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5 Digraphs

In this lecture we study Perron-Frobenius matrices using digraphs, and deduce general properties
of digraphs associated to pseudo-Anosov mapping classes. For the most part of this lecture, we will
follow Birman’s analysis in [Bir]. We conclude this lecture with some examples.

Digraphs. A digraph is a graph Γ = (V, E) with vertices V = {v1, . . . , vn} and directed edges E .
Given a digraph Γ, there is an associated non-negative matrix

DΓ = [di,j ],

where di,j = k if there are k directed edges from vi to vj (we do not count negatively oriented
edges). A path on a digraph is any word in the edges of V so that for any two consecutive edges ε1
and ε2, the endpoint of ε1 is the initial point of ε2.

Lemma 1 The number of distinct paths from vi to vj of length k is the i, j entry of (DΓ)k.

A digraph Γ is strongly path-connected if there is a path from any vertex to any other vertex of
Γ. A cycle is a path whose endpoint equals its initial point. If Γ is a cycle, then its associated
matrix DΓ has finite order, and its characteristic polynomial is cyclotomic. By contrast, we have
the following.

Proposition 2 The matrix DΓ is Perron-Frobenius if and only if Γ is strongly path-connected but
not equal to a cycle.

In this case, we will call Γ a PF-digraph, and its spectral radius is the dilatation of Γ.

A linear subgraph of a digraph is a disjoint union of cycles. The characteristic polynomial of a PF-
digraph is the characteristic polynomial of the associated Perron-Frobenius matrix. The following
is a useful theorem from graph theory used by Birman in the context of dilatations (see Theorem
2, [Bir], and references therein).
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Theorem 3 (Coefficient Theorem for Digraphs) Let Γ be a PF- digraph with n vertices, and
let Li = ∪jLi,j be the set of all linear subgraphs of Γ having precisely i vertices. For each Li,j ∈ Ln,
let m(Li,j) denote the number of cycles in Li,j. Then the characteristic polynomial of Γ is

χΓ(x) = xn +
n∑

i=1

bix
n−i,

where
bi =

∑
Li,j∈Li

(−1)m(Li,j).

Define the out-degree of a vertex v ∈ V to be the number of directed edges in E with initial point
v. The complexity c of a digraph Γ is the sum of out-degrees minus the number of vertices. The
house of a polynomial f is the maximum absolute value of roots of f .

Theorem 4 (Birman) If Γ is a digraph associated to a pseudo-Anosov mapping class, and has
complexity c ≤ 2, then the dilatation λ is greater than or equal to the house of a polynomial of the
form:

χn,a = x2n − xn+a − xn − xn−a + 1,

where 2 ≤ g ≤ n ≤ 3g − 3 and 0 < a < n.

The polynomials χn,a are called Lanneau-Thiffeault polynomials, because they arise in work of
Lanneau and Thiffeault on minimum dilatation orientable pseudo-Anosov mapping classes [LT].

Examples of digraphs with small complexity.

1. Smallest spectral radius PF-digraph

In [Pen], Penner found a lower bound for dilatations of pseudo-Anosov mapping classes by noting
that if the corresponding digraph Γ has n vertices, then for any vertex vi of Γ, there are at least
two paths of length n emanating from vi on Γ, for otherwise Γ would be a cycle. It follows that
the sum of entries in (DΓ)nei, must be at least two for each basis vector ei. Therefore

|(DΓ)nv|
|v|

≥ 2,

for any non-negative vector v, and thus the dilatation λ of Γ satisfies

λ ≥ 2
1
n .

Proposition 5 (Penner’s lower bound) Let δΓ
n be the smallest dilatation for a PF-digraph with

n vertices. Then we have

log(δΓ
n) ≥ log(2)

n
.
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Figure 1: The smallest spectral radius PF-digraph.

The digraphs with c = 1 are shown in Figure 1. Here all edges are oriented in the same (say
counter-clockwise) direction.

For these graphs there are exactly two cycles, one of length n and a cycle of length n−a, and there
are no disjoint pairs of cycles. Thus, Theorem 3 implies that the characteristic polynomial is given
by

χn(x) = xn − xa − 1.

For fixed a, the largest root λn of χn has the property that λn → 1 as n→∞. Moreover, (λn)n is
bounded by (1 + ε)a + 1, where ε can be made arbitrarily small. This yields the following stronger
version of Proposition 5 (cf. [McM] p. 44 and Figure 6).

Proposition 6
lim
n→∞

(δΓ
n)n = 2.

In fact, one can also verify that for fixed n, the smallest dilatation δΓ
n is obtained by setting a = 1.

2. PF-digraphs of complexity 2

In [Bir], Birman proved that for complexity c = 2, the types of PF-digraphs shown in Figure 2 have
smallest spectral radius.

Using Theorem 3, one can check that the characterisitc polynomial for the digraph in Figure 2 is
equal to

χm,b(x) = x2m − x2m−b − xm − xb + 1.

This polynomial is known as an LT-poliynomial after Lanneau and Thiffeault [LT].

The polynomials have the following asymptotic behavior.
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Figure 2: Minimizing digraphs for complexity c = 2.

Proposition 7 For fixed b we have

log(λm,b) �
log(m)

m
.

Let a = m− b. Then
χm,m−a(x) = x2m − xm+a − xm − xm−a + 1.

Proposition 8 For fixed a we have

log(λm,m−a) � 1

m
,

and more precisely

lim
m→∞

(λm,m−a)m =
3 +
√

5

2
.

Remark. There is no known upper bound for the complexity of digraphs associated to mini-
mum dilatation pseudo-Anosov mapping classes. However, the following is a useful Lemma in this
direction.

Lemma 9 (Ham-Song[HS]) Any PF-digraph Γ has complexity c satisfying the inequality

c ≤ λn − 1,

where λ is the dilatation of Γ, and n is the number of vertices of Γ.

For a fixed surface, there is an upper bound on the minimal number of vertices of a digraph
corresponding to a pseudo-Anosov mapping class. For a closed genus g surface, for example, the
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bound is 6g − 6. Even if we restrict to digraphs whose normalized dilatation is less than or equal

to 3+
√

5
2 , this means that for closed surfaces, the complexity c satisfies

c ≤ 6.

The number of possible digraphs is too large for current programs to handle even for g = 3 (n ≤ 12),
which is the first genus where the minimum dilatation is not known.
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