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4 Perron-Frobenius matrices

In this lecture we explicitly relate the study of digraphs to the problem of understanding the
algebraic integers that arise as dilatations of pseudo-Anosov mapping classes. To do this, we discuss
the definition and properties of Perron-Frobenius matrices (see, for example, [Mey]). Perron-
Frobenius theory is relevant to us, since dilatations are the spectral radius (maximum norm of
eigenvalues) of such matrices.

Perron-Frobenius matrices and pseudo-Anosov mapping classes. A vector v € R” or a
matrix F' is positive (respectively, non-negative), written v > 0 (resp., v > 0) or F' > 0 (resp.,
F > 0), if all its entries are positive (resp., non-negative). A matrix F' is called Perron-Frobenius if

(i) F >0, and

(ii) for some k > 0, F* > 0.

Since F is a non-negative matrix, F* > 0 implies F* > 0 for all n’ > n.

The spectral radius of a matrix F' is defined as follows:

Spec(F') = max{|u| : p is an eigenvalue of F'}.

Proposition 1 Let A be the dilatation of a pseudo-Anosov mapping class. Then it is the spectral
radius of a Perron-Frobenius matrix.

Proof. Recall Theorem 2 of Lecture 2. For any pseudo-Anosov mapping class ¢ : S — S, there is
a train track 7 compatible with ¢ so that under iteration of ¢ any essential closed curve v on S is
eventually carried by 7. That is, ¢*(7) is carried by 7 for large k. Furthermore, \ is the growth
rate of the length of ¢* (7).



Let V; be the real vector space spanned by the edges of 7. Let W* C V¥ be the subspace of weight
vectors w € V* so that whenever €1, €2, €3 meet at a vertex, and €; and €3 meet at a cusp, then

w(er) + w(ez) = w(es).

Then W:x defines a linear subspace of V.

The integral points on the positive cone
C={weW:x : w(e) >0 for all i},

in W, * is in one-to-one correspondence with closed curves carried by 7. By the Theorem 2 of
Lecture 2, (T™*)" is eventually positive on W,*. Thus Ty|, « is Perron-Frobenius.

The following is a standard fact from linear algebra. For any n x n matrix F,
Spec(F) = lim |[F*ulk, (1)
k—o00

where | | is any norm on R", and v is a general vector (that is, v is taken from the complement in
R™ of a finite number of codimension > 1 hyperplanes in R™).

Since the vectors in C' span W;*, we have

Spec(T™|w, ) = M)

Proposition 2 Let F' be a Perron-Frobenius n X n matriz. Then we have the following:

(i) there is a unique positive eigenvector v € R™ up to positive scalar multiplication,
(ii) the eigenvalue \ of v is the spectral radius of F, and

(11i) for any other eigenvalue v of F', X > |p|.

We include a proof of (i) and (ii) since it illustrates the close analogy between the behavior of
pseudo-Anosov maps, and the behavior of Perron-Frobenius matrices.

Proof of (i) and (ii). The matrix F' defines a continuous function
F:R"—>R"
preserving the origin, and hence it defines a function

fosmt st
2 = F(2)/|F(2))

where S"! is identified with the elements of R™ with |z| = 1.



Let R C S™ be the convex subspace corresponding to positive vectors in R™. Then since F is
non-negative, we have f(R) C R, and for n large f™ sends the closure of R strictly inside R. It
follows from the Brouwer fixed point theorem that f has a unique fixed point vy in R, and

vy = nl;rgof (v) (2)
for any v € R.

Since vg is a fixed point of f, it is necessarily an eigenvector of F, and is the unique positive
eigenvector up to scalar multiplication. The eigenvalue A of vg is necessarily real and > 1, since
both vy and F'(vg) are positive vectors.

Finally, we show that A equals the spectral radius of F. By (2), for any v € R, |F "(v)|% tends to
A. Since the vectors in R span R”, (ii) follows from (1). |

Remarks.

1. The vector vy is called the Perron-Frobenius eigenvector of F', and will be useful again in a
later lecture when we talk about Thurston’s examples of pseudo-Anosov maps associated to
bipartite graphs.

2. The vector vy also describes a natural generalization of simple closed curves carried on 7
called a transverse measured foliation. This foliation is invariant under the action of ¢ and ¢
acts on it by stretching by a factor of .

Perron units. A monic integer polynomial P(x) is called a Perron polynomial if it has a real root
A > 1 of multiplicity one, such that for any other root pu of P, A > |u|. The largest root A of a
Perron polynomial is called a Perron number.

Proposition 3 A monic polynomial P(x) is a Perron polynomial if and only if there is a Perron-
Frobenius matriz F so that P(x) is the characteristic polynomial of F.

A polynomial P(z) is called reciprocal if P(z) = 2?P(1) where d is the degree of P. Roots of monic
reciprocal polynomials are called units. One can show that the transition matrices associated
to pseudo-Anosov mapping classes preserve a symplectic form, and that hence the characteristic
polynomial P(z) is reciprocal.

Proposition 4 The dilatation of a pseudo-Anosov map is a Perron unit.
The converse is an open question.

Question 5 (Thurston) Is it true that every Perron unit is the dilatation of a pseudo-Anosov
mapping class?
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