The dynamics of mapping classes on surfaces

Eriko Hironaka

January 10, 2012

4 Perron-Frobenius matrices

In this lecture we explicitly relate the study of digraphs to the problem of understanding the algebraic integers that arise as dilatations of pseudo-Anosov mapping classes. To do this, we discuss the definition and properties of Perron-Frobenius matrices (see, for example, [Mey]). Perron-Frobenius theory is relevant to us, since dilatations are the spectral radius (maximum norm of eigenvalues) of such matrices.

Perron-Frobenius matrices and pseudo-Anosov mapping classes. A vector $v \in \mathbb{R}^n$ or a matrix F is *positive* (respectively, *non-negative*), written v > 0 (resp., $v \ge 0$) or F > 0 (resp., $F \ge 0$), if all its entries are positive (resp., non-negative). A matrix F is called *Perron-Frobenius* if

- (i) $F \geq 0$, and
- (ii) for some $k > 0, F^k > 0$.

Since F is a non-negative matrix, $F^k > 0$ implies $F^{k'} > 0$ for all $n' \ge n$.

The *spectral radius* of a matrix F is defined as follows:

 $\operatorname{Spec}(F) = \max\{|\mu| : \mu \text{ is an eigenvalue of } F\}.$

Proposition 1 Let λ be the dilatation of a pseudo-Anosov mapping class. Then it is the spectral radius of a Perron-Frobenius matrix.

Proof. Recall Theorem 2 of Lecture 2. For any pseudo-Anosov mapping class $\phi : S \to S$, there is a train track τ compatible with ϕ so that under iteration of ϕ any essential closed curve γ on S is eventually carried by τ . That is, $\phi^k(\gamma)$ is carried by τ for large k. Furthermore, λ is the growth rate of the length of $\phi^k(\gamma)$. Let V_{τ} be the real vector space spanned by the edges of τ . Let $W_{\tau}^* \subset V_{\tau}^*$ be the subspace of weight vectors $w \in V_{\tau}^*$ so that whenever $\vec{e_1}, \vec{e_2}, \vec{e_3}$ meet at a vertex, and $\vec{e_1}$ and $\vec{e_2}$ meet at a cusp, then

$$w(e_1) + w(e_2) = w(e_3)$$

Then W_{τ} * defines a linear subspace of V_{τ}^* .

The integral points on the positive cone

$$C = \{ w \in W_{\tau} * : w(e_i) \ge 0 \text{ for all } i \},\$$

in W_{τ}^* is in one-to-one correspondence with closed curves carried by τ . By the Theorem 2 of Lecture 2, $(T^*)^k$ is eventually positive on W_{τ}^* . Thus $T_*|_{W_{\tau}^*}$ is Perron-Frobenius.

The following is a standard fact from linear algebra. For any $n \times n$ matrix F,

$$\operatorname{Spec}(F) = \lim_{k \to \infty} |F^k v|^{\frac{1}{k}},\tag{1}$$

where | | is any norm on \mathbb{R}^n , and v is a general vector (that is, v is taken from the complement in \mathbb{R}^n of a finite number of codimension ≥ 1 hyperplanes in \mathbb{R}^n).

Since the vectors in C span W_{τ} , we have

$$\operatorname{Spec}(T^*|_{W_{\tau^*}}) = \lambda(\phi)$$

Propositio	on 2	Let I	F b	e a	Perron	-Fro	benius	$n \times$	n	matrix.	Then	we	have	the	fol	lowin	g:
------------	------	---------	-----	-----	--------	------	--------	------------	---	---------	------	----	------	-----	-----	-------	----

- (i) there is a unique positive eigenvector $v \in \mathbb{R}^n$ up to positive scalar multiplication,
- (ii) the eigenvalue λ of v is the spectral radius of F, and
- (iii) for any other eigenvalue μ of F, $\lambda > |\mu|$.

We include a proof of (i) and (ii) since it illustrates the close analogy between the behavior of pseudo-Anosov maps, and the behavior of Perron-Frobenius matrices.

Proof of (i) and (ii). The matrix F defines a continuous function

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

preserving the origin, and hence it defines a function

$$\begin{array}{rccc} f:S^{n-1}&\to&S^{n-1}\\ z&\mapsto&F(z)/|F(z)\end{array}$$

where S^{n-1} is identified with the elements of \mathbb{R}^n with |z| = 1.

Let $R \subset S^n$ be the convex subspace corresponding to positive vectors in \mathbb{R}^n . Then since F is non-negative, we have $f(R) \subset R$, and for n large f^n sends the closure of R strictly inside R. It follows from the Brouwer fixed point theorem that f has a unique fixed point v_0 in R, and

$$v_0 = \lim_{n \to \infty} f^n(v) \tag{2}$$

for any $v \in R$.

Since v_0 is a fixed point of f, it is necessarily an eigenvector of F, and is the unique positive eigenvector up to scalar multiplication. The eigenvalue λ of v_0 is necessarily real and > 1, since both v_0 and $F(v_0)$ are positive vectors.

Finally, we show that λ equals the spectral radius of F. By (2), for any $v \in R$, $|F^n(v)|^{\frac{1}{n}}$ tends to λ . Since the vectors in R span \mathbb{R}^n , (ii) follows from (1).

Remarks.

- 1. The vector v_0 is called the *Perron-Frobenius eigenvector* of F, and will be useful again in a later lecture when we talk about Thurston's examples of pseudo-Anosov maps associated to bipartite graphs.
- 2. The vector v_0 also describes a natural generalization of simple closed curves carried on τ called a transverse measured foliation. This foliation is invariant under the action of ϕ and ϕ acts on it by stretching by a factor of λ .

Perron units. A monic integer polynomial P(x) is called a *Perron polynomial* if it has a real root $\lambda > 1$ of multiplicity one, such that for any other root μ of P, $\lambda > |\mu|$. The largest root λ of a Perron polynomial is called a *Perron number*.

Proposition 3 A monic polynomial P(x) is a Perron polynomial if and only if there is a Perron-Frobenius matrix F so that P(x) is the characteristic polynomial of F.

A polynomial P(x) is called *reciprocal* if $P(x) = x^d P(\frac{1}{x})$ where d is the degree of P. Roots of monic reciprocal polynomials are called *units*. One can show that the transition matrices associated to pseudo-Anosov mapping classes preserve a symplectic form, and that hence the characteristic polynomial P(x) is reciprocal.

Proposition 4 The dilatation of a pseudo-Anosov map is a Perron unit.

The converse is an open question.

Question 5 (Thurston) Is it true that every Perron unit is the dilatation of a pseudo-Anosov mapping class?

References

[Mey] C. D. Meyer. *Matrix Analysis and Applied Linear Algebra*. Society for Industrial and Applied Mathematics, 2000.