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7 Fibered faces and deformations of mapping classes

Let M be a hyperbolic 3-manifold. Let ¢ : S — S be a pseudo-Anosov mapping class such that
M = My is the mapping torus. We have seen that there is a fibered face F' C H L(M;R) so that
¢ is the monodromy of ¢ for some integral point ¢ in C'r. Furthermore, Fried and McMullen’s
theorems show that the normalized dilatation of mapping classes that arise as the monodromy of
integral points on C'r defines a convex function on F. In the remaining lectures, we will investigate
the problem: describe the monodromies ®(M, F') corresponding to rational points on F' in terms
of the monodromy ¢. We start in this lecture by describing the monodromies using the theory of
covering spaces. This point of view can also be found in [McM].

The idea is that U(M, F) is a subset of H'(M;Z) which in turn can be identified with
Hom(H,(M;Z),7Z).

Let M2P be the maximal abelian covering of M. Then the group of covering automorphisms is
isomorphic to the first homology group of M:

Autp (M) ~ Hy(M; 7).

The hyperbolic structure on M lifts to M3 and is preserved by the action of Hy(M;Z).

The fibration ¢ : M — Si/and monodromy ¢ : S — S, defines a pseudo-Anosov flow on M. This
lifts to define a flow on M2 Furthermore, S lifts to a surface S (of infinite type) in M that is
transverse to the flow and the monodromy ¢ can be seen as the effect of translating S by a unit
length along the flow. If ¢’ is another fibration in W(M, F'), then to understand the monodromy of
1/, it is enough to find a surface that is transversal to the original flow, that is also preserved by
the action of the kernel of ¢ considered as a homomorphism Hy(M;Z) — Hy(M;Z).

Abelian coverings. What follows can be found in any introductory textbook in algebraic topol-
ogy. Assume throughout that all spaces are path connected and semi-locally simply-connected. An
(unbranched) covering X — Y is abelian if it is a regular covering with abelian group of covering
autmorphisms Auty (X). The set of abelian coverings is in 1-1 correspondence is in 1-1 correspon-
dence with epimorphisms

H((X:;Z) — G,



and G can be identified with Auty (X).

If p: X - Y is a covering and Z — Y is a continuous map from a path connected space, then
there is a lift f' : Z — X so that the diagram

X
e

p
7z 1y

commutes if and only if
fsmi(Z) C pemi(X).

Exercise. If the covering p : X — Y is abelian, show that
feH1(Z) C p(H1(X))
is sufficient for f to lift to X.

Given ¢ : S — S, and ¢ : M — S! the corresponding fibration of M = M, the map ¢ induces an
epimorphism
Yy :m (M) = Z,

and hence a cyclic covering
M¢ — S xR

|

M

The group of covering transformations is generated by
Tp: SxR — SxR
(z,t) — (J(x),t—1).

Then T}, generates the covering automorphisms Autps(My).

Furthermore, the correspondence
U(M,F) — {cyclic coverings M, — M}

is one-to-one.

Now consider the covering defined by
Hy(M:7) 2% 1 (M3 7).

This defines the mazimal abelian covering
G
%

|

M.

whose group of covering automorphism is G = Hy(M;Z).
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Figure 1: Tower of abelian coverings

Lemma 1 For any abelian covering M’ — M there is a factorization

Mab

.

M/

S

M

where all arrows are covering maps.

Lemma 2 There is a one-to-one correspondence between intermediate coverings of Mab M,

and subgroups of G = Hy(M;7Z).

Proof. Recall that Hi(M;Z) == Aut M(]\A/f ab)' Thus, a subgroup K of G determines and inter-
mediate cover
M' = M* /K

;

and if M’ — M is defined by ¢/ : m (M) — G’, then setting K = ker(¢’) we see that the
correspondence is 1-1 and onto. O



Now take ¢ € W(M, F') and consider My, — M. Then My, = Mab/Kw where Ky, = ker(¢). Here
1) can be considered as

Y H (M) — (Ty)
v — T(;”S('Y)

where mg(y) is the algebraic intersection of v with S.
For a € Hl(S;Z), we say « is phi-invariant if a o ¢, = «. Let Bi1,...,0r be generators for
H'(S;Z)*~10V, Let
B:H((S;Z) — k
v o= (B Be()-

Let p: S — S be the corresponding covering, and let hq,..., h; generate Autg(g) = 7*.

N

Lemma 3 The map ¢ lifts to gzNS: S — 5, i.e., there is a commutative diagram

and 5 is defined up to elements of Autg(g).

Proof. By the Exercise, since p is an abelian covering, it is enough to check that (¢o p)*(m(g )) C

p«(S). Since o ¢. = B, we have v € ker(f3) if and only if ¢.(7) € ker(8). Thus,

p«(H1(S)) = ker(f)

= ¢u(ker(f))
= dupu(Hi(9)).
O
The maximal abelian covering M3, Tet Hi, ..., H; be defined by
z,t) = (hi(x),t)
fore=1,...,k, and
Tq; 'S = 8
(z,1) (hi(z),t)
O



Exercise. Show that H;(M;Z) is freely generated by Tg and Hy,..., Hy.

Deformations of fibrations and mapping classes. Let ¢/ € (M, F) and consider ¢/ as a
homomorphism

W' Hi(M;Z) — 7.
Let Ky = ker(¢)'). Then we have a commutative diagram:
T

¢ — L
Kb = 5«Rr

Ty i i
QMW — S xR

|

M

Lemma 4 The covering map Ty : M — M Gefined by the lift ¢ of &' is any solution

T € Hi(M;Z) = Auty (M

such that
(T) = —1.

By this lemma, one technique for describing ¢ : ' — &’ is to find a surface S’ C M?3P that is
transversal to the pseudo-Anosov flow defined by v and ¢ that is left invariant under the action of
K,[l)/.

Figure 2: A deformation of the fiber.
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