The dynamics of mapping classes on surfaces

Eriko Hironaka

January 17, 2012

6 Fibered Faces of 3-manifolds

In this lecture we briefly describe the theory of fibered faces of 3 -manifolds. Our main sources are [Thu], [Fri] and $[\mathrm{McM}]$. I will assume some knowledge of basic algebraic topology, including fundamental groups, covering spaces, and singular homology and cohomology.

A 3-manifold manifold M is hyperbolic if it admits a metric of constant sectional curvature -1 , or equivalently it is quotient of the real hyperbolic 3 -space by a discrete group of isometries. Unless otherwise stated, we will always assume that M is hyperbolic.

Fibrations of 3-manifolds. Let M be a compact oriented 3-manifold possibly with boundary components.

A 3-manifold M is fibered if there is a fibration $\psi: M \rightarrow S^{1}$ of M over the circle S^{1}. The map ψ is called a fibration. Two fibrations ψ_{1}, ψ_{2} are equivalent if there is an isotopy

$$
\mathfrak{h}: M \times[0,1] \rightarrow S^{1},
$$

so that

$$
\left.\begin{array}{rl}
\mathfrak{h}_{t}: M & \rightarrow S^{1} \\
x & \mapsto
\end{array}\right)
$$

is a fibration for each t. Given M, we denote by $\Psi(M)$ the set of all fibrations of M up to this equivalence.

Recall that to each manifold X (or more generally, any CW-complex) we can associate an abelian group $H_{1}(X, \mathbb{Z})$, called the first homology group of X. We can think of $H_{1}(X ; \mathbb{Z})$ as the group of free homotopy classes of oriented closed curves on X. Two curves are homologically equivalent if their difference bounds a subsurface of X.

If X Is connected, the first homology group $H_{1}(X ; \mathbb{Z})$ is closely related to the fundamental group $\pi_{1}\left(X, x_{0}\right)$, where $x_{0} \in X$ is any point. The Hurewicz map

$$
\pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X ; \mathbb{Z})
$$

is the map sending each basepointed loop in $\pi_{1}\left(X, x_{0}\right)$ to the homotopy type of the loop ignoring the basepoint. By Hurewicz' theorem, if X is connected, then this map is surjective, and $H_{1}(X ; \mathbb{Z})$ is the abelianization of $\pi_{1}\left(X, x_{0}\right)$.

An arc on X is relatively closed if its endpoints lie on the boundary of X. Two relatively closed curves are homologically equivalent if they bound a subsurface of X that may include subarcs of the boundary of X. Thus, for example, a closed curve that is the boundary of an annular neighborhood of a boundary component is trivial in the relative homology.

Example. If S is a surface of genus g and n boundary components, then $H_{1}(S ; \mathbb{Z})$ is freely generated by $2 g+n-1$ simple closed curves. On the other hand, $H_{1}(S, \partial S ; \mathbb{Z})$ is freely generated by $2 g$ simple closed curves, and $n-1$ relatively closed curves $\gamma_{1}, \ldots, \gamma_{n-1}$, where under some ordering of the boundary components b_{1}, \ldots, b_{n} of S, γ_{i} is an arc from b_{i} to b_{i+1}.

Homology groups are functorial. Thus, given a fibration $\psi: M \rightarrow S^{1}$, there is a corresponding map on homology:

$$
\begin{equation*}
\psi_{*}: H_{1}(M ; \mathbb{Z}) \quad \rightarrow \quad H_{1}\left(S^{1} ; \mathbb{Z}\right) \tag{1}
\end{equation*}
$$

For the purposes of this lecture, it is enough to think of the integral cohomology group $H^{1}(M ; \mathbb{Z})$ as the group of homomorphisms

$$
H_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z} .
$$

Then, since $H_{1}\left(S^{1} ; \mathbb{Z}\right)=\mathbb{Z}$, by (1) each element of $\Psi(M)$ determines an element of $H^{1}(M ; \mathbb{Z})$, and this element is unique. Thus we can consider $\Psi(M)$ as a subset of $H^{1}(M ; \mathbb{Z})$.

Let $H^{1}(M ; \mathbb{R})=H^{1}(M ; \mathbb{Z}) \otimes \mathbb{R}$. This vector space can be interpreted using, for example, the language of differential one-forms, but for our purposes we will consider $H^{1}(M ; \mathbb{R})$ as the collection of homomorphisms from $H_{1}(M ; \mathbb{Z})$ to \mathbb{R}. Then we have

$$
\Psi(M) \subset H^{1}(M ; \mathbb{Z}) \subset H^{1}(M ; \mathbb{R})=\mathbb{R}^{b_{1}}
$$

where b_{1} is the first Betti number of M.
Thurston's theory of fibered faces gives a concrete way to view the locus $\Psi(M)$ as a subset of $H^{1}(M ; \mathbb{R})$. Given a connected surface S, let

$$
\chi_{-}(S)=\max \{-\chi(S), 0\} .
$$

Given a surface $S=\cup_{i=1}^{k} S_{i}$, where S_{i} are connected disjoint subsurfaces, let $\chi_{-}(S)=\sum_{i=1}^{k} \chi_{-}\left(S_{i}\right)$. Let $\psi \in H^{1}(M ; \mathbb{Z})$. Let

$$
\|\psi\|=\min \left\{\chi_{-}(S):\left.\psi\right|_{i_{*}\left(H_{1}(S ; \mathbb{Z})\right)}=0\right\} .
$$

where S ranges amongst subsurfaces of $M, i: S \rightarrow M$ is inclusion, and $i_{*}\left(H_{1}(S ; \mathbb{Z})\right)$ is the image of the induced map $i_{*}: H_{1}(S ; \mathbb{Z}) \rightarrow H_{1}(M ; \mathbb{Z})$.

Theorem 1 (Thurston [Thu]) The function \|\| extends to a norm on $H_{1}(M ; \mathbb{R})$, whose unit norm ball B is a convex polyhedron. For each top-dimensional face F of B, let $C_{F}=F \cdot \mathbb{R}^{+}$be the positive cone over F. Then one of the following is true:

$$
\begin{aligned}
& \text { 1. } C_{F} \cap \Psi(M)=\emptyset \text {, or } \\
& \text { 2. } C_{F} \cap \Psi(M)=C_{F} \cap H^{1}(M ; \mathbb{Z}) \text {. }
\end{aligned}
$$

If $C_{F} \cap \Psi(M)=C_{F} \cap H^{1}(M ; \mathbb{Z})$, then we say that F is a fibered face of M. Theorem 1 implies that if one integral element of C_{F} corresponds to a fibration of M, then so do all the integral elements of C_{F}. Let $\Psi(M, F)=C_{F} \cap \Psi(M)$.

Mapping classes parameterized by fibered faces. Given a mapping class $\phi: S \rightarrow S$, the mapping torus M_{ϕ} of ϕ is the three manifold obtained by taking the quotient

$$
M_{\phi}=S \times[0,1] /(x, 1) \sim(\phi(x), 0) .
$$

A 3-manifold M is fibered over S^{1} if and only if $M=M_{\phi}$ for some ϕ. In this case, we say ϕ is the monodromy of the fibration. Let $\Phi(M)$ be the collection of monodromies of fibrations of a 3 -manifold M. Then $\Psi(M)$ and $\Phi(M)$ are in canonical one-to-one correspondence, and each partitions into a union of $\Psi(M, F)$, respectively, $\Phi(M, F)$.

Deformations of pseudo-Anosov mapping classes

Pseudo-Anosov mapping classes and hyperbolic 3-manifolds are related in the following way.

Theorem 2 (Thurston) A mapping class $\phi: S \rightarrow S$ is pseudo-Anosov if and only if M_{ϕ} is hyperbolic.

Thus, the set of pseudo-Anosov mapping classes can be partitioned into sets of the form $\Phi(M, F)$, where M is a hyperbolic 3 -manifold, and F is a fibered face of M, and the $\Phi(M, F)$ can be thought of as equivalence classes. Let $\phi: S \rightarrow S$ be a fixed mapping class and assume $\phi \in \Phi(M, F)$. Then we can think of the other elements of $\Phi(M, F)$ as deformations of ϕ. Identify $\Phi(M, F)$ with $\Psi(M, F)$, and define the normalized dilatation of $\phi \in \Phi(M, F)$ to be

$$
\bar{\lambda}(\phi)=\lambda(\phi)^{\|\psi\|} .
$$

An element of $H^{1}(M ; \mathbb{Z})$ is primitive if it is not the multiple of another element of $H^{1}(M ; \mathbb{Z})$ other than itself. An element $\psi \in \Psi(M)$ is primitive as an element of $H^{1}(M ; \mathbb{Z})$ if and only if the fibers of ψ are connected. More generally, we have the following.

Lemma 3 The number of connected components of the fiber of ψ equals the index of the image of ψ_{*} in $H_{1}\left(S^{1} ; \mathbb{Z}\right)$. In particular, the fibers of ψ are connected if and only if ψ_{*} is surjective.

Let $\psi \in \Psi(M, F), r$ a positive integer, and $\psi_{r}=r \psi$. If ψ is primitive, then $\left(\psi_{r}\right)_{*}$ is the map $(\psi)_{*}$ composed with

$$
\begin{array}{rll}
\mathbb{Z} & \rightarrow \mathbb{Z} \\
a & \mapsto & r a
\end{array}
$$

Thus, the fiber of $r \psi$ considered as a fibration has r connected components.
Geometrically, the fiber of ψ_{r} is the union of r copies of the fiber of ψ, and the monodromy ϕ_{r} of ψ_{r} restricted to each copy has the property that $\left(\phi_{r}\right)^{r}=\phi$. Thus,

$$
\lambda\left(\phi_{r}\right)=\lambda(\phi)^{\frac{1}{r}} .
$$

Since $\|r \psi\|=|r|\|\psi\|=r\|\psi\|$, it follows that

$$
\bar{\lambda}\left(\phi_{r}\right)=\lambda\left(\phi_{r}\right)^{\left\|\psi_{r}\right\|}=\lambda(\phi)^{\|\psi\|}=\bar{\lambda}(\phi) .
$$

For each $\psi \in \Psi(M, F)$, let $\bar{\psi}=\frac{1}{\|\psi\|} \psi$. This is the intersection of the ray containing ψ with F. Then we immediately have the following:

- the primitive elements of $\Psi(M, F)$ are in 1-1 correspondence with rational points on F,
- the least common multiple of the denominator of $\bar{\psi}$ is the Thurston norm of the corresponding primitive element in the ray defined by ψ, and
- $\bar{\lambda}$ is a well-defined function on the rational points of F.

Theorem 4 (Fried [Fri], McMullen [McM]) The map

$$
\begin{aligned}
K: \Psi(M, F) & \rightarrow \mathbb{R} \\
\psi & \mapsto \bar{\lambda}(\phi)
\end{aligned}
$$

extends to a convex function on F that is constant on rays through the origin, and goes to infinity as ψ approaches the boundary of F.

Corollary 5 The normalized dilatation has a unique minimum on F.

Let G be a group and $f \in \mathbb{Z} G$ an element of the group ring. Then

$$
f=\sum_{g \in G} a_{g} g,
$$

where $a_{g}=0$ except for a finite subcollection of $g \in G$. Take any homomorphism $\psi: G \rightarrow \mathbb{Z}$. Then the specialization of f to ψ is the polynomial

$$
f^{\psi}(x)=\sum_{g \in G} a_{g} x^{\psi(g)} .
$$

Theorem 6 (McMullen [McM]) Let M be a hyperbolic 3-manifold, F a fibered face, and let $G=H_{1}(M ; \mathbb{Z})$. Then there is an element $\Theta \in \mathbb{Z} G$ such that for all $\psi \in \Psi(M, F), \lambda(\psi)$ is the largest root of $\Theta^{\psi}(x)$.

The element Θ is called the Teichmüller polynomial of (M, F).

Example: The simplest pseudo-Anosov map, and the $\mathbf{6}_{2}^{2}$ link complement.

The simplest pseudo-Anosov map ϕ_{0} has mapping torus equal to the complement in S^{3} of the link shown in Figure 1.

Figure 1: The 6_{2}^{2} link.

The first Betti number, or dimension of $H_{1}(M ; \mathbb{Z})$ equals 2 . Thus, the fibered face containing ϕ_{0} is one-dimensional. Figure 2 gives an illustration of the fibered cone.

Proposition 7 There are generators t, u of $H_{1}(M ; \mathbb{Z})$ so that the Teichmüller polynomial for the fibered face (M, F) containing the simplest pseudo-Anosov map is

$$
\Theta=u^{2}-u\left(1+t+t^{-1}\right)+1 .
$$

Corollary 8 The dilatation of the mapping class $\phi_{a, n}$ is the largest root of the equation

$$
P_{(a, n)}(x)=x^{2 n}-x^{n+a}-x^{n}-x^{n-a}+1 .
$$

References

[Fri] D. Fried. Flow equivalence, hyperbolic systems and a new zeta function for flows. Comment. Math. Helvetici 57 (1982), 237-259.
[McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519-560.
[Thu] W. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 339 (1986), 99-130.

Figure 2: Fibered cone containing the simplest pseudo-Anosov braid.

