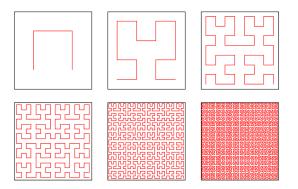
UV^k-Mappings

John Bryant, Steve Ferry, and Washington Mio

February 21, 2013

Continuous maps can raise dimension: Peano curve (Giuseppe Peano, ca. 1890)

Hilbert Curve (\sim 1890)



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで

< □ > < 同 >

Lyudmila Keldysh (1957): There is an *open*, surjective map $f: I^3 \rightarrow I^4$ with connected point-inverses, pseudoisotopic to the inclusion map.

A. V. Černavskii (1985): If $2k + 3 \le n$, there are surjections

$$f: I^n \to I^{n+p}$$

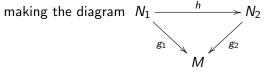
$$g \colon S^n \to S^{n+p}$$

with k-connected point-inverses, pseudoisotopic to the inclusion map.

In particular, if $n \ge 5$, there is a surjection

$$g: S^n \to S^{n+1}$$

with simply connected point-inverses. How might these be useful? A digression: M^n closed topological *n*-manifold Structure set S(M) = set of homotopy equivalences $g: N \to M$, N a topological *n*-manifold, modulo relation $g_1 \sim g_2$ if there is a homeomorphism $h: N_1 \to N_2$



homotopy commutative.

If M is simply connected there is a surgery exact sequence

$$\cdots \rightarrow [(M \times I, \partial), G/TOP] \rightarrow L_{n+1} \rightarrow S(M) \rightarrow [M, G/TOP] \rightarrow L_n$$

```
where \mathbb{L} is the simply connected surgery spectrum,

L_k = \mathbb{Z}, 0, \mathbb{Z}/2\mathbb{Z}, 0

accordingly as

k \equiv 0, 1, 2, 3 \mod 4,

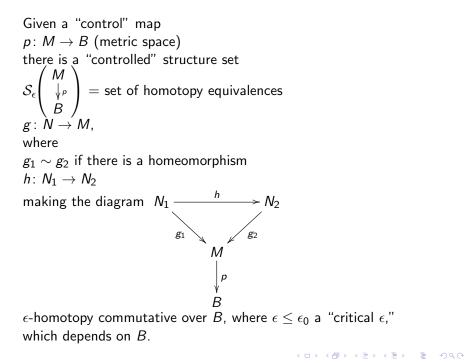
and

[M, G/TOP] is the set of normal bordism classes of degree one

normal maps (normal invariants or "surgery problems over M")

g: N \to M,

where N is a topological n-manifold.
```



If *M* is simply connected and $p: M \to B$ is a surjection with simply connected point inverses (so *B* is also simply connected), there is a controlled surgery exact sequence

$$\cdots \to H_{n+1}(B;\mathbb{L}) \to \mathcal{S}_{\epsilon} \begin{pmatrix} M \\ \downarrow^{p} \\ B \end{pmatrix} \to [M, G/TOP] \to H_{n}(B;\mathbb{L})$$

(Ferry, Pedersen-Quinn-Ranicki)

Sequences are functorially related by the constant map $B \rightarrow \rho t$

Apply to a "Černavskii map" $p\colon S^n \to S^{n+1} \ (n\geq 5)$

By the Poincaré conjecture (and *h*-cobordism thm)

$$\mathcal{S}(S^n) = 0(=\mathcal{S}(S^n \times I, \partial))$$

$$H_{n+1}(S^{n+1};\mathbb{L})\cong \bigoplus_{p+q=n+1}H_p(S^{n+1};L_q)$$

$$\cong H_{n+1}(S^{n+1};\mathbb{Z})\oplus H_0(S^{n+1};L_{n+1})$$

$$\cong \mathbb{Z} \oplus L_{n+1}$$

$$\begin{array}{ccc} \mathcal{S}_{\epsilon} \left(\begin{array}{c} (S^{n} \times I, \partial) \\ \psi^{p} \\ S^{n+1} \end{array} \right) & \stackrel{0}{\rightarrow} & \left[(S^{n} \times I, \partial), G/TOP \right] & \rightarrow & \mathbb{Z} \oplus L_{n+1} & \rightarrow & \mathcal{S}_{\epsilon} \left(\begin{array}{c} S^{n} \\ \psi^{p} \\ S^{n+1} \end{array} \right) \stackrel{0}{\rightarrow} \\ & \downarrow & \downarrow \approx & \downarrow proj & \downarrow 0 \end{array}$$

 $0 \qquad \rightarrow \quad [(S^n \times I, \partial), G/TOP] \quad \stackrel{\approx}{\rightarrow} \qquad L_{n+1} \qquad \stackrel{0}{\rightarrow} \qquad \mathcal{S}(S^n) \rightarrow$

$$\implies \mathcal{S}_{\epsilon} \left(\begin{array}{c} \mathcal{S}^n \\ \downarrow_{\mathcal{P}} \\ \mathcal{S}^{n+1} \end{array}
ight) \cong \mathbb{Z}$$

Given a class corresponding to a nontrivial element of

$$\mathcal{S}_{\epsilon} \left(\begin{array}{c} S^n \\ \downarrow_p \\ S^{n+1} \end{array} \right)$$

and $\delta > 0$, then for every $\mu > 0$, there is representative

$$g: S^n \to S^n$$

such that

g is a μ -equivalence over S^{n+1} ,

g is δ -homotopic to a ν -equivalence over S^{n+1} for any $\nu > 0$, and

g is not ϵ -homotopic to a homeomorphism.

Maps such as these were used as gluing maps by B-F-M-Weinberger in the construction of non-resolvable homology manifolds.

In fact, the integer ι representing an element of $\mathcal{S}_{\epsilon} \begin{pmatrix} S^n \\ \downarrow_{P} \\ S^{n+1} \end{pmatrix}$

corresponds to a homology (n + 1)-manifold X, homotopy equivalent to S^{n+1} , having Quinn's resolution obstruction $1 + 8\iota \in 1 + 8\mathbb{Z}$.

A compact metric space C has property \mathbf{UV}^k , $k \ge 0$, if, for some (hence, any) embedding $C \subseteq X$, an ANR, every nbd U of C contains a nbd V of C such that

$$\pi_i(V) \to \pi_i(U)$$

is the zero-homorphism for $0 \le i \le k$.

"Shape $\pi_i(C)$ " vanishes.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ ク ヘ ()・

If C is an ANR, this is equivalent to

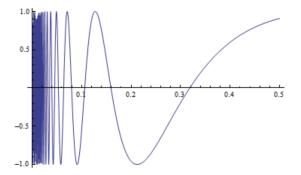
 $\pi_i(C) = 0$ for $0 \leq i \leq k$.

Examples:

Topologists' sine curve and the Whitehead continuum are UV^k for all $k \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

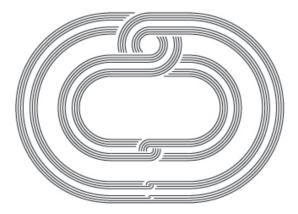
That is, they are **cell-like**.



◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

æ

Topologists' Sine Curve



・ロト ・ 日 ト ・ モ ト ・ モ ト

э

Whitehead Continuum - 4 stages of construction

The dyadic solenoid

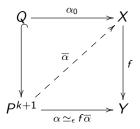
$$\begin{split} \Sigma = \operatorname{proj} \lim\{S^1 \to S^1: z \mapsto z^2\} \\ \pi_1(\Sigma) = 0 \text{ and } \check{\pi}_1(\Sigma) = 0, \text{ but} \\ \Sigma \text{ is not } UV^1. \end{split}$$



(日)、(四)、(E)、(E)、(E)

A map $f: X \to Y$ between compact ANR's is UV^k if each point-inverse is UV^k .

Condition equivalent to having the ϵ -lifting property for polyhedra of dimension $\leq k + 1$ for every $\epsilon > 0$:



A UV^k -map between compact ANR's induces an isomorphism on π_i , $0 \le i \le k$, and an epimorphism on π_{k+1} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Around 1986, Bestvina and Walsh proved: **Theorem.** Suppose M^n is a compact manifold and K is a polyhedron. If $f: M \to K$ is a (k + 1)-connected map, then f is homotopic to a UV^k -map, provided that $2k + 3 \le n$.

Example: Any map f from the *n*-sphere to the *m*-sphere, where $5 \le n \le m$, is homotopic to a UV^1 -map.

The inequality is best possible:

e.g., $f: S^n \to S^n$ may have degree $\neq \pm 1$.

Any improvement would imply f is a homotopy equivalence.

Other results of this type are due to Anderson (1956), Wilson (1970, 1973), Walsh (1975), Ferry (1994).

Černavskii proved a "controlled"

Theorem. If *M* is an *n*-manifold and $k \leq \lfloor \frac{n-3}{2} \rfloor$, then there is a UV^k map $p: M \to M \times I$. Moreover, for any $\epsilon > 0$, we can choose *p* so that $proj \circ p$ is ϵ -close to $1_M: M \to M$.

The control is with respect to the projection map $M \times I \rightarrow M$.

A map $f: X \to B$ between compact ANR's has property $UV^k(\epsilon)$ if it satisfies the ϵ -lifting property for (k + 1)-dimensional polyhedra for a fixed $\epsilon > 0$.

If $p: B \to Y$ is a map to a metric space, then f has property $UV^k(\epsilon)$ over **B** if ϵ -liftings exist as measured in Y.

A compact ANR X has the (linear) UV^k-approximation property if for every $\epsilon > 0$ there is a $\delta(= c \cdot \epsilon) > 0$ (c is a

constant depending only on k) such that if

B compact, metric ANR,

 $p: B \rightarrow Y$ is a map to a metric space, and

 $f: X \to B$, is $UV^k(\delta)$ over Y,

then f is ϵ -homotopic over Y to a UV^k -map.

Theorem (Lacher). A map $f: A \to B$ between compact ENR's is UV^k iff it is $UV^k(\epsilon)$ for every $\epsilon > 0$.

Main Theorem. If X is a compact, connected ENR with the disjoint (k + 1)-disks property, then X has the linear UV^k -approximation property.

Primary example: X is an ENR homology *n*-manifold, $n \ge 5$, with the disjoint disks property.

X has the disjoint $\frac{n-1}{2}$ -disks property.

Corollary. An ENR homology *n*-manifold, $n \ge 5$, with the DDP has the $UV^{\frac{n-3}{2}}$ -approximation property.

A **homology n-manifold** is a space X having the property that for each $x \in X$,

$$H_k(X, X-x; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n-0; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & k=n \\ 0 & k \neq n. \end{cases}$$

A euclidean neighborhood retract (ENR) is a space homeomorphic to a closed subset of euclidean space that is a retract of some neighborhood of itself, that is, a locally compact, finite dimensional ANR.

A space X satisfies the **disjoint** (k-)**disks property**, or *DDP* (DDP^k) , if any two maps of the 2-cell (k-cell) into X can be approximated by maps with disjoint images.

Examples:

1. Let $p: S^n \to S^{n+1}$, $n \ge 5$, be a Černavskii map, and let $f: S^n \to S^n$ be a μ -equivalence over S^{n+1} representing a non-zero element of

$$S_{\epsilon} \left(egin{array}{c} S^n \ low p \ S^{n+1} \end{array}
ight) \cong \mathbb{Z}$$

Then f is $(C \cdot \mu)$ -homotopic **over** S^{n+1} to a $UV^{\frac{n-3}{2}}$ -map. However, f is not controlled homotopic to a $UV^{\frac{n-1}{2}}$ -map. Otherwise, the resulting map would be cell-like (Lacher), hence, arbitrarily close to a homeomorphism. 2. Suppose $f: X \to Y$ is a homotopy equivalence between compact homology *n*-manifolds with the *DDP*, $n \ge 5$. Then *f* is homotopic to a $UV^{\frac{n-3}{2}}$ -map.

If the Quinn indices

$$\iota(X) \neq \iota(Y) \in 1 + 8\mathbb{Z},$$

then f is not homotopic to a $UV^{\frac{n-1}{2}}$ -map.

Otherwise, the resulting map would again be cell-like.

Given Y there is an $\epsilon > 0$ such that if $f: X \to Y$ is an ϵ -equivalence over Y, then $\iota(X) = \iota(Y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What then?

CE-Approximation Conjecture. If Y is a compact ENR homology n-manifold, $n \ge 5$, and $\epsilon > 0$ then there exists $\delta > 0$ such that if X is a compact ENR homology n-manifold with the DDP and $f: X \to Y$ is a δ -homotopy equivalence, then f is ϵ -homotopic to a cell-like map.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The CE-approximation conjecture can be used to establish a version of the Chapman-Ferry α -approximation theorem for homology manifolds.

 α -Approximation Conjecture for Homology Manifolds. Given a compact ENR homology n-manifold Y with the DDP and $\epsilon > 0$ there is a $\delta > 0$ such that if X is a compact ENR homology n-manifold with the DDP and $f : X \to Y$ is a δ -equivalence, the f is ϵ -homotopic to a homeomorphism.

It is not difficult to show that the α -approximation conjecture implies that an ENR homology *n*-manifold, $n \ge 5$, with the disjoint disks property is topologically homogeneous.

Given a
$$UV^k(\epsilon)$$
-map
f: $X \to B$
I. Find a "simple homotopy solution" to the problem,

$$X\nearrow \bar{X} \longrightarrow^{f_1} B ,$$

where f_1 is $UV^k(\mu)$.

II. Get an $UV^k(\eta)$ -homotopy inverse $g: X \to \overline{X}$ to the collapse $\overline{X} \searrow X$, where η is small enough so that the composition

$$X \xrightarrow{g} \bar{X} \xrightarrow{f_1} B$$

is (almost) $UV^k(\mu)$.

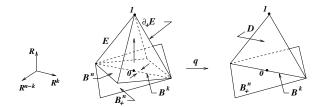
If a (k + 1)-cell D is attached to \mathbb{R}^n along B^k , $2k + 3 \le n$, then there is a homotopy of the inclusion

 $\mathbb{R}^n\subseteq\mathbb{R}^n\cup_{B^k}D$

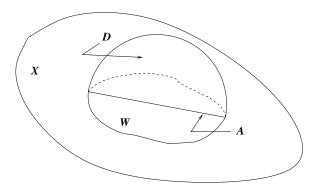
to a UV^k -map

 $q \colon \mathbb{R}^n \to \mathbb{R}^n \cup_{B^k} D$

that is fixed outside a relative regular nbd B^n_+ of B^k .



Main Lemma. A $UV^{k}(\delta)$ version of this holds for ENR's with the DDP^{k+1} , for every $\delta > 0$.

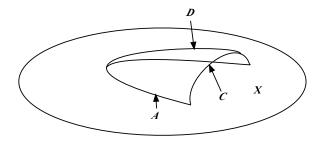


Key Fact: If X is an ENR with the DDP^{k+1} , then every map $\alpha: P \to X$ of a (k+1)-dimensional polyhedron can be approximated by an LCC^k embedding (rel any subpolyhedron on which α is already an LCC^k embedding).

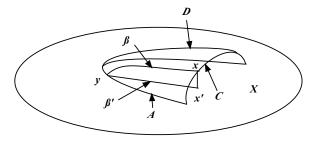
I. A simple homotopy solution for k = 0. Given $f: X \to B \ UV^0(\epsilon)$.

Attach a finite number of arcs to X to get X_1 and an extension of f to X_1 that is $UV^0(\mu)$.

We've changed the homotopy type of X. Attach 2-cells to recover.



We've now lost $UV^0(\mu)!$ But that can also be recovered.



The path β' comes from a μ -lift of β to X_1 and may wind around other "*C*" curves, so the picture is somewhat misleading. II. Slide X onto \overline{X} with arbitrary preassigned UV^0 control.