The dynamics of mapping classes on surfaces

Eriko Hironaka

January 24, 2012

8 Teichmüller polynomials, fibered faces, and families of digraphs.

Let M be a hyperbolic 3-manifold, F a fibered face, $G = H_1(M; \mathbb{Z})$. Recall that the dimension of F is $b_1(M) - 1$, and rational points on F are in one-to-one correspondence with primitive elements of $\Psi(M, F)$, the fibrations with connected fibers, and primitive elements of $\Phi(M, F)$.

Given an element $f = \sum_{g \in G} a_g g \in \mathbb{Z}G$, and $\psi \in H^1(M;\mathbb{Z})$, the specialization of f by ψ is given by

$$f^{\psi}(x) = \sum_{g \in G} a_g x^{\psi(g)}$$

Given a polynomial f(x), the house |f| of f is the maximum norm amongst roots of f.

Theorem 1 (McMullen [McM]) There is an element $\Theta \in \mathbb{Z}G$ such that for all $\psi \in \Psi(M, F)$ with monodromy $\phi : S \to S$,

$$\lambda(\phi) = |\Theta^{\psi}|.$$

In this lecture, we will show how traintracks for mapping classes in $\Phi(M, F)$ are related to one another.

As before, let $\psi \in \Psi(M, F)$, and let $\phi : S \to S$ be the monodromy. Let β_1, \ldots, β_k be generators for $H^1(S; \mathbb{Z})^{\psi - \text{inv}}$. Let $\underline{\beta} : H_1(S; \mathbb{Z}) \to \mathbb{Z}^k$, be the corresponding epimorphism, and let

$$\widetilde{\rho}: S \to S,$$

be the corresponding \mathbb{Z}^k -coveirng of S.

Identify \widetilde{M}^{ab} with $\widetilde{S} \times \mathbb{R}$. Let ζ_1, \ldots, ζ_k be generators of $\operatorname{Aut}_S(\widetilde{S})$, and let

$$Z_i(x,s) = (\zeta_i(x), s),$$

for all $(x,t) \in \widetilde{S} \times \mathbb{R}$. Choose a lift ϕ of ϕ , and let

$$T(x,s) = (\phi, s-1).$$

Let $\tau \subset$ be a train track for ϕ and let $\tilde{\tau}$ be its preimage in S.

Lemma 2 the lifted train track $\tilde{\tau}$ carries $\tilde{\phi}$, and is invariant under the action of $G = H_1(M;\mathbb{Z})$ on \widetilde{M}^{ab} .

Let V_{τ} be the vector space spanned by the edges of τ . The integral points of V_{τ} (elements with integral coefficients), correspond to \mathbb{Z} -linear combinations of the edges of τ . Let $V_{\tilde{\tau}}$ be the free $\Lambda_k = \mathbb{RZ}^k$ module spanned by the edges of τ . The integral points of $V_{\tilde{\tau}}$ can be thought of as \mathbb{Z} -linear combinations of the edges of $\tilde{\tau}$, respecting the action of \mathbb{Z}^k .

Let $\Theta \in \mathbb{Z}G$ be the characteristic polynomial of the transition matrix for the train track map

$$A_{\widetilde{\phi}}: V_{\widetilde{\tau}} \to V_{\widetilde{\tau}}$$

determined by ϕ .

The ring Λ_k can be identified with the ring of Laurent polynomials

$$\Lambda_k = \mathbb{R}[t_1^{\pm 1}, \dots, t_k^{\pm 1}, u],$$

where t_1, \ldots, t_k are associated to the covering transformations $Z_1, \ldots, Z_k \in \operatorname{Aut}_S(\widetilde{S})$ and u is associated to the map $T_{\widetilde{\phi}}$. Thus Θ can be thought of as a Laurent polynomial, and we will call it the *Teichmüller polynomial* for the fibered face F. (This is slightly different from McMullen's definition.) The elements of $G = H_1(M; \mathbb{Z})$ correspond to monomials in t_1, \ldots, t_k and u.

Consider the suspension $E_{\tilde{\tau}}$ of $\tilde{\tau}$ in $\tilde{S} \times \mathbb{R}$. This covers the suspension E_{τ} of τ in M. The map $T_{\tilde{\phi}}$ defines a map of $E_{\tilde{\tau}}$ sending rectangles $\epsilon \times [0, 1]$, where ϵ is an edge to $\sigma \times [0, 1]$, where σ is an edge-path on τ . We will call such maps *folding maps*. Letting Z_1, \ldots, Z_k act as homeomorphisms (with no folding) on $E_{\tilde{\tau}}$, we have a group homomorphism

$$G \to \mathcal{F}(E_{\widetilde{\tau}})$$

from G to folding maps on $E_{\tilde{\tau}}$.

Let $\psi_1 \in \Psi(M, F)$, and $\phi_1 : S_1 \to S_1$ be its monodromy. We can construct the covering $\widetilde{S}_1 \to S_1$. Then the lift of ϕ_1 to \widetilde{S}_1 determines a new transformation

$$T_{\widetilde{\phi}_1}(x_1, s_1) = (\widetilde{\phi}_1(x_1), s_1),$$

with respect to the new coordinates (x_1, s_1) defined by identifying \widetilde{M}^{ab} with $\widetilde{S}_1 \times \mathbb{R}$. The transformation $T_{\widetilde{\phi}_1}$ is an element of $\operatorname{Aut}_M(\widetilde{M}^{ab} = G)$, determined up to multiplication by the subgroup of G generated by the image of $\operatorname{Aut}_{S_1}(\widetilde{S}_1)$ in G.

Identify \widetilde{S}_1 with $\widetilde{S}_1 \times \{0\} \in \widetilde{S}_1 \times \mathbb{R} = \widetilde{M}^{ab}$. Then $\widetilde{\phi}_1 : \widetilde{S}_1 \times \widetilde{S}_1$ is the mapping class defined by applying an element $T \in G$ such that $\psi_1(T) = -1$ to $\widetilde{S}_1 \times \{0\}$ and then flowing back to $\widetilde{S}_1 \times \{0\}$. One sees that in order for the flow back to be well-defined we need ψ_1 to be "close" to ψ .

Magic braid, and its monodromy

The magic manifold is the mapping torus for the braid monodromy defined by $\sigma_1 \sigma_2^{-1} \sigma_1$ in terms of the usual braid generators. The braid is drawn in Figure 1.

Figure 1: Braid defining the magic manifold.

In Figure 2, we see a train track map for the monodromy, and its lift to \tilde{S} . The corresponding train track map on $V_{\tilde{\tau}}$ is given by the matrix

$$\left[\begin{array}{cc} s(1+t) & s(1+t+t^{-1}) \\ 1 & 1+t^{-1} \end{array}\right].$$

Thus, the Teichmüller polynomial is given by

$$\Theta(u,t) = u^2 - u(1 + t^{-1} + s + st) + s$$

Figure 2: Train track map for the monodromy, and its lift to covering.

Exercise. Choose lifts \widetilde{A} and \widetilde{B} on $\widetilde{\tau}$ lifting A and B on τ , and draw their images under ϕ . (Hint. Find a choice of \widetilde{A} , \widetilde{B} , and lifting ϕ of ϕ so that the images of \widetilde{A} and \widetilde{B} can be drawn on Figure 2).

Train tracks and digraphs in the simplest pseudo-Anosov map example. Let $\phi : S \to S$ be the simplest pseudo-Anosov braid, $M = M_{\phi}$, and $\psi : M \to S^1$ the corresponding fibration. Let $\alpha \subset S$ be a representative for the generator of $H_1(S, \partial S; \mathbb{Z})$, and let $\widetilde{S} \to S$ be the corresponding cyclic covering. Let $\xi \in H^1(M; \mathbb{Z})$ be the dual to the suspension of α in M. Then ψ and ξ generate $H^1(M; |Z)$.

We will now consider the elements $\psi_n = n\psi + \xi \in H^1(M;\mathbb{Z})$. These define rays in $H^1(M;\mathbb{Z})$ through the origin that converge to the ray through ψ . Thus, for large n, ψ_n is in the fibered face

F such that $\psi \in \Psi(M, F)$, and if ϕ_n is the monodromy of ψ_n , then

$$\overline{\lambda}(\phi_n) \to \overline{\lambda}(\phi) = \left(\frac{3+\sqrt{5}}{2}\right)^2.$$

The kernel of ψ_n is generated by $Z^n T$, where Z corresponds to a generator of $\operatorname{Aut}_S(\widetilde{S})$, and $T = T_{\widetilde{\phi}}$. Thus, \widetilde{S}_n is a surface in \widetilde{M}^{ab} that is invariant under the action of $Z^n T$. Furthermore, $\psi_n(Z) = -1$ for all n. Thus, $Z = T_{\widetilde{\phi}_n}$.

Here is a picture of the train tracks and train track maps for \widetilde{S}_n .

Figure 3: Train track maps for ϕ_n .

The corresponding digraphs are shown in Figure 4.

Figure 4: Digraphs associated to ϕ_n .

References

[McM] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519–560.