The dynamics of mapping classes on surfaces

Eriko Hironaka

January 10, 2012

5 Digraphs

In this lecture we study Perron-Frobenius matrices using digraphs, and deduce general properties of digraphs associated to pseudo-Anosov mapping classes. For the most part of this lecture, we will follow Birman's analysis in [Bir]. We conclude this lecture with some examples.

Digraphs. A digraph is a graph $\Gamma = (\mathcal{V}, \mathcal{E})$ with vertices $\mathcal{V} = \{v_1, \ldots, v_n\}$ and directed edges \mathcal{E} . Given a digraph Γ , there is an associated non-negative matrix

$$D_{\Gamma} = [d_{i,j}],$$

where $d_{i,j} = k$ if there are k directed edges from v_i to v_j (we do not count negatively oriented edges). A *path* on a digraph is any word in the edges of \mathcal{V} so that for any two consecutive edges ϵ_1 and ϵ_2 , the endpoint of ϵ_1 is the initial point of ϵ_2 .

Lemma 1 The number of distinct paths from v_i to v_j of length k is the i, j entry of $(D_{\Gamma})^k$.

A digraph Γ is strongly path-connected if there is a path from any vertex to any other vertex of Γ . A cycle is a path whose endpoint equals its initial point. If Γ is a cycle, then its associated matrix D_{Γ} has finite order, and its characteristic polynomial is cyclotomic. By contrast, we have the following.

Proposition 2 The matrix D_{Γ} is Perron-Frobenius if and only if Γ is strongly path-connected but not equal to a cycle.

In this case, we will call Γ a *PF-digraph*, and its spectral radius is the *dilatation* of Γ .

A *linear subgraph* of a digraph is a disjoint union of cycles. The *characteristic polynomial* of a PFdigraph is the characteristic polynomial of the associated Perron-Frobenius matrix. The following is a useful theorem from graph theory used by Birman in the context of dilatations (see Theorem 2, [Bir], and references therein). **Theorem 3 (Coefficient Theorem for Digraphs)** Let Γ be a PF- digraph with n vertices, and let $\mathcal{L}_i = \bigcup_j L_{i,j}$ be the set of all linear subgraphs of Γ having precisely i vertices. For each $L_{i,j} \in \mathcal{L}_n$, let $m(L_{i,j})$ denote the number of cycles in $L_{i,j}$. Then the characteristic polynomial of Γ is

$$\chi_{\Gamma}(x) = x^n + \sum_{i=1}^n b_i x^{n-i},$$

where

$$b_i = \sum_{L_{i,j} \in \mathcal{L}_i} (-1)^{m(L_{i,j})}.$$

Define the *out-degree* of a vertex $v \in \mathcal{V}$ to be the number of directed edges in \mathcal{E} with initial point v. The *complexity* c of a digraph Γ is the sum of out-degrees minus the number of vertices. The *house* of a polynomial f is the maximum absolute value of roots of f.

Theorem 4 (Birman) If Γ is a digraph associated to a pseudo-Anosov mapping class, and has complexity $c \leq 2$, then the dilatation λ is greater than or equal to the house of a polynomial of the form:

$$\chi_{n,a} = x^{2n} - x^{n+a} - x^n - x^{n-a} + 1,$$

where $2 \leq g \leq n \leq 3g - 3$ and 0 < a < n.

The polynomials $\chi_{n,a}$ are called Lanneau-Thiffeault polynomials, because they arise in work of Lanneau and Thiffeault on minimum dilatation orientable pseudo-Anosov mapping classes [LT].

Examples of digraphs with small complexity.

1. Smallest spectral radius PF-digraph

In [Pen], Penner found a lower bound for dilatations of pseudo-Anosov mapping classes by noting that if the corresponding digraph Γ has *n* vertices, then for any vertex v_i of Γ , there are at least two paths of length *n* emanating from v_i on Γ , for otherwise Γ would be a cycle. It follows that the sum of entries in $(D_{\Gamma})^n e_i$, must be at least two for each basis vector e_i . Therefore

$$\frac{|(D_{\Gamma})^n v|}{|v|} \ge 2$$

for any non-negative vector v, and thus the dilatation λ of Γ satisfies

$$\lambda \ge 2^{\frac{1}{n}}.$$

Proposition 5 (Penner's lower bound) Let δ_n^{Γ} be the smallest dilatation for a PF-digraph with n vertices. Then we have

$$\log(\delta_n^{\Gamma}) \ge \frac{\log(2)}{n}.$$

Figure 1: The smallest spectral radius PF-digraph.

The digraphs with c = 1 are shown in Figure 1. Here all edges are oriented in the same (say counter-clockwise) direction.

For these graphs there are exactly two cycles, one of length n and a cycle of length n-a, and there are no disjoint pairs of cycles. Thus, Theorem 3 implies that the characteristic polynomial is given by

$$\chi_n(x) = x^n - x^a - 1.$$

For fixed a, the largest root λ_n of χ_n has the property that $\lambda_n \to 1$ as $n \to \infty$. Moreover, $(\lambda_n)^n$ is bounded by $(1 + \epsilon)^a + 1$, where ϵ can be made arbitrarily small. This yields the following stronger version of Proposition 5 (cf. [McM] p. 44 and Figure 6).

Proposition 6

$$\lim_{n\to\infty} (\delta_n^\Gamma)^n = 2$$

In fact, one can also verify that for fixed n, the smallest dilatation δ_n^{Γ} is obtained by setting a = 1.

2. PF-digraphs of complexity 2

In [Bir], Birman proved that for complexity c = 2, the types of PF-digraphs shown in Figure 2 have smallest spectral radius.

Using Theorem 3, one can check that the characterisitc polynomial for the digraph in Figure 2 is equal to

$$\chi_{m,b}(x) = x^{2m} - x^{2m-b} - x^m - x^b + 1.$$

This polynomial is known as an LT-polynomial after Lanneau and Thiffeault [LT].

The polynomials have the following asymptotic behavior.

Figure 2: Minimizing digraphs for complexity c = 2.

Proposition 7 For fixed b we have

$$\log(\lambda_{m,b}) \asymp \frac{\log(m)}{m}$$

Let a = m - b. Then

$$\chi_{m,m-a}(x) = x^{2m} - x^{m+a} - x^m - x^{m-a} + 1.$$

Proposition 8 For fixed a we have

$$\log(\lambda_{m,m-a}) \asymp \frac{1}{m},$$

and more precisely

$$\lim_{m \to \infty} (\lambda_{m,m-a})^m = \frac{3 + \sqrt{5}}{2}$$

Remark. There is no known upper bound for the complexity of digraphs associated to minimum dilatation pseudo-Anosov mapping classes. However, the following is a useful Lemma in this direction.

Lemma 9 (Ham-Song[HS]) Any PF-digraph Γ has complexity c satisfying the inequality

 $c \le \lambda^n - 1,$

where λ is the dilatation of Γ , and n is the number of vertices of Γ .

For a fixed surface, there is an upper bound on the minimal number of vertices of a digraph corresponding to a pseudo-Anosov mapping class. For a closed genus g surface, for example, the

bound is 6g - 6. Even if we restrict to digraphs whose normalized dilatation is less than or equal to $\frac{3+\sqrt{5}}{2}$, this means that for closed surfaces, the complexity c satisfies

 $c \leq 6.$

The number of possible digraphs is too large for current programs to handle even for g = 3 $(n \le 12)$, which is the first genus where the minimum dilatation is not known.

References

- [Bir] J. Birman. On pseudo-Anosov mapping classes with minimum dilatation and Lanneau-Thiffeault numbers. *arxiv:1101.2383v1* (2011).
- [HS] J-Y Ham and W. T. Song. The minimum dilatation of pseudo-Anosov 5-braids. *Experimental Mathematics* 16 (2007), 167,180.
- [LT] E. Lanneau and J-L Thiffeault. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. Ann. de l'Inst. Four. **61** (2011), 164–182.
- [McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519–560.
- [Pen] R. Penner. Bounds on least dilatations. *Proceedings of the A.M.S.* **113** (1991), 443–450.