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Lusternik-Schnirelmann category

catLS X ≤ n if there is an open covering U0, . . . ,Un by
contractible in X sets (X -contractible).
catLS is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

catLS M + 1 ≤ Crit(f ) for any smooth function on a manifold M.

REMARK. For a Morse function the low bound is the sum
of the Betti numbers.
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Applications

Lusternik-Schnirelmann theorem (1929).

Solution to Poincare Problem (1905): Every Riemannian metric
on S2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.
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Applications

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of Sn by n + 1
open sets one of the sets contains an antipodal pair of points.

Follows from the computation catLS RPn = n: If U0, . . . ,Un a
cover of Sn without antipodal pairs, then q(U1), . . . ,qn(Un) is a
cover of RPn where q : Sn → RPn is the quotient map.
Moreover, q|Ui : Ui → q(Ui) is a homeomorphism. Since Ui are
contractible in Sn, q(Ui) are contractible in RPn. Then
catLS RPn ≤ n − 1. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem
rediscovered in mid 30s: For every continuous map f : Sn → Rn

there is x ∈ Sn with f (x) = f (−x).
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Some examples

catLS X = 0⇔ X is contractible.

catLS Sn = 1.

catLS(S1 × S1) = 2.
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Some properties

catLS ≤ dim.

the cup-length ≤ catLS.

EXAMPLE (LS-theorem):

catLS RPn = n.
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Manifolds with small category

Theorem

If catLS M = 1 for a closed n-manifold, then M = Sn.

Theorem (D.-Katz-Rudyak)

If catLS M = 2 for a closed n-manifold, n ≥ 3, then π1(M) is free.
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catLS = 3

Theorem (D.-Katz-Rudyak)

For every nonfree f.p. group π there is a 4-manifold M with
π1(M) = π and catLS M = 3.
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Definition of the BS-class

The Berstein-Šchwarz class bπ ∈ H1(π; I(π)) of a group π
is the image of the generator under connecting
homomorphism H0(π;Z)→ H1(π; I(π)) in the long exact
sequence generated by the short exact sequence of
coefficients

0→ I(π)→ Z(π)→ Z→ 0.

For a complex N with a map f : N → Bπ classifying the
universal covering, the BS-class of N is bN = f ∗bπ.
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Universality of the BS-class

The cup product α ^ β ∈ Hp+q(X ; A⊗ B) is defined for
α ∈ Hp(X ; A) and β ∈ Hq(X ; B) for any π-modules A and B
where π = π1(X ).

Universality Theorem

For every π-module L, every cohomology class α ∈ Hk (π; L) is
the image of (bπ)k under a suitable coefficients homomorphism
ψ : I(π)k = I(π)⊗ · · · ⊗ I(π)→ L.

Corollary

cd(π) = max{n | bn
π 6= 0}.
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Proof of catLS M = 2 Theorem

Assume that π = π1(M) is not free. Then cd(π) ≥ 2.
Consider f : M → Bπ that induces iso on π1.
Then f ∗ : H2(Bπ; L)→ H2(M; L) is mono.
Then b2

M 6= 0 for bM = f ∗(bπ).
By the (twisted) PD there is α such that b2

M ^ α 6= 0.
Then catLS M ≥ 3 by the cup-length inequality.
Contradiction.
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Simply connected spaces

Whitehead’s Theorem.

catLS M ≤ dim M/2 for simply connected M.

First proved by Grossman in 1940s

Rudyak’s Conjcture

If π1(M) is free, then the upper bound for catLS M is of order
dim M/2.

Theorem

If π1(M) is free, then catLS M ≤ dim M/2 + 1.

Example: M = CPn×S1, then catLS M = n + 1 = [dim M/2 + 1].
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Main Result

THEOREM.

For every complex X,

catLS X ≤ cd(π1(X )) +

⌈
hd(X )− 1

2

⌉
.

Here dze is the smallest integer n with z ≤ n.
hd(X ) is the homotopical dimension of X .
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Analogy with dimension

DEFINITION. For a space X, dimX ≤ n iff X admits an
arbitrary small locally finite open cover V with
OrdV ≤ n + 1.
PROPOSITION. For a space X, catLS X ≤ n iff X admits an
X-contractible locally finite open cover V with
OrdV ≤ n + 1.
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Hurewicz Mapping Theorem

Hurewicz Theorem for dimension. For f : X → Y ,

dim X ≤ dim Y + max{dim f−1(y)}.

In particular, dim(X × Y ) ≤ dim X + dim Y .
For the product the catLS-analog holds true:
catLS(X × Y ) ≤ catLS X + catLS Y .
What about Hurewicz for catLS? Does the inequality

catLS X ≤ catLS Y + catLS F

hold for locally trivial bundles X F→ Y ?
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Hurewicz Mapping Theorem

The answer is ’No’: f : RP5 → CP2 with fiber S1. Then
5 = catLS RP5 > catLS CP2 + catLS S1 = 2 + 1.

CONJECTURE

catLS X ≤ dim Y + catLS F

for locally trivial bundles X F→ Y .
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CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel
construction

M ←−−−− M̃ ×π Eπ f−−−−→ Bπ.

where π = π1(M) and M̃ is the universal cover of M.
Then

catLS(M̃ ×π Eπ) ≤ dim Bπ + catLS M̃.

Note that catLS(M̃ ×π Eπ) = catLS M. Also catLS M̃ ≤ dim M/2 by
the Whitehead theorem. Thus, catLS M ≤ cd(π) + dim M/2 if
Eilenberg-Ganea holds true.
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Hilbert’s 13th problem

Hilbert-13 (1900): "Prove that the equation of seventh
degree x7 + ax3 + bx2 + cx + 1 = 0 is not solvable by
means of any continuous functions of only two variables."
⇔ Each of the implicit functions x = x(a,b, c) is not
representable as a composition of functions of two
variables.
Kolmogorov’s Superposition theorem (1957). Every
function of n variables can be represented as a
composition of functions of two variables.
Ostrand (1960) Kolmogorov’s result is of
dimension-theoretical nature.
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Analogy with dimension

Ostrand: A cover U = {Ui} is called an n-cover if every n
elements of U form a cover.
Kolmogorov-Ostrand’s Theorem. dim X ≤ n⇔ for any open
cover V and for every m ≥ n there is an (n + 1)-cover
U0, . . . ,Um such that Ui =

∐
Uα

i where {Uα
i }i,α ≺ V.

catLS-Analog of Kolmogorov-Ostrand Theorem.

catLS X ≤ n⇔ for any m ≥ n there is an (n + 1)-cover
U0, . . . ,Um by open X-contractible sets.
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Kolmogorov’s trick

Proposition

A family U that consists of m subsets of X is an (n + 1)-cover of
X if and only if OrdxU ≥ m − n for all x ∈ X .

Here OrdxU is the number of elements of U that contain x
Proof of catLS X × Y ≤ catLS X + catLS Y :
Let catLS X = n and catLS Y = m. Let U = {U0, . . . ,Um+n+1} be
an (n + 1)-cover of X and let V = {V0, . . . ,Vm+n+1} be an
(m + 1)-cover of Y by X and Y -contractible sets.
Claim: W = {Ui × Vi}m+n+1

i=0 is a cover of X × Y . Indeed, given
(x , y), point x is covered by m + n + 1− n sets. Then the
corresponding Ui × Vi cover x × Y .
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Ganea’s Approach to catLS

RECALL: Path fibration: p : PX → X , PX is the path space
on X (with fixed x0 ∈ X ), p(φ) = φ(0). The fiber of p is the
loop space ΩX .
X is contractible⇔ there is a section s : X → PX .
The n-th Ganea fibration pn : Gn(X )→ X is the fiber-wise
join of n + 1 copies of the path fibration. Thus, the fiber
p−1

n (x0) = ∗n+1ΩX .
REMARK. G0 = PX , p0 = p, and the fiber is ΩX .
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Ganea-Schwarz Approach to catLS

THEOREM [Ganea-Schwarz]

catLS X ≤ n⇔ pn : Gn(X )→ X admits a section.

EXAMPLE (n = 0). p0 : G0(X ) = PX → X admits a section if
and only if X is contractible.
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THANK YOU!!!
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