The dynamics of mapping classes on surfaces

Eriko Hironaka

January 24, 2012

8 Teichmüller polynomials, fibered faces, and families of digraphs.

Let M be a hyperbolic 3-manifold, F a fibered face, $G=H_{1}(M ; \mathbb{Z})$. Recall that the dimension of F is $b_{1}(M)-1$, and rational points on F are in one-to-one correspondence with primitive elements of $\Psi(M, F)$, the fibrations with connected fibers, and primitive elements of $\Phi(M, F)$.

Given an element $f=\sum_{g \in G} a_{g} g \in \mathbb{Z} G$, and $\psi \in H^{1}(M ; \mathbb{Z})$, the specialization of f by ψ is given by

$$
f^{\psi}(x)=\sum_{g \in G} a_{g} x^{\psi(g)} .
$$

Given a polynomial $f(x)$, the house $|f|$ of f is the maximum norm amongst roots of f.

Theorem 1 (McMullen $[\mathbf{M c M}])$ There is an element $\Theta \in \mathbb{Z} G$ such that for all $\psi \in \Psi(M, F)$ with monodromy $\phi: S \rightarrow S$,

$$
\lambda(\phi)=\left|\Theta^{\psi}\right| .
$$

In this lecture, we will show how traintracks for mapping classes in $\Phi(M, F)$ are related to one another.

As before, let $\psi \in \Psi(M, F)$, and let $\phi: S \rightarrow S$ be the monodromy. Let $\beta_{1}, \ldots, \beta_{k}$ be generators for $H^{1}(S ; \mathbb{Z})^{\psi-\text { inv }}$. Let $\underline{\beta}: H_{1}(S ; \mathbb{Z}) \rightarrow \mathbb{Z}^{k}$, be the corresponding epimorphism, and let

$$
\widetilde{\rho}: \widetilde{S} \rightarrow S
$$

be the corresponding \mathbb{Z}^{k}-coveirng of S.
Identify $\widetilde{M}^{\text {ab }}$ with $\widetilde{S} \times \mathbb{R}$. Let $\zeta_{1}, \ldots, \zeta_{k}$ be generators of $\operatorname{Aut}_{S}(\widetilde{S})$, and let

$$
Z_{i}(x, s)=\left(\zeta_{i}(x), s\right)
$$

for all $(x, t) \in \widetilde{S} \times \mathbb{R}$. Choose a lift $\widetilde{\phi}$ of ϕ, and let

$$
T(x, s)=(\widetilde{\phi}, s-1)
$$

Let $\tau \subset$ be a train track for ϕ and let $\widetilde{\tau}$ be its preimage in \widetilde{S}.

Lemma 2 the lifted train track $\widetilde{\tau}$ carries $\widetilde{\phi}$, and is invariant under the action of $G=H_{1}(M ; \mathbb{Z})$ on $\widetilde{M}^{a b}$.

Let V_{τ} be the vector space spanned by the edges of τ. The integral points of V_{τ} (elements with integral coefficients), correspond to \mathbb{Z}-linear combinations of the edges of τ. Let $V_{\widetilde{\tau}}$ be the free $\Lambda_{k}=\mathbb{R} \mathbb{Z}^{k}$ module spanned by the edges of τ. The integral points of $V_{\widetilde{\tau}}$ can be thought of as \mathbb{Z}-linear combinations of the edges of $\widetilde{\tau}$, respecting the action of \mathbb{Z}^{k}.

Let $\Theta \in \mathbb{Z} G$ be the characteristic polynomial of the transition matrix for the train track map

$$
A_{\widetilde{\phi}}: V_{\widetilde{\tau}} \rightarrow V_{\widetilde{\tau}}
$$

determined by $\widetilde{\phi}$.

The ring Λ_{k} can be identified with the ring of Laurent polynomials

$$
\Lambda_{k}=\mathbb{R}\left[t_{1}^{ \pm 1}, \ldots, t_{k}^{ \pm 1}, u\right]
$$

where t_{1}, \ldots, t_{k} are associated to the covering transformations $Z_{1}, \ldots, Z_{k} \in \operatorname{Aut}_{S}(\widetilde{S})$ and u is associated to the map $T_{\widetilde{\phi}}$. Thus Θ can be thought of as a Laurent polynomial, and we will call it the Teichmüller polynomial for the fibered face F. (This is slightly different from McMullen's definition.) The elements of $G=H_{1}(M ; \mathbb{Z})$ correspond to monomials in t_{1}, \ldots, t_{k} and u.

Consider the suspension $E_{\widetilde{\tau}}$ of $\widetilde{\tau}$ in $\widetilde{S} \times \mathbb{R}$. This covers the suspension E_{τ} of τ in M. The map $T_{\widetilde{\phi}}$ defines a map of $E_{\widetilde{\tau}}$ sending rectangles $\epsilon \times[0,1]$, where ϵ is an edge to $\sigma \times[0,1]$, where σ is an edge-path on τ. We will call such maps folding maps. Letting Z_{1}, \ldots, Z_{k} act as homeomorphisms (with no folding) on $E_{\widetilde{\tau}}$, we have a group homomorphism

$$
G \rightarrow \mathcal{F}\left(E_{\widetilde{\tau}}\right)
$$

from G to folding maps on $E_{\widetilde{\tau}}$.
Let $\psi_{1} \in \Psi(M, F)$, and $\phi_{1}: S_{1} \rightarrow S_{1}$ be its monodromy. We can construct the covering $\widetilde{S}_{1} \rightarrow S_{1}$. Then the lift of $\widetilde{\phi}_{1}$ to \widetilde{S}_{1} determines a new transformation

$$
T_{\widetilde{\phi}_{1}}\left(x_{1}, s_{1}\right)=\left(\widetilde{\phi}_{1}\left(x_{1}\right), s_{1}\right)
$$

with respect to the new coordinates $\left(x_{1}, s_{1}\right)$ defined by identifying $\widetilde{M}^{\text {ab }}$ with $\widetilde{S}_{1} \times \mathbb{R}$. The transformation $T_{\widetilde{\phi}_{1}}$ is an element of $\operatorname{Aut}_{M}\left(\widetilde{M}^{\mathrm{ab}}=G\right.$, determined up to multiplication by the subgroup of G generated by the image of $\operatorname{Aut}_{S_{1}}\left(\widetilde{S}_{1}\right)$ in G.

Identify \widetilde{S}_{1} with $\widetilde{S}_{1} \times\{0\} \in \widetilde{S}_{1} \times \mathbb{R}=\widetilde{M}$ ab. Then $\widetilde{\phi}_{1}: \widetilde{S}_{1} \times \widetilde{S}_{1}$ is the mapping class defined by applying an element $T \in G$ such that $\psi_{1}(T)=-1$ to $\widetilde{S}_{1} \times\{0\}$ and then flowing back to $\widetilde{S}_{1} \times\{0\}$. One sees that in order for the flow back to be well-defined we need ψ_{1} to be "close" to ψ.

Magic braid, and its monodromy

The magic manifold is the mapping torus for the braid monodromy defined by $\sigma_{1} \sigma_{2}^{-1} \sigma_{1}$ in terms of the usual braid generators. The braid is drawn in Figure 1.

Figure 1: Braid defining the magic manifold.
In Figure 2, we see a train track map for the monodromy, and its lift to \widetilde{S}. The corresponding train track map on $V_{\widetilde{\tau}}$ is given by the matrix

$$
\left[\begin{array}{cc}
s(1+t) & s\left(1+t+t^{-1}\right) \\
1 & 1+t^{-1}
\end{array}\right] .
$$

Thus, the Teichmüller polynomial is given by

$$
\Theta(u, t)=u^{2}-u\left(1+t^{-1}+s+s t\right)+s .
$$

Figure 2: Train track map for the monodromy, and its lift to covering.
Exercise. Choose lifts \widetilde{A} and \widetilde{B} on $\widetilde{\tau}$ lifting A and B on τ, and draw their images under $\widetilde{\phi}$. (Hint. Find a choice of $\widetilde{A}, \widetilde{B}$, and lifting $\widetilde{\phi}$ of ϕ so that the images of \widetilde{A} and \widetilde{B} can be drawn on Figure 2).

Train tracks and digraphs in the simplest pseudo-Anosov map example. Let $\phi: S \rightarrow S$ be the simplest pseudo-Anosov braid, $M=M_{\phi}$, and $\psi: M \rightarrow S^{1}$ the corresponding fibration. Let $\alpha \subset S$ be a representative for the generator of $H_{1}(S, \partial S ; \mathbb{Z})$, and let $\widetilde{S} \rightarrow S$ be the corresponding cyclic covering. Let $\xi \in H^{1}(M ; \mathbb{Z})$ be the dual to the suspension of α in M. Then ψ and ξ generate $H^{1}(M ; \mid Z)$.

We will now consider the elements $\psi_{n}=n \psi+\xi \in H^{1}(M ; \mathbb{Z})$. These define rays in $H^{1}(M ; \mathbb{Z})$ through the origin that converge to the ray through ψ. Thus, for large n, ψ_{n} is in the fibered face
F such that $\psi \in \Psi(M, F)$, and if ϕ_{n} is the monodromy of ψ_{n}, then

$$
\bar{\lambda}\left(\phi_{n}\right) \rightarrow \bar{\lambda}(\phi)=\left(\frac{3+\sqrt{5}}{2}\right)^{2}
$$

The kernel of ψ_{n} is generated by $Z^{n} T$, where Z corresponds to a generator of $\operatorname{Aut}_{S}(\widetilde{S})$, and $T=T_{\tilde{\phi}}$. Thus, \widetilde{S}_{n} is a surface in $\widetilde{M}^{\text {ab }}$ that is invariant under the action of $Z^{n} T$. Furthermore, $\psi_{n}(Z)=-1$ for all n. Thus, $Z=T_{\widetilde{\phi}_{n}}$.

Here is a picture of the train tracks and train track maps for \widetilde{S}_{n}.

Figure 3: Train track maps for ϕ_{n}.
The corresponding digraphs are shown in Figure 4.

Figure 4: Digraphs associated to ϕ_{n}.

References

[McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519-560.

