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8  Teichmiiller polynomials, fibered faces, and families of digraphs.

Let M be a hyperbolic 3-manifold, F a fibered face, G = H;(M;Z). Recall that the dimension of
F is by (M) — 1, and rational points on F are in one-to-one correspondence with primitive elements
of (M, F), the fibrations with connected fibers, and primitive elements of ®(M, F).

agg € ZG, and v € H'(M;Z), the specialization of f by v is given by

() = Z agxw(g)_

geG

Given an element f =3

Given a polynomial f(z), the house |f| of f is the maximum norm amongst roots of f.

Theorem 1 (McMullen [McM]) There is an element © € ZG such that for all ¢» € V(M, F)
with monodromy ¢ : S — S,
A9) =10"].

In this lecture, we will show how traintracks for mapping classes in ®(M, F') are related to one
another.

As before, let ¢ € W(M, F'), and let ¢ : S — S be the monodromy. Let f1,..., B be generators for
HY(S; 7)Y~V Let B:H(S;Z) — 7ZF, be the corresponding epimorphism, and let

5:8 8,
be the corresponding Z*-coveirng of S.

Identify M2P with S x R. Let (i, ..., (s be generators of Autg(S), and let
Zi(x, s) = (Gi(x), 5),
for all (x,t) € S x R. Choose a lift qg of ¢, and let

T(z,s) = (¢,5 —1).



Let 7 C be a train track for ¢ and let 7 be its preimage in S.

Lemma 2 the lifted train track T carries qg, and is invariant under the action of G = Hy(M;Z)
on M.

Let V, be the vector space spanned by the edges of 7. The integral points of V, (elements with
integral coefficients), correspond to Z-linear combinations of the edges of 7. Let Vi be the free
A, = RZ* module spanned by the edges of 7. The integral points of V& can be thought of as
Z-linear combinations of the edges of 7, respecting the action of Z*.

Let ©® € ZG be the characteristic polynomial of the transition matrix for the train track map
A(E Ve — Vz
determined by 5

The ring Ay can be identified with the ring of Laurent polynomials

Ak = R[tlil, - ,tkil,u],

where t1,...,t; are associated to the covering transformations Zi,...,7;, € Auts(g) and u is
associated to the map T(;. Thus © can be thought of as a Laurent polynomial, and we will call
it the Teichmdller polynomial for the fibered face F. (This is slightly different from McMullen’s
definition.) The elements of G = Hy(M;Z) correspond to monomials in t1,...,t; and w.

Consider the suspension Ex of 7 in S x R. This covers the suspension F; of 7 in M. The map
T~ defines a map of Ex sending rectangles e x [0, 1], where € is an edge to o x [0, 1], where ¢ is an
edge-path on 7. We will call such maps folding maps. Letting Z1, ..., Zy act as homeomorphisms
(with no folding) on F%, we have a group homomorphism

from G to folding maps on Fx.

Let ¢y € ¥(M, 1*1), anci ¢1 : S1 — S1 be its monodromy. We can construct the covering §1 — S1.
Then the lift of ¢; to 51 determines a new transformation

Tgl (xl, 81) = ((51(5171)7 31)7

with respect to the new coordinates (x1,s;) defined by identifying M?P with Si x R. The trans-
formation T&i is an element of Autys (M ab — @ , determined up to multiplication by the subgroup

of G generated by the image of Autg, (§1) in G.

Identify S; with S; x {0} € S; x R = M3, Then <;~SL: Sy x S is the mapping class defined by
applying an element 7' € G such that ¢, (T) = —1 to S1 x {0} and then flowing back to S x {0}.
One sees that in order for the flow back to be well-defined we need 11 to be “close” to .



Magic braid, and its monodromy

The magic manifold is the mapping torus for the braid monodromy defined by o105 lo1 in terms
of the usual braid generators. The braid is drawn in Figure 1.

(

Figure 1: Braid defining the magic manifold.

In Figure 2, we see a train track map for the monodromy, and its lift to S. The corresponding train
track map on V5 is given by the matrix

[s(1+t) s(T+t+t71) ]
1 1+¢7t

Thus, the Teichmiiller polynomial is given by

O(u,t) = u? —u(l+t +s+st) +s.

Figure 2: Train track map for the monodromy, and its lift to covering.

Exercise. Choose lifts A and B on T lifting A and B on 7, and draw their images under qb (Hint.
Find a choice of A4, B, and lifting QS of ¢ so that the images of A and B can be drawn on Figure 2).

Train tracks and digraphs in the simplest pseudo-Anosov map example. Let ¢ : S — S
be the simplest pseudo-Anosov braid, M = My, and ¢ : M — S ! the corresponding fibration. Let
a C S be a representative for the generator of Hi(S,0S5;Z), and let S — S be the corresponding
cyclic covering. Let & € H'(M;Z) be the dual to the suspension of a in M. Then 1) and ¢ generate
HY(M;|Z).

We will now consider the elements 1, = ny + & € HY(M;Z). These define rays in H'(M;Z)
through the origin that converge to the ray through . Thus, for large n, v, is in the fibered face



F such that ¢ € U(M, F'), and if ¢,, is the monodromy of v, then

3+ v\
5 .

The kernel of 1, is generated by Z™T', where Z corresponds to a generator of Autg(S), and T' = Tg.

Thus, S,, is a surface in M?P that is invariant under the action of Z"T. Furthermore, ¢,(Z) = —1
for all n. Thus, Z = Tg .

Here is a picture of the train tracks and train track maps for §n

Figure 3: Train track maps for ¢,.

The corresponding digraphs are shown in Figure 4.

n

Figure 4: Digraphs associated to ¢,,.
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