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9 Penner examples and quasi-periodicity.

In this lecture, we will study a sequence of pseudo-Anosov mapping classes defined by R. Penner
[Pen|, and describe how they correspond to points on a fibered face.

Figure 1: Penner’s sequence

Consider the family of mapping classes ¢4 : S — Sy shown in Figure 1. Here S, is a compact
oriented surface of genus g with two boundary components, and ¢, is the composition

_ —1
$g =1g0de, 0 dy " 0dy,.

Lemma 1 (Penner)
A(pg)? < 11.

Penner constructed this example and proved Lemma 1 as a key step in proving that the minimum
dilatations ¢, for pseudo-Anosov mapping classes on closed genus g surfaces behaves asymptotically
like
log(d,) = -
g g



Penner’s Lemma can be generalized to other similar examples (see [Bau|, [Val]). Let (5, a) be a
pair with ¥ a compact oriented surface with boundary, and « a relatively closed curve on S. Let
¥ = S\ a be the closure where « is replaced by two copies a® and a~. Now construct surfaces Y,
by gluing together ¥ in an circular chain as in Figure 2

Figure 2: Circular chain of surfaces
The surfaces Y,, are n-cyclic coverings of S,
Pn Yo — S,

and have covering automorphism group Z/nZ = (r,). Fix k > 0, and assume n > k. Let v be a
relative multi-curve on S whose algebraic intersection with « is zero, and let -, be a lift to Y}, that
is contained in X7 U ¥ U - - U X, and is compatibly chosen for all n. Let d,, be the Dehn twist
defined on 7,

We call (S, «) a wedge and v a connecting curve. For any mapping classn: ¥ — X, letn, : ¥, = Y,
be the mapping class defined by

T otherwise

() = { n(z) ifr ey

Theorem 2 ([Hir]) Let (S,«) be a wedge, v a connecting curve. Let n: ¥ — ¥ be any mapping
class such that d on is pseudo-Anosov. Then

1. fo =1rpodyony, is pseudo-Anosov for each n, and

2. there is a constant C independent from n such that

)X < .

Outline of Proof.

Let ¢ : S — S be defined by ¢ = d, o).



Step 1. The mapping class triple (S, dyon, o) defines a linear section of the fibered face associated
to (S,dyon).

Step 2. Let p: S — S be the cyclic covering of S defined by a. Let ¢ : S — S be the group of
covering automorphisms, and let ¢ : S — S be the lift of o.

Then ¢ and 5 determine commuting automorphisms
Z:SxR — SxR
(z,t) = (¢(x),1)
and
T:SxR — SxR
(z,t) = (o(x),t—1).

Then Z and T generate Aut s (M).

Step 3. Let & € H'(M;Z) be the dual to Z, and let

Y =nY + €.

By Thurston’s theory of fibered faces, we have, for large n, 1, defines a fibration of M. Let
¢On : Sp — Sy be the corresponding monodromy. Then we have

1. ¢, is pseudo-Anosov, and

2. the normalized dilatations A(¢,) converge to A(¢).

Step 4. We have left to show that (Y, f,) and (S, ¢,) agree. To do this we need a lemma.

Choose a lift of ¥ in S and call it 3. Let N S — S be the the result of lifting 7 to %; = C’(Zo)
and extending by the identity to its complement in S. Let d : S — S be the Dehn twist on S
centered at the lift of v to

FC HBo) U UCH(S0).

By construction, there is one so that p, : S — Y, equals ~, for all n.

Lemma 3 For x € ¥, andn > k,

Let
fn:ng - SxR
~ 1
(@) = ((2),t= ).



where R
¢ =dyon.
The maps Z and T}, do not commute. Let R = Z o T,,.

Define §n C S x R to be the surface

5. = (U Ri(Eo)) g (U Ri(am) <[5, 11) .

€7 1€EZ

(To truly make §n transverse to the flow defined by ¢, it suffices to tilt the suspensions of a~
slightly.) The embedding of S,, in M ab is illustrated in Figure 3.
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Figure 3: A picture of S, in M2 = § x R.
Lemma 4 S, is a connected subsurface ofg x R.
Proof. Since R is the identity on o~ C ¥, we have

Ri(a”) = R (a™).

Lemma 5 S, is invariant under the action of R, and its quotient by R™ is homeomorphic to Yy,.
By Lemma 3, R™ = TZ", and hence it generates the kernel of ,,. Thus we have

Corollary 6 S, =Y.



To find $n, where ¢,, is the monodromy of v,,, we note that Z~! satisfies

¢n(Z_1) =—L

Thus,

_1_ 1
A —T¢n.

Using the local product structure of S x R, we see that if one takes an x € S, applies Z~! and
then flows back to S, using the product structure, then the result is

z 6 (R (@),

It follows that ¢, = R o ¢, which is a lift of f,,. O

Exercise Consider the Penner example.

1. Show that the mapping torus has b; = 2.

2. Show that the Teichmiiller polynomial for the Penner example is
w? —u(5+t -+t + 1.

3. Show that A(¢y) is the largest root of

2% — g9t — 59 — 2971 4 1.

7435\
— -

4. Show that A(¢,) converges to
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