

��

φ̃ // S1,1

��
S0,4

φ // S0,4

Figure 4: Torus example
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