## The dynamics of mapping classes on surfaces

Eriko Hironaka

January 20, 2012

## 7 Fibered faces and deformations of mapping classes

Let M be a hyperbolic 3-manifold. Let  $\phi: S \to S$  be a pseudo-Anosov mapping class such that  $M = M_{\phi}$  is the mapping torus. We have seen that there is a fibered face  $F \subset H^1(M; \mathbb{R})$  so that  $\phi$  is the monodromy of  $\psi$  for some integral point  $\psi$  in  $C_F$ . Furthermore, Fried and McMullen's theorems show that the normalized dilatation of mapping classes that arise as the monodromy of integral points on  $C_F$  defines a convex function on F. In the remaining lectures, we will investigate the problem: describe the monodromies  $\Phi(M, F)$  corresponding to rational points on F in terms of the monodromy  $\phi$ . We start in this lecture by describing the monodromies using the theory of covering spaces. This point of view can also be found in [McM].

The idea is that  $\Psi(M, F)$  is a subset of  $H^1(M; \mathbb{Z})$  which in turn can be identified with

Hom $(H_1(M;\mathbb{Z}),\mathbb{Z})$ .

Let  $\widetilde{M}^{ab}$  be the maximal abelian covering of M. Then the group of covering automorphisms is isomorphic to the first homology group of M:

$$\operatorname{Aut}_M(\widetilde{M}^{\operatorname{ab}}) \simeq H_1(M;\mathbb{Z}).$$

The hyperbolic structure on M lifts to  $\widetilde{M}^{ab}$  and is preserved by the action of  $H_1(M;\mathbb{Z})$ .

The fibration  $\psi: M \to S^1$  and monodromy  $\phi: S \to S$ , defines a pseudo-Anosov flow on M. This lifts to define a flow on  $\widetilde{M}^{ab}$  Furthermore, S lifts to a surface  $\widetilde{S}$  (of infinite type) in  $\widetilde{M}$  that is transverse to the flow and the monodromy  $\phi$  can be seen as the effect of translating S by a unit length along the flow. If  $\psi'$  is another fibration in  $\Psi(M, F)$ , then to understand the monodromy of  $\psi'$ , it is enough to find a surface that is transversal to the original flow, that is also preserved by the action of the kernel of  $\psi'$  considered as a homomorphism  $H_1(M; \mathbb{Z}) \to H_1(M; \mathbb{Z})$ .

Abelian coverings. What follows can be found in any introductory textbook in algebraic topology. Assume throughout that all spaces are path connected and semi-locally simply-connected. An (unbranched) covering  $X \to Y$  is *abelian* if it is a regular covering with abelian group of covering autmorphisms  $\operatorname{Aut}_Y(X)$ . The set of abelian coverings is in 1-1 correspondence is in 1-1 correspondence with epimorphisms

$$H_1(X;\mathbb{Z}) \to G,$$

and G can be identified with  $\operatorname{Aut}_Y(X)$ .

If  $\rho: X \to Y$  is a covering and  $Z \to Y$  is a continuous map from a path connected space, then there is a lift  $f': Z \to X$  so that the diagram



commutes if and only if

$$f_*\pi_1(Z) \subset \rho_*\pi_1(X).$$

**Exercise.** If the covering  $\rho: X \to Y$  is abelian, show that

$$f_*H_1(Z) \subset \rho_*(H_1(X))$$

is sufficient for f to lift to X.

Given  $\phi: S \to S$ , and  $\psi: M \to S^1$  the corresponding fibration of  $M = M_{\phi}$ , the map  $\psi$  induces an epimorphism

$$\psi_*: \pi_1(M) \to \mathbb{Z},$$

and hence a cyclic covering



The group of covering transformations is generated by

$$\begin{aligned} & \Gamma_{\phi} : S \times \mathbb{R} \quad \to \quad S \times \mathbb{R} \\ & (x,t) \quad \mapsto \quad (\phi(x), t-1) \end{aligned}$$

Then  $T_{\phi}$  generates the covering automorphisms  $\operatorname{Aut}_M(M_{\psi})$ .

Furthermore, the correspondence

$$\Psi(M,F) \longrightarrow \{ \text{cyclic coverings } M_{\psi} \to M \}$$

is one-to-one.

Now consider the covering defined by

$$H_1(M;\mathbb{Z}) \xrightarrow{\mathrm{id}} H_1(M;\mathbb{Z}).$$

This defines the maximal abelian covering

$$\widetilde{M}^{ab} \nearrow^{G}$$

$$\downarrow$$

$$M.$$

whose group of covering automorphism is  $G = H_1(M; \mathbb{Z})$ .



Figure 1: Tower of abelian coverings

**Lemma 1** For any abelian covering  $M' \to M$  there is a factorization



where all arrows are covering maps.

**Lemma 2** There is a one-to-one correspondence between intermediate coverings of  $\widetilde{M}^{ab} \to M$ , and subgroups of  $G = H_1(M; \mathbb{Z})$ .

**Proof.** Recall that  $H_1(M;\mathbb{Z}) = \operatorname{Aut}_M(\widetilde{M}^{ab})$ . Thus, a subgroup K of G determines and intermediate cover

$$M' = \widetilde{M}^{ab}/K$$

$$\downarrow$$

$$M,$$

and if  $M' \to M$  is defined by  $\psi' : \pi_1(M) \to G'$ , then setting  $K = \ker(\psi')$  we see that the correspondence is 1-1 and onto.

Now take  $\psi \in \Psi(M, F)$  and consider  $M_{\psi} \to M$ . Then  $M_{\psi} = \widetilde{M}^{ab}/K_{\psi}$  where  $K_{\psi} = \ker(\psi)$ . Here  $\psi$  can be considered as

$$\psi: H_1(M) \to \langle T_\phi \rangle$$
$$\gamma \mapsto T_\phi^{m_S(\gamma)}$$

where  $m_S(\gamma)$  is the algebraic intersection of  $\gamma$  with S.

For  $\alpha \in H^1(S;\mathbb{Z})$ , we say  $\alpha$  is *phi*-invariant if  $\alpha \circ \phi_* = \alpha$ . Let  $\beta_1, \ldots, \beta_k$  be generators for  $H^1(S;\mathbb{Z})^{\phi-\text{inv}}$ . Let

$$\frac{\underline{\beta}: H_1(S; \mathbb{Z}) \quad \to \quad \mathbb{Z}^k}{\gamma \quad \mapsto \quad (\beta_1(\gamma), \dots, \beta_k(\gamma)).}$$

Let  $\rho: \widetilde{S} \to S$  be the corresponding covering, and let  $h_1, \ldots, h_k$  generate  $\operatorname{Aut}_S(\widetilde{S}) = \mathbb{Z}^k$ .

**Lemma 3** The map  $\phi$  lifts to  $\phi : \widetilde{S} \to \widetilde{S}$ , i.e., there is a commutative diagram



and  $\phi$  is defined up to elements of  $Aut_S(\widetilde{S})$ .

**Proof.** By the Exercise, since  $\rho$  is an abelian covering, it is enough to check that  $(\phi \circ \rho)_*(\pi_1(\widetilde{S})) \subset \rho_*(\widetilde{S})$ . Since  $\underline{\beta} \circ \phi_* = \underline{\beta}$ , we have  $\gamma \in \ker(\underline{\beta})$  if and only if  $\phi_*(\gamma) \in \ker(\underline{\beta})$ . Thus,

$$\rho_*(H_1(S)) = \ker(\underline{\beta})$$
  
=  $\phi_*(\ker(\underline{\beta}))$   
=  $\phi_*\rho_*(H_1(\widetilde{S}))$ 

The maximal abelian covering  $\widetilde{M}^{ab}$ . Let  $H_1, \ldots, H_k$  be defined by

$$\begin{array}{rccc} H_i: \widetilde{S} & \to & \widetilde{S} \\ (x,t) & \mapsto & (h_i(x),t) \end{array}$$

for  $i = 1, \ldots, k$ , and

$$\begin{array}{rccc} T_{\widetilde{\phi}}: \widetilde{S} & \to & \widetilde{S} \\ (x,t) & \mapsto & (h_i(x),t) \end{array}$$

**Exercise.** Show that  $H_1(M;\mathbb{Z})$  is freely generated by  $T_{\widetilde{\phi}}$  and  $H_1,\ldots,H_k$ .

Deformations of fibrations and mapping classes. Let  $\psi' \in \Psi(M, F)$  and consider  $\psi'$  as a homomorphism

$$\psi': H_1(M; \mathbb{Z}) \to \mathbb{Z}.$$

Let  $K_{\psi'} = \ker(\psi')$ . Then we have a commutative diagram:



**Lemma 4** The covering map  $T_{\widetilde{\phi}'}: \widetilde{M}^{ab} \to M^{ab}$  defined by the lift  $\widetilde{\phi}'$  of  $\phi'$  is any solution

$$T \in H_1(M;\mathbb{Z}) = Aut_M(\widetilde{M}^{ab})$$

such that

 $\psi'(T) = -1.$ 

By this lemma, one technique for describing  $\phi' : S' \to S'$  is to find a surface  $\widetilde{S}' \subset \widetilde{M}^{ab}$  that is transversal to the pseudo-Anosov flow defined by  $\psi$  and  $\phi$  that is left invariant under the action of  $K_{\psi'}$ .



Figure 2: A deformation of the fiber.

## References

[McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519–560.