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4 Perron-Frobenius matrices

In this lecture we explicitly relate the study of digraphs to the problem of understanding the
algebraic integers that arise as dilatations of pseudo-Anosov mapping classes. To do this, we discuss
the definition and properties of Perron-Frobenius matrices (see, for example, [Mey]). Perron-
Frobenius theory is relevant to us, since dilatations are the spectral radius (maximum norm of
eigenvalues) of such matrices.

Perron-Frobenius matrices and pseudo-Anosov mapping classes. A vector v ∈ Rn or a
matrix F is positive (respectively, non-negative), written v > 0 (resp., v ≥ 0) or F > 0 (resp.,
F ≥ 0), if all its entries are positive (resp., non-negative). A matrix F is called Perron-Frobenius if

(i) F ≥ 0, and

(ii) for some k > 0, F k > 0.

Since F is a non-negative matrix, F k > 0 implies F k
′
> 0 for all n′ ≥ n.

The spectral radius of a matrix F is defined as follows:

Spec(F ) = max{|µ| : µ is an eigenvalue of F}.

Proposition 1 Let λ be the dilatation of a pseudo-Anosov mapping class. Then it is the spectral
radius of a Perron-Frobenius matrix.

Proof. Recall Theorem 2 of Lecture 2. For any pseudo-Anosov mapping class φ : S → S, there is
a train track τ compatible with φ so that under iteration of φ any essential closed curve γ on S is
eventually carried by τ . That is, φk(γ) is carried by τ for large k. Furthermore, λ is the growth
rate of the length of φk(γ).
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Let Vτ be the real vector space spanned by the edges of τ . Let W ∗τ ⊂ V ∗τ be the subspace of weight
vectors w ∈ V ∗τ so that whenever ~e1, ~e2, ~e3 meet at a vertex, and ~e1 and ~e2 meet at a cusp, then

w(e1) + w(e2) = w(e3).

Then Wτ∗ defines a linear subspace of V ∗τ .

The integral points on the positive cone

C = {w ∈Wτ∗ : w(ei) ≥ 0 for all i},

in Wτ∗ is in one-to-one correspondence with closed curves carried by τ . By the Theorem 2 of
Lecture 2, (T ∗)k is eventually positive on Wτ∗. Thus T∗|Wτ∗ is Perron-Frobenius.

The following is a standard fact from linear algebra. For any n× n matrix F ,

Spec(F ) = lim
k→∞

|F kv|
1
k , (1)

where | | is any norm on Rn, and v is a general vector (that is, v is taken from the complement in
Rn of a finite number of codimension ≥ 1 hyperplanes in Rn).

Since the vectors in C span Wτ∗, we have

Spec(T ∗|Wτ∗) = λ(φ).

Proposition 2 Let F be a Perron-Frobenius n× n matrix. Then we have the following:

(i) there is a unique positive eigenvector v ∈ Rn up to positive scalar multiplication,

(ii) the eigenvalue λ of v is the spectral radius of F , and

(iii) for any other eigenvalue µ of F , λ > |µ|.

We include a proof of (i) and (ii) since it illustrates the close analogy between the behavior of
pseudo-Anosov maps, and the behavior of Perron-Frobenius matrices.

Proof of (i) and (ii). The matrix F defines a continuous function

F : Rn → Rn

preserving the origin, and hence it defines a function

f : Sn−1 → Sn−1

z 7→ F (z)/|F (z)|

where Sn−1 is identified with the elements of Rn with |z| = 1.
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Let R ⊂ Sn be the convex subspace corresponding to positive vectors in Rn. Then since F is
non-negative, we have f(R) ⊂ R, and for n large fn sends the closure of R strictly inside R. It
follows from the Brouwer fixed point theorem that f has a unique fixed point v0 in R, and

v0 = lim
n→∞

fn(v) (2)

for any v ∈ R.

Since v0 is a fixed point of f , it is necessarily an eigenvector of F , and is the unique positive
eigenvector up to scalar multiplication. The eigenvalue λ of v0 is necessarily real and > 1, since
both v0 and F (v0) are positive vectors.

Finally, we show that λ equals the spectral radius of F . By (2), for any v ∈ R, |Fn(v)|
1
n tends to

λ. Since the vectors in R span Rn, (ii) follows from (1).

Remarks.

1. The vector v0 is called the Perron-Frobenius eigenvector of F , and will be useful again in a
later lecture when we talk about Thurston’s examples of pseudo-Anosov maps associated to
bipartite graphs.

2. The vector v0 also describes a natural generalization of simple closed curves carried on τ
called a transverse measured foliation. This foliation is invariant under the action of φ and φ
acts on it by stretching by a factor of λ.

Perron units. A monic integer polynomial P (x) is called a Perron polynomial if it has a real root
λ > 1 of multiplicity one, such that for any other root µ of P , λ > |µ|. The largest root λ of a
Perron polynomial is called a Perron number.

Proposition 3 A monic polynomial P (x) is a Perron polynomial if and only if there is a Perron-
Frobenius matrix F so that P (x) is the characteristic polynomial of F .

A polynomial P (x) is called reciprocal if P (x) = xdP ( 1x) where d is the degree of P . Roots of monic
reciprocal polynomials are called units. One can show that the transition matrices associated
to pseudo-Anosov mapping classes preserve a symplectic form, and that hence the characteristic
polynomial P (x) is reciprocal.

Proposition 4 The dilatation of a pseudo-Anosov map is a Perron unit.

The converse is an open question.

Question 5 (Thurston) Is it true that every Perron unit is the dilatation of a pseudo-Anosov
mapping class?
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