The dynamics of mapping classes on surfaces

Eriko Hironaka

January 10, 2012

5 Digraphs

In this lecture we study Perron-Frobenius matrices using digraphs, and deduce general properties of digraphs associated to pseudo-Anosov mapping classes. For the most part of this lecture, we will follow Birman's analysis in [Bir]. We conclude this lecture with some examples.

Digraphs. A digraph is a graph $\Gamma=(\mathcal{V}, \mathcal{E})$ with vertices $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ and directed edges \mathcal{E}. Given a digraph Γ, there is an associated non-negative matrix

$$
D_{\Gamma}=\left[d_{i, j}\right],
$$

where $d_{i, j}=k$ if there are k directed edges from v_{i} to v_{j} (we do not count negatively oriented edges). A path on a digraph is any word in the edges of \mathcal{V} so that for any two consecutive edges ϵ_{1} and ϵ_{2}, the endpoint of ϵ_{1} is the initial point of ϵ_{2}.

Lemma 1 The number of distinct paths from v_{i} to v_{j} of length k is the i, j entry of $\left(D_{\Gamma}\right)^{k}$.

A digraph Γ is strongly path-connected if there is a path from any vertex to any other vertex of Γ. A cycle is a path whose endpoint equals its initial point. If Γ is a cycle, then its associated matrix D_{Γ} has finite order, and its characteristic polynomial is cyclotomic. By contrast, we have the following.

Proposition 2 The matrix D_{Γ} is Perron-Frobenius if and only if Γ is strongly path-connected but not equal to a cycle.

In this case, we will call Γ a $P F$-digraph, and its spectral radius is the dilatation of Γ.
A linear subgraph of a digraph is a disjoint union of cycles. The characteristic polynomial of a PFdigraph is the characteristic polynomial of the associated Perron-Frobenius matrix. The following is a useful theorem from graph theory used by Birman in the context of dilatations (see Theorem 2, [Bir], and references therein).

Theorem 3 (Coefficient Theorem for Digraphs) Let Γ be a $P F$-digraph with n vertices, and let $\mathcal{L}_{i}=\cup_{j} L_{i, j}$ be the set of all linear subgraphs of Γ having precisely i vertices. For each $L_{i, j} \in \mathcal{L}_{n}$, let $m\left(L_{i, j}\right)$ denote the number of cycles in $L_{i, j}$. Then the characteristic polynomial of Γ is

$$
\chi_{\Gamma}(x)=x^{n}+\sum_{i=1}^{n} b_{i} x^{n-i}
$$

where

$$
b_{i}=\sum_{L_{i, j} \in \mathcal{L}_{i}}(-1)^{m\left(L_{i, j}\right)}
$$

Define the out-degree of a vertex $v \in \mathcal{V}$ to be the number of directed edges in \mathcal{E} with initial point v. The complexity c of a digraph Γ is the sum of out-degrees minus the number of vertices. The house of a polynomial f is the maximum absolute value of roots of f.

Theorem 4 (Birman) If Γ is a digraph associated to a pseudo-Anosov mapping class, and has complexity $c \leq 2$, then the dilatation λ is greater than or equal to the house of a polynomial of the form:

$$
\chi_{n, a}=x^{2 n}-x^{n+a}-x^{n}-x^{n-a}+1
$$

where $2 \leq g \leq n \leq 3 g-3$ and $0<a<n$.

The polynomials $\chi_{n, a}$ are called Lanneau-Thiffeault polynomials, because they arise in work of Lanneau and Thiffeault on minimum dilatation orientable pseudo-Anosov mapping classes [LT].

Examples of digraphs with small complexity.

1. Smallest spectral radius PF-digraph

In [Pen], Penner found a lower bound for dilatations of pseudo-Anosov mapping classes by noting that if the corresponding digraph Γ has n vertices, then for any vertex v_{i} of Γ, there are at least two paths of length n emanating from v_{i} on Γ, for otherwise Γ would be a cycle. It follows that the sum of entries in $\left(D_{\Gamma}\right)^{n} e_{i}$, must be at least two for each basis vector e_{i}. Therefore

$$
\frac{\left|\left(D_{\Gamma}\right)^{n} v\right|}{|v|} \geq 2
$$

for any non-negative vector v, and thus the dilatation λ of Γ satisfies

$$
\lambda \geq 2^{\frac{1}{n}}
$$

Proposition 5 (Penner's lower bound) Let δ_{n}^{Γ} be the smallest dilatation for a PF-digraph with n vertices. Then we have

$$
\log \left(\delta_{n}^{\Gamma}\right) \geq \frac{\log (2)}{n}
$$

Figure 1: The smallest spectral radius PF-digraph.

The digraphs with $c=1$ are shown in Figure 1. Here all edges are oriented in the same (say counter-clockwise) direction.

For these graphs there are exactly two cycles, one of length n and a cycle of length $n-a$, and there are no disjoint pairs of cycles. Thus, Theorem 3 implies that the characteristic polynomial is given by

$$
\chi_{n}(x)=x^{n}-x^{a}-1 .
$$

For fixed a, the largest root λ_{n} of χ_{n} has the property that $\lambda_{n} \rightarrow 1$ as $n \rightarrow \infty$. Moreover, $\left(\lambda_{n}\right)^{n}$ is bounded by $(1+\epsilon)^{a}+1$, where ϵ can be made arbitrarily small. This yields the following stronger version of Proposition 5 (cf. $[\mathrm{McM}]$ p. 44 and Figure 6).

Proposition 6

$$
\lim _{n \rightarrow \infty}\left(\delta_{n}^{\Gamma}\right)^{n}=2
$$

In fact, one can also verify that for fixed n, the smallest dilatation δ_{n}^{Γ} is obtained by setting $a=1$.

2. PF-digraphs of complexity 2

In [Bir], Birman proved that for complexity $c=2$, the types of PF-digraphs shown in Figure 2 have smallest spectral radius.

Using Theorem 3, one can check that the characterisitc polynomial for the digraph in Figure 2 is equal to

$$
\chi_{m, b}(x)=x^{2 m}-x^{2 m-b}-x^{m}-x^{b}+1 .
$$

This polynomial is known as an LT-poliynomial after Lanneau and Thiffeault [LT].
The polynomials have the following asymptotic behavior.

Figure 2: Minimizing digraphs for complexity $c=2$.

Proposition 7 For fixed b we have

$$
\log \left(\lambda_{m, b}\right) \asymp \frac{\log (m)}{m}
$$

Let $a=m-b$. Then

$$
\chi_{m, m-a}(x)=x^{2 m}-x^{m+a}-x^{m}-x^{m-a}+1 .
$$

Proposition 8 For fixed a we have

$$
\log \left(\lambda_{m, m-a}\right) \asymp \frac{1}{m}
$$

and more precisely

$$
\lim _{m \rightarrow \infty}\left(\lambda_{m, m-a}\right)^{m}=\frac{3+\sqrt{5}}{2}
$$

Remark. There is no known upper bound for the complexity of digraphs associated to minimum dilatation pseudo-Anosov mapping classes. However, the following is a useful Lemma in this direction.

Lemma 9 (Ham-Song[HS]) Any PF-digraph Γ has complexity c satisfying the inequality

$$
c \leq \lambda^{n}-1,
$$

where λ is the dilatation of Γ, and n is the number of vertices of Γ.

For a fixed surface, there is an upper bound on the minimal number of vertices of a digraph corresponding to a pseudo-Anosov mapping class. For a closed genus g surface, for example, the
bound is $6 g-6$. Even if we restrict to digraphs whose normalized dilatation is less than or equal to $\frac{3+\sqrt{5}}{2}$, this means that for closed surfaces, the complexity c satisfies

$$
c \leq 6
$$

The number of possible digraphs is too large for current programs to handle even for $g=3(n \leq 12)$, which is the first genus where the minimum dilatation is not known.

References

[Bir] J. Birman. On pseudo-Anosov mapping classes with minimum dilatation and LanneauThiffeault numbers. arxiv:1101.2383v1 (2011).
[HS] J-Y Ham and W. T. Song. The minimum dilatation of pseudo-Anosov 5-braids. Experimental Mathematics 16 (2007), 167,180.
[LT] E. Lanneau and J-L Thiffeault. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. Ann. de l'Inst. Four. 61 (2011), 164-182.
[McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519-560.
[Pen] R. Penner. Bounds on least dilatations. Proceedings of the A.M.S. 113 (1991), 443-450.

