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2 Train tracks, transition matrices

In this lecture, we define train tracks on surfaces, and show how they can be used to find the
dilatation of a mapping class. Some references are [BH] and [PH].

A retraction of a space X onto a subspace A C X is a continuous map r : X — A so that the
restriction of r to A is the identity map. The map r is a deformation retract if there is a continuous
map

h: X xI—-X

such that h(z,0) = x and h(z,1) = r(z), in other words, a deformation retract is a retraction that
is homotopic to the identity map on X.

A graph T is a finite union of points V called vertices, and line segments £ called edges so that the
end points of each edge lie in V. Then T" has a natural topological structure. Assigning positive
length values to each edge gives I a metric structure. An edge-path on I' is a path [0,1] — T that
is the composition of a finite sequence of edges on I' that are connected end-to-end, so that no two
consecutive edges are the same, but traversed in the opposite direction. If each edge has a length
value, then the length of an edge-path + is the sum of the lengths of edges (counting multiplicity)
that make up 7.

Let S be a surface (compact, oriented) and let I' C S be an embedded graph. We call " a spine of
S if S has a deformation retract r: S — T.

Given a closed curve v on S, and a spine I of S, () defines an isotopy class of closed edge-paths
on I'. We define the length of v to be the minimum length of elements in the isotopy type of (7).

A half-edge is an edge together with a choice of endpoint (e€,v). The degree of a vertex v is the
number of distinct half-edges (e, v) with endpoint v. If I lies on a surface S, then for every vertex
v of T, the orientation on S induces a cyclic ordering of the half-edges meeting at v. A graph with
this cyclic structure at vertices is called a fat graph.

Exercise 1 Given a fat graph, there is a corresponding oriented surface S such that I' embeds in
S as a spine, and the fat graph structure on I' is the same as the one induced by S.



A train track T is an embedded trivalent graph with the following extra structure. At each vertex
v, let (&, v) be the half-edges with endpoint v, i = 1,2,3. A smoothing of I at v is a choice of
tangent line L at v so that each (¢;, v) is tangent to L at v, and (€;, v) meets (€5, v) either in a cusp
or smoothly as in Figure 1.
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Figure 1: The edges e1, and ez meet in a cusp, while e1, e3 and ea, e3 meet smoothly at v

An edge-path on a train track is an edge-path on the underlying graph of 7 such that each pair of
consecutive edges meet smoothly at a vertex. An edge-path is closed if its initial and endpoints are
the same. By the definition of edge-paths on train tracks it is not possible for an edge-path to back
track.

Let 7 C S be a train track, with a deformation retract r : S — 7. A closed curve v on S is carried
by T if r(7) is isotopic to a closed edge-path on 7.

A train track map is the isotopy class of a continuous map f : 7 — 7 that permutes the vertices
of 7 and sends each edge in 7 to an edge-path with no backtracks. We do not require that the
isotopies preserve the image of vertices. Let V be the R-span of the edges of 7. Then train track
maps induce linear maps F': V — V. If we fix an ordering on the edges of 7, then F' has a matrix
representation, which is called the transition matriz for the train track map f. Closed curves v
carried by 7 are in one-to-one correspondence with vectors v, € V' with non-negative integer values.
By the definitions, for each closed curve v on S carried by T,

U¢(7) = F’U,y. (1)

Given a mapping class ¢ : S — 5, a train track 7 is compatible with ¢ if there is a deformation
retraction r : S — 7 so that r o ¢|; is a train track map.

Lemma 0.1 If 7 is compatible with ¢, then for each essential closed curve vy on S carried by (1,7),
r(é(v)) has no backtracks.

Theorem 0.2 A mapping class ¢ : S — S is pseudo-Anosov if and only if there is a train track T
in S that is compatible on S, so that for all essential closed curves v on S, we have

(i) for large enough n, ¢™ () is carried on T;



(i3) for large enough n, vgn () has strictly positive entries; and

(1i1) |¢" ()| has growth rate X\ > 1.

Here the length function |y| on curves v carried by T is defined in terms of any fized choice of positive
length values for the edges of T, and X is independent of this choice and equals the dilatation of ¢.

Example 1. Consider again the example ¢ from Lecture 1 known as the ”smallest” hyperbolic
mapping class. As you iterate the map, you can see that the edges map to edge-paths that are
carried on the train track. The transition matrix is given by

11

1 2|
This implies that the lengths of essential curves on S are growing, with growth rate equal to the
largest root of

22— 3x+ 1.

Thus, A = %

Figure 2: The “smallest” hyperbolic mapping class

Example 2. A right Dehn twist along an essential simple closed curve 7 on a surface S is the
map obtained by ”cutting” S along ~, and then regluing after a full right hand twist.

Figure 3: Right Dehn twist

A left Dehn twist turns the other direction. Consider the mapping class 5 on the torus with
one boundary component (g,n) = (1,1) given by doing a right Dehn twist along the meridian
composed with a left Dehn twist along a longitude. The transition matrix for this example is the
same transition matrix as in Example 1. There is an easy explanation using covering space. One



can think of the punctured torus as the double cover of a disk branched along 3 points. Then 5 is
the “lift” of the mapping class ¢ from Example 1. That is, there is commutative diagram

[
S11—= 511

oy

So4 — So4

Figure 4: Torus example
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