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3 Train track automata

In this lecture, we define train track automata. Good resources are [KLS], [HS].

In Lecture 2, we defined a train track τ as a trivalent fat graph, with a smoothing at each vertex. A
train track determines a surface S and a deformation retract r : S → τ . A mapping class φ : S → S
is compatible with τ if r ◦ φ|τ is a train track map up to isotopy.

We now define an operation on the set of all train tracks. Let τ be a train track. Given an edge
e on τ there are two half-edges of e associated to the two possible orientations on e. Given an
orientation ~e on e, denote by −~e the oppositely oriented edge. Thus,

−(−~e) = ~e.

We identify ~e and −~e with their corresponding half-edges. Let v(~e) and v(−~e) be the corresponding
endpoints of e. Since τ is a fat graph, any pair of half-edges ~e and ~f meeting at v have an associated
ordering. We will write

~e � ~f

if ~f comes directly after ~e in the counter-clockwise ordering of the half-edges at v.

Folding map. Let ~e and ~f be two half-edges meeting at a cusp at v = v(~e) = v(~f), where ~e � ~f .
Let w = v(−~f), and let ~g and ~h be the half-edges meeting −~f at w so that the counter-clockwise
ordering at w is given by

−~f � ~g � ~h.

Let τ ′ be the train track obtained from τ by

(i) removing the vertex v and adding a vertex v′ in the midpoint of g,

(ii) replacing the half-edges ~e,~k, and the full-edge f with the half-edges ~e′, ~g′, ~f ′ and full-edge g′.

This is shown in Figure 1. We denote the folding map by

τ
[e→f ] // τ ′
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Figure 1: Folding map.

Remark: Folding is the inverse of an operation on train tracks known as sliding if ~h meets ~g in a
cusp, and known as splitting if ~h meets ~g smoothly.

The following can be verified from the definition.

Lemma 1 The number of edges and number of vertices of a train track is preserved under folding.

As in Lecture 2, let Vτ be the real vector space spanned by the edges of τ , and let ve be the basis
vector associated to the edge e, called an edge vector. Then Vτ contains the space of edge-paths
on τ . A train track map between train tracks τ and τ ′ is any linear map T : Vτ → Vτ ′ that sends
edges to edge-paths.

We think of the vectors in the dual space V ∗τ = Hom(Vτ ,R) as labels on the edges of τ . If τ and
τ ′ are related by a folding, then there is a corresponding linear map, which we also call the folding
map,

T ∗ : V ∗τ ′ → V ∗τ

such that

v∗e′ → v∗e

v∗f ′ → v∗e + v∗f

v∗g′ → v∗e + v∗g

v∗g′′ → v∗g

and the rest of the edge vectors stay are preserved.

Remark: We are often interested in the subspace of V ∗τ consisting of vectors whose coefficients
satisfy switching conditions, since these generalize the notion of closed curves on a surface.

The train track map T : Vτ → Vτ ′ associated to the folding is the dual to T ∗.

A train track automaton is a graph with vertices associated to train tracks, and directed edges
connecting a vertex τ to a vertex τ ′ if τ ′ is obtained from τ by a folding. Each directed edge from
τ to τ ′ has a corresponding folding map T ∗τ,τ ′ : Vτ ′ → Vτ and dual train track map Tττ ′ defined as
above.
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Theorem 2 (Ko, Los, Song [KLS]) Let T : Vτ → Vτ be any train track map. Then there is a
directed cycle on a train-track automaton

τ = τ0 → τ1 → · · · → τN = τ

so that T is the dual to the composition of folding maps associated to the arrows in the cycle, and
T is given by

T = TτN−1,τN ◦ · · · ◦ Tτ0,τ1 = (T ∗τ0,τ1 ◦ T
∗
τ1,τ2 ◦ · · · ◦ T

∗
τN−1,τN

)∗.

For convenience, we simplify train track automata by defining an equivalence on train tracks, and
combining certain folding operations.

Generalized vertices. If ~e0, . . . ~ek−1 is a collection of oriented edges on τ so that for i = 0, . . . , k−1
we have

(i) ~ei and −~ei+1(mod k) have the same endpoint;

(ii) ~ei � −~ei+1(mod k)

we call the union e0, . . . , ek−1 a generalized vertex. An edge is called an infinitessimal edge if it
is part of a generalized vertex. The figure on the right of Figure 2 is a generalized vertex. Since
k ≥ 3, we call k − 2 the order of the vertex.

A simplified train track automaton is one where the vector space Vτ are generated by the vertices
that are not infinitessimal, and two train tracks related by a folding as in Figure 2 are identified.
Thus, for simplified train tracks we allow some actual vertices to have degree more than 3.

Figure 2: A generalized vertex and identification of train tracks

Example 1: The simplest hyperbolic braid example is obtained by a cycle of length 2 in a simplified
train track automaton with a single vertex and two edges. The labels on the vertices indicate the
defining information for the transition matrix associated to the corresponding folding map. See
Figure 3.

Example 2: The example in Figure 4 represents a cycle in a simplified train track automaton,
where the single arrows represent folding maps, and the double arrow is an identification. Thus,
the figure represents a cycle of order 3 on a train track automaton.
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Figure 3: Automaton for simplest hyperbolic braid example
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Figure 4: Genus 2 example with minimum dilatation
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