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9 Penner examples and quasi-periodicity.

In this lecture, we will study a sequence of pseudo-Anosov mapping classes defined by R. Penner
[Pen], and describe how they correspond to points on a fibered face.

Figure 1: Penner’s sequence

Consider the family of mapping classes φg : Sg → Sg shown in Figure 1. Here Sg is a compact
oriented surface of genus g with two boundary components, and φg is the composition

φg = rg ◦ dcg ◦ d−1bg ◦ dag .

Lemma 1 (Penner)
λ(φg)

g ≤ 11.

Penner constructed this example and proved Lemma 1 as a key step in proving that the minimum
dilatations δg for pseudo-Anosov mapping classes on closed genus g surfaces behaves asymptotically
like

log(δg) �
1

g
.
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Penner’s Lemma can be generalized to other similar examples (see [Bau], [Val]). Let (S, α) be a
pair with Σ a compact oriented surface with boundary, and α a relatively closed curve on S. Let
Σ = S \α be the closure where α is replaced by two copies α+ and α−. Now construct surfaces Yn
by gluing together Σ in an circular chain as in Figure 2

Figure 2: Circular chain of surfaces

The surfaces Yn are n-cyclic coverings of S,

ρn : Yn → S,

and have covering automorphism group Z/nZ = 〈rn〉. Fix k > 0, and assume n ≥ k. Let γ be a
relative multi-curve on S whose algebraic intersection with α is zero, and let γn be a lift to Yn that
is contained in Σ1 ∪ Σ2 ∪ · · · ∪ Σk, and is compatibly chosen for all n. Let dn be the Dehn twist
defined on γn.

We call (S, α) a wedge and γ a connecting curve. For any mapping class η : Σ→ Σ, let ηn : Yn → Yn
be the mapping class defined by

ηn(x) =

{
η(x) if x ∈ Σ1

x otherwise

Theorem 2 ([Hir]) Let (S, α) be a wedge, γ a connecting curve. Let η : Σ → Σ be any mapping
class such that dγ ◦ η is pseudo-Anosov. Then

1. fn = rn ◦ dn ◦ ηn is pseudo-Anosov for each n, and

2. there is a constant C independent from n such that

λ(φn)|χ(Yn)| ≤ C.

Outline of Proof.

Let φ : S → S be defined by φ = dγ ◦ η.
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Step 1. The mapping class triple (S, dγ ◦η, α) defines a linear section of the fibered face associated
to (S, dγ ◦ η).

Step 2. Let ρ : S̃ → S be the cyclic covering of S defined by α. Let ζ : S̃ → S̃ be the group of
covering automorphisms, and let φ̃ : S̃ → S̃ be the lift of φ.

Then ζ and φ̃ determine commuting automorphisms

Z : S̃ × R → S̃ × R
(x, t) 7→ (ζ(x), t)

and

T : S̃ × R → S̃ × R
(x, t) 7→ (φ̃(x), t− 1).

Then Z and T generate AutM (M̃).

Step 3. Let ξ ∈ H1(M ;Z) be the dual to Z, and let

ψn = nψ + ξ.

By Thurston’s theory of fibered faces, we have, for large n, ψn defines a fibration of M . Let
φn : Sn → Sn be the corresponding monodromy. Then we have

1. φn is pseudo-Anosov, and

2. the normalized dilatations λ(φn) converge to λ(φ).

Step 4. We have left to show that (Yn, fn) and (Sn, φn) agree. To do this we need a lemma.

Choose a lift of Σ in S̃ and call it Σ0. Let ηi : S̃ → S̃ be the the result of lifting η to Σi = ζi(Σ0)
and extending by the identity to its complement in S̃. Let d̃ : S̃ → S̃ be the Dehn twist on S̃
centered at the lift of γ to

γ̃ ⊂ ζ1(Σ0) ∪ · · · ∪ ζk(Σ0).

By construction, there is one so that ρn : S̃ → Yn equals γn for all n.

Lemma 3 For x ∈ Σ0, and n ≥ k,

φ̃(x) = ζ−n(ζ ◦ dγ̃ ◦ η̃0)n.

Let

T̂n : S̃ × R → S̃ × R

(x, t) 7→ (̂(x), t− 1

n
).
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where
φ̂ = dγ̃ ◦ η0.

The maps Z and Tn do not commute. Let R = Z ◦ Tn.

Define S̃n ⊂ S̃ × R to be the surface

S̃n =

(⋃
i∈Z

Ri(Σ0)

)
∪

(⋃
i∈Z

Ri(α−)× [
i

n
,
i+ 1

n
]

)
.

(To truly make S̃n transverse to the flow defined by φ, it suffices to tilt the suspensions of α−

slightly.) The embedding of S̃n in Mab is illustrated in Figure 3.

Figure 3: A picture of S̃n in M̃ab = S̃ × R.

Lemma 4 S̃n is a connected subsurface of S̃ × R.

Proof. Since R is the identity on α− ⊂ Σ0, we have

Ri(α−) = Ri−1(α+).

Lemma 5 S̃n is invariant under the action of R, and its quotient by Rn is homeomorphic to Yn.

By Lemma 3, Rn = TZn, and hence it generates the kernel of ψn. Thus we have

Corollary 6 Sn = Yn.
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To find φ̃n, where φn is the monodromy of ψn, we note that Z−1 satisfies

ψn(Z−1) = −1.

Thus,
Z−1 = T

φ̃n
.

Using the local product structure of S̃ × R, we see that if one takes an x ∈ S̃n applies Z−1 and
then flows back to S̃n using the product structure, then the result is

x 7→ φ̂−1(R−1(x)).

It follows that φ̃n = R ◦ φ̂, which is a lift of fn.

Exercise Consider the Penner example.

1. Show that the mapping torus has b1 = 2.

2. Show that the Teichmüller polynomial for the Penner example is

u2 − u(5 + t+ t−1) + 1.

3. Show that λ(φg) is the largest root of

x2g − xg+1 − 5xg − xg−1 + 1.

4. Show that λ(φg) converges to (
7 + 3

√
5

2

)2

.
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