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3 Train track automata
In this lecture, we define train track automata. Good resources are [KLS], [HS].

In Lecture 2, we defined a train track T as a trivalent fat graph, with a smoothing at each vertex. A
train track determines a surface S and a deformation retract » : S — 7. A mappingclass¢: S — S
is compatible with 7 if 7 o ¢|, is a train track map up to isotopy.

We now define an operation on the set of all train tracks. Let 7 be a train track. Given an edge
e on 7T there are two half-edges of e associated to the two possible orientations on e. Given an
orientation € on e, denote by —é the oppositely oriented edge. Thus,

—(-o) ==

We identify € and —€ with their corresponding half-edges. Let v(€) and v(—€) be the corresponding
endpoints of e. Since 7 is a fat graph, any pair of half-edges € and f meeting at v have an associated
ordering. We will write

- f

if f comes directly after € in the counter-clockwise ordering of the half-edges at v.

Folding map. Let ¢ and f be two half-edges meeting at a cusp at v = v(e) =v(f ) where € >~ f
Let w = v(—f), and let g and h be the half-edges meeting f at w so that the counter-clockwise
ordering at w is given by

—f =7 h.
Let 7" be the train track obtained from 7 by

(i) removing the vertex v and adding a vertex v’ in the midpoint of g,

(ii) replacing the half-edges € k and the full-edge f with the half- edges , g f’ and full-edge ¢'.

This is shown in Figure 1. We denote the folding map by

[e—f]
T—=T



Figure 1: Folding map.

Remark: Folding is the inverse of an operation on train tracks known as sliding if h meets gin a
cusp, and known as splitting if h meets § smoothly.

The following can be verified from the definition.
Lemma 1 The number of edges and number of vertices of a train track is preserved under folding.

As in Lecture 2, let V- be the real vector space spanned by the edges of 7, and let v, be the basis
vector associated to the edge e, called an edge vector. Then V, contains the space of edge-paths
on 7. A train track map between train tracks 7 and 7’ is any linear map T : V, — V., that sends
edges to edge-paths.

We think of the vectors in the dual space V* = Hom(V;,R) as labels on the edges of 7. If 7 and
7/ are related by a folding, then there is a corresponding linear map, which we also call the folding
map,
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and the rest of the edge vectors stay are preserved.

Remark: We are often interested in the subspace of V' consisting of vectors whose coefficients
satisfy switching conditions, since these generalize the notion of closed curves on a surface.

The train track map T : V; — V. associated to the folding is the dual to T™.

A train track automaton is a graph with vertices associated to train tracks, and directed edges
connecting a vertex 7 to a vertex 7’ if 7/ is obtained from 7 by a folding. Each directed edge from
7 to 7’ has a corresponding folding map T, : Vo — V; and dual train track map T, defined as
above.



Theorem 2 (Ko, Los, Song [KLS]) Let T : V; — V. be any train track map. Then there is a
directed cycle on a train-track automaton

T=T0—>T1L—> """ —TN=T

so that T is the dual to the composition of folding maps associated to the arrows in the cycle, and
T is given by
T=T

TN—1TN
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For convenience, we simplify train track automata by defining an equivalence on train tracks, and
combining certain folding operations.

Generalized vertices. If é,...€5_1 is a collection of oriented edges on 7 so that fori =0,...,k—1
we have
(i) €; and —€41(mod ) have the same endpoint;

(i) & > —€1(mod k)

we call the union eq,...,ex_1 a generalized vertex. An edge is called an infinitessimal edge if it
is part of a generalized vertex. The figure on the right of Figure 2 is a generalized vertex. Since
k > 3, we call k — 2 the order of the vertex.

A simplified train track automaton is one where the vector space V; are generated by the vertices
that are not infinitessimal, and two train tracks related by a folding as in Figure 2 are identified.
Thus, for simplified train tracks we allow some actual vertices to have degree more than 3.

Figure 2: A generalized vertex and identification of train tracks

Example 1: The simplest hyperbolic braid example is obtained by a cycle of length 2 in a simplified
train track automaton with a single vertex and two edges. The labels on the vertices indicate the
defining information for the transition matrix associated to the corresponding folding map. See
Figure 3.

Example 2: The example in Figure 4 represents a cycle in a simplified train track automaton,
where the single arrows represent folding maps, and the double arrow is an identification. Thus,
the figure represents a cycle of order 3 on a train track automaton.



b->b+a O Q a->a+b
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Figure 3: Automaton for simplest hyperbolic braid example

Figure 4: Genus 2 example with minimum dilatation
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