On Lusternik-Schnirelmann category

A. Dranishnikov

Department of Mathematics University of Florida

FSU, February 22, 2013

Lusternik-Schnirelmann category

■ cat ${ }_{\mathrm{LS}} X \leq n$ if there is an open covering U_{0}, \ldots, U_{n} by contractible in X sets (X-contractible).

- cat LS is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

cat. S $M+1<$ Crit(f) for any smonth fuilction on a manifold M.

Lusternik-Schnirelmann category

- cat ${ }_{\text {LS }} X \leq n$ if there is an open covering U_{0}, \ldots, U_{n} by contractible in X sets (X-contractible).
- cat ${ }_{\mathrm{LS}}$ is a homotopy invariant.

Lusternik-SchnireImann THEOREM:

cat. s $M+1 \leq$ Crit(f) for any smonth fur ction on a manifold M.

Lusternik-Schnirelmann category

■ cat ${ }_{\text {LS }} X \leq n$ if there is an open covering U_{0}, \ldots, U_{n} by contractible in X sets (X-contractible).

- cat ${ }_{\mathrm{LS}}$ is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:
cat $_{\text {LS }} M+1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.

Lusternik-Schnirelmann category

- cat ${ }_{\text {LS }} X \leq n$ if there is an open covering U_{0}, \ldots, U_{n} by contractible in X sets (X-contractible).
- cat ${ }_{\mathrm{LS}}$ is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:
cat $_{\text {LS }} M+1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.
■ REMARK. For a Morse function the low bound is the sum of the Betti numbers.

Applications

Lusternik-Schnirelmann theorem (1929).
Solution to Poincare Problem (1905): Every Riemannian metric on S^{2} has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.
Birkhoff (1927). There is at least one closed geodesic.

Applications

Lusternik-Schnirelmann theorem (1929).
Solution to Poincare Problem (1905): Every Riemannian metric on S^{2} has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.
Birkhoff (1927). There is at least one closed geodesic.

Applications

Lusternik-Schnirelmann theorem (1929).
Solution to Poincare Problem (1905): Every Riemannian metric on S^{2} has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.
Birkhoff (1927). There is at least one closed geodesic.

Applications

Lusternik-Schnirelmann theorem (1929).
Solution to Poincare Problem (1905): Every Riemannian metric on S^{2} has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.
Birkhoff (1927). There is at least one closed geodesic.

Applications

Lusternik-Schnirelmann theorem (1929).
Solution to Poincare Problem (1905): Every Riemannian metric on S^{2} has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.
Birkhoff (1927). There is at least one closed geodesic.

Applications

Abstract

Theorem (Lusternik-Schnirelmann, 1929) For every cover of S^{n} by $n+1$ open sets one of the sets contains an antipodal pair of points.

Follows from the computation cat $\mathbb{R}^{P^{n}}=n$:

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: For every continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$.

Applications

Abstract

Theorem (Lusternik-Schnirelmann, 1929) For every cover of S^{n} by $n+1$ open sets one of the sets contains an antipodal pair of points.

Follows from the computation cat $\mathbb{R}^{P^{n}}=n$:

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: For every continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$.

Applications

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^{n} by $n+1$ open sets one of the sets contains an antipodal pair of points.

Follows from the computation cat $\cos \mathbb{R} P^{n}=n$: If U_{0}, \ldots, U_{n} a cover of S^{n} without antipodal pairs, then $q\left(U_{1}\right), \ldots, q_{n}\left(U_{n}\right)$ is a cover of $\mathbb{R} P^{n}$ where $q: S^{n} \rightarrow \mathbb{R} P^{n}$ is the quotient map. Moreover, $\left.q\right|_{U_{i}}: U_{i} \rightarrow q\left(U_{i}\right)$ is a homeomorphism. Since U_{i} are contractible in $S^{n}, q\left(U_{i}\right)$ are contractible in $\mathbb{R} P^{n}$. Then cat ${ }_{\mathrm{LS}} \mathbb{R} P^{n} \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: For every continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$

Applications

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^{n} by $n+1$ open sets one of the sets contains an antipodal pair of points.

Follows from the computation cat $\cos \mathbb{R} P^{n}=n$: If U_{0}, \ldots, U_{n} a cover of S^{n} without antipodal pairs, then $q\left(U_{1}\right), \ldots, q_{n}\left(U_{n}\right)$ is a cover of $\mathbb{R} P^{n}$ where $q: S^{n} \rightarrow \mathbb{R} P^{n}$ is the quotient map. Moreover, $\left.q\right|_{U_{i}}: U_{i} \rightarrow q\left(U_{i}\right)$ is a homeomorphism. Since U_{i} are contractible in $S^{n}, q\left(U_{i}\right)$ are contractible in $\mathbb{R} P^{n}$. Then cat ${ }_{\mathrm{LS}} \mathbb{R} P^{n} \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: For every continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$.

Some examples

■ cat ${ }_{\mathrm{LS}} X=0 \Leftrightarrow X$ is contractible.

Some examples

■ $\operatorname{cat}_{\mathrm{LS}} X=0 \Leftrightarrow X$ is contractible.

■ $\operatorname{cat}_{\mathrm{LS}} S^{n}=1$.

Some examples

■ $\operatorname{cat}_{\mathrm{LS}} X=0 \Leftrightarrow X$ is contractible.

■ $\operatorname{cat}_{\mathrm{LS}} S^{n}=1$.

■ $\operatorname{cat}_{\mathrm{LS}}\left(S^{1} \times S^{1}\right)=2$.

Some properties

- $\operatorname{cat}_{\mathrm{LS}} \leq \operatorname{dim}$. - the cup-length \leq cat $_{\text {LS }}$. ■ EXAMPLE (LS-theorem):

$$
\operatorname{cat}_{\mathrm{LS}} \mathbb{R} P^{n}=n
$$

Some properties

- $\operatorname{cat}_{\mathrm{LS}} \leq \operatorname{dim}$.

■ the cup-length \leq cat $_{\text {LS }}$.

■ EXAMPLE (LS-theorem):

$$
\operatorname{cat}_{\mathrm{LS}} \mathbb{R} P^{n}=n
$$

Some properties

- $\operatorname{cat}_{\mathrm{LS}} \leq \operatorname{dim}$.

■ the cup-length \leq cat $_{\text {LS }}$.

■ EXAMPLE (LS-theorem):

$$
\operatorname{cat}_{\mathrm{LS}} \mathbb{R} P^{n}=n
$$

Manifolds with small category

Theorem
 If cat $_{\text {LS }} M=1$ for a closed n-manifold, then $M=S^{n}$.

Manifolds with small category

Theorem
 If cat $_{\text {LS }} M=1$ for a closed n-manifold, then $M=S^{n}$.

Manifolds with small category

```
Theorem
If cat \({ }_{\mathrm{LS}} M=1\) for a closed n-manifold, then \(M=S^{n}\).
```

Theorem (D.-Katz-Rudyak)
If cat $\mathrm{LS} M=2$ for a closed n-manifold, $n \geq 3$, then $\pi_{1}(M)$ is free.

$\mathrm{cat}_{\mathrm{LS}}=3$

Theorem (D.-Katz-Rudyak)

For every nonfree f.p. group π there is a 4-manifold M with $\pi_{1}(M)=\pi$ and cat $M=3$.

Definition of the BS-class

■ The Berstein-Šchwarz class $\mathfrak{b}_{\pi} \in H^{1}(\pi ; I(\pi))$ of a group π is the image of the generator under connecting homomorphism $H^{0}(\pi ; \mathbb{Z}) \rightarrow H^{1}(\pi ; I(\pi))$ in the long exact sequence generated by the short exact sequence of coefficients

$$
0 \rightarrow I(\pi) \rightarrow \mathbb{Z}(\pi) \rightarrow \mathbb{Z} \rightarrow 0
$$

- For a complex N with a map $f: N \rightarrow B \pi$ classifying the universal covering, the BS-class of N is $\mathfrak{b}_{N}=f^{*} \mathfrak{b}_{\pi}$.

Definition of the BS-class

■ The Berstein-Šchwarz class $\mathfrak{b}_{\pi} \in H^{1}(\pi ; I(\pi))$ of a group π is the image of the generator under connecting homomorphism $H^{0}(\pi ; \mathbb{Z}) \rightarrow H^{1}(\pi ; I(\pi))$ in the long exact sequence generated by the short exact sequence of coefficients

$$
0 \rightarrow I(\pi) \rightarrow \mathbb{Z}(\pi) \rightarrow \mathbb{Z} \rightarrow 0
$$

■ For a complex N with a map $f: N \rightarrow B \pi$ classifying the universal covering, the BS-class of N is $\mathfrak{b}_{N}=f^{*} \mathfrak{b}_{\pi}$.

Universality of the BS-class

The cup product $\alpha \smile \beta \in H^{p+q}(X ; A \otimes B)$ is defined for $\alpha \in H^{p}(X ; A)$ and $\beta \in H^{q}(X ; B)$ for any π-modules A and B where $\pi=\pi_{1}(X)$.

Universality of the BS-class

The cup product $\alpha \smile \beta \in H^{p+q}(X ; A \otimes B)$ is defined for $\alpha \in H^{p}(X ; A)$ and $\beta \in H^{q}(X ; B)$ for any π-modules A and B where $\pi=\pi_{1}(X)$.

Universality Theorem

For every π-module L, every cohomology class $\alpha \in H^{k}(\pi ; L)$ is the image of $\left(\mathfrak{b}_{\pi}\right)^{k}$ under a suitable coefficients homomorphism $\psi: I(\pi)^{k}=I(\pi) \otimes \cdots \otimes I(\pi) \rightarrow L$.

Universality of the BS-class

The cup product $\alpha \smile \beta \in H^{p+q}(X ; A \otimes B)$ is defined for $\alpha \in H^{p}(X ; A)$ and $\beta \in H^{q}(X ; B)$ for any π-modules A and B where $\pi=\pi_{1}(X)$.

Universality Theorem

For every π-module L, every cohomology class $\alpha \in H^{k}(\pi ; L)$ is the image of $\left(\mathfrak{b}_{\pi}\right)^{k}$ under a suitable coefficients homomorphism $\psi: I(\pi)^{k}=I(\pi) \otimes \cdots \otimes I(\pi) \rightarrow L$.

Universality of the BS-class

The cup product $\alpha \smile \beta \in H^{p+q}(X ; A \otimes B)$ is defined for $\alpha \in H^{p}(X ; A)$ and $\beta \in H^{q}(X ; B)$ for any π-modules A and B where $\pi=\pi_{1}(X)$.

Universality Theorem

For every π-module L, every cohomology class $\alpha \in H^{k}(\pi ; L)$ is the image of $\left(\mathfrak{b}_{\pi}\right)^{k}$ under a suitable coefficients homomorphism $\psi: I(\pi)^{k}=I(\pi) \otimes \cdots \otimes I(\pi) \rightarrow L$.

Corollary

$$
c d(\pi)=\max \left\{n \mid \mathfrak{b}_{\pi}^{n} \neq 0\right\}
$$

Proof of catLS $M=2$ Theorem

■ Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.

- Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}. \square Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono. - Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_{M}^{2} \smile \alpha \neq 0$.

■ Then cat ${ }_{\text {LS }} M \geq 3$ by the cup-length inequality. Contradiction.

Proof of cat ${ }_{L S} M=2$ Theorem

\square Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.
■ Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}.

- Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono.
- Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.
- By the (twisted) PD there is α such that $\mathrm{b}_{M}^{2} \cup \alpha \neq 0$
- Then cat $M \geq 3$ by the cup-length inequality. Contradiction.

Proof of cat ${ }_{L S} M=2$ Theorem

\square Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.
■ Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}.
\square Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono.

- Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_{M}^{2} \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{\mathrm{LS}} M \geq 3$ by the cup-length inequality. Contradiction.

Proof of cat ${ }_{L S} M=2$ Theorem

■ Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.
■ Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}.
■ Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono.
■ Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.

- By the (twisted) PD there is α such that $\mathfrak{b}_{M}^{2} \smile \alpha \neq 0$.
- Then cat ${ }_{\text {LS }} M \geq 3$ by the cup-length inequality. Contradiction.

Proof of cat ${ }_{L S} M=2$ Theorem

\square Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.
■ Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}.
■ Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono.

- Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.

■ By the (twisted) PD there is α such that $\mathfrak{b}_{M}^{2} \smile \alpha \neq 0$.

- Then cat $M \geq 3$ by the cup-length inequality. Contradiction.

Proof of cat ${ }_{\text {LS }} M=2$ Theorem

\square Assume that $\pi=\pi_{1}(M)$ is not free. Then $\operatorname{cd}(\pi) \geq 2$.

- Consider $f: M \rightarrow B \pi$ that induces iso on π_{1}.

■ Then $f^{*}: H^{2}(B \pi ; L) \rightarrow H^{2}(M ; L)$ is mono.
■ Then $\mathfrak{b}_{M}^{2} \neq 0$ for $\mathfrak{b}_{M}=f^{*}\left(\mathfrak{b}_{\pi}\right)$.
■ By the (twisted) PD there is α such that $\mathfrak{b}_{M}^{2} \smile \alpha \neq 0$.
■ Then cat ${ }_{\text {LS }} M \geq 3$ by the cup-length inequality. Contradiction.

Simply connected spaces

Whitehead's Theorem.

cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Simply connected spaces

Whitehead's Theorem.

cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Simply connected spaces

Whitehead's Theorem.

cat $_{\text {LS }} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Simply connected spaces

Whitehead's Theorem.

cat ${ }_{\text {LS }} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_{1}(M)$ is free, then the upper bound for cat ${ }_{\mathrm{LS}} M$ is of order $\operatorname{dim} M / 2$.

Simply connected spaces

Whitehead's Theorem.

cat ${ }_{\text {LS }} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_{1}(M)$ is free, then the upper bound for cat ${ }_{\mathrm{LS}} M$ is of order $\operatorname{dim} M / 2$.

Simply connected spaces

Whitehead's Theorem.

cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_{1}(M)$ is free, then the upper bound for cat LS M is of order $\operatorname{dim} M / 2$.

Theorem

If $\pi_{1}(M)$ is free, then cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2+1$.
Example: $M=\mathbb{C} P^{n} \times S^{1}$, then cat $M=n+1=[\operatorname{dim} M / 2+1$

Simply connected spaces

Whitehead's Theorem.

cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_{1}(M)$ is free, then the upper bound for cat LS M is of order $\operatorname{dim} M / 2$.

Theorem

If $\pi_{1}(M)$ is free, then cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2+1$.
Example: $M=\mathbb{C} P^{n} \times S^{1}$, then cat $M=n+1=[\operatorname{dim} M / 2+1$

Simply connected spaces

Whitehead's Theorem.

cat $_{\text {LS }} M \leq \operatorname{dim} M / 2$ for simply connected M.
First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_{1}(M)$ is free, then the upper bound for cat LS M is of order $\operatorname{dim} M / 2$.

Theorem

If $\pi_{1}(M)$ is free, then cat $_{\mathrm{LS}} M \leq \operatorname{dim} M / 2+1$.
Example: $M=\mathbb{C} P^{n} \times S^{1}$, then $\operatorname{cat}_{\mathrm{LS}} M=n+1=[\operatorname{dim} M / 2+1]$.

Main Result

■ THEOREM.

For every complex X,

Here $\lceil z\rceil$ is the smallest integer n with $z \leq n$.

- hd (X) is the homotopical dimension of X.

Main Result

THEOREM.

For every complex X,

$$
\operatorname{cat}_{\mathrm{LS}} X \leq \operatorname{cd}\left(\pi_{1}(X)\right)+\left\lceil\frac{h d(X)-1}{2}\right\rceil
$$

Here $\lceil z\rceil$ is the smallest integer n with $z \leq n$.
■ $h d(X)$ is the homotopical dimension of X.

Analogy with dimension

- DEFINITION. For a space X, dim $X \leq n$ iff X admits an arbitrary small locally finite open cover \mathcal{V} with OrdV $\leq n+1$.
- PROPOSITION. For a space X, cat $\mathrm{LS} X \leq n$ iff X admits an X-contractible locally finite open cover \mathcal{V} with OrdV $\leq n+1$

Analogy with dimension

- DEFINITION. For a space X, dim $X \leq n$ iff X admits an arbitrary small locally finite open cover \mathcal{V} with OrdV $\leq n+1$.
- PROPOSITION. For a space X, cat ${ }_{L S} X \leq n$ iff X admits an
X-contractible locally finite open cover \mathcal{V} with OrdV $\leq n+1$.

Hurewicz Mapping Theorem

■ Hurewicz Theorem for dimension. For $f: X \rightarrow Y$,

$$
\operatorname{dim} X \leq \operatorname{dim} Y+\max \left\{\operatorname{dim} f^{-1}(y)\right\}
$$

- In particular, $\operatorname{dim}(X \times Y) \leq \operatorname{dim} X+\operatorname{dim} Y$.
- For the product the cat ${ }_{\text {LS }}$-analog holds true: $\operatorname{cat}_{\mathrm{LS}}(X \times Y) \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$.
- What about Hurewicz for cat ${ }_{\text {LS }}$? Does the inequality
hold for locally trivial bundles $X \xrightarrow{F} Y$?

Hurewicz Mapping Theorem

■ Hurewicz Theorem for dimension. For $f: X \rightarrow Y$,

$$
\operatorname{dim} X \leq \operatorname{dim} Y+\max \left\{\operatorname{dim} f^{-1}(y)\right\}
$$

■ In particular, $\operatorname{dim}(X \times Y) \leq \operatorname{dim} X+\operatorname{dim} Y$.

- For the product the cat -analog holds true: $\operatorname{cat}_{\mathrm{LS}}(X \times Y) \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$.
- What about Hurewicz for cat LS $_{\text {LS }}$? Does the inequality
hold for locally trivial bundles $X \xrightarrow{\stackrel{F}{S}} Y$?

Hurewicz Mapping Theorem

■ Hurewicz Theorem for dimension. For $f: X \rightarrow Y$,

$$
\operatorname{dim} X \leq \operatorname{dim} Y+\max \left\{\operatorname{dim} f^{-1}(y)\right\}
$$

■ In particular, $\operatorname{dim}(X \times Y) \leq \operatorname{dim} X+\operatorname{dim} Y$.
■ For the product the cat ${ }_{\mathrm{LS}}$-analog holds true: $\operatorname{cat}_{\mathrm{LS}}(X \times Y) \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$.

- What about Hurewicz for cat [s? Does the inequality

Hurewicz Mapping Theorem

■ Hurewicz Theorem for dimension. For $f: X \rightarrow Y$,

$$
\operatorname{dim} X \leq \operatorname{dim} Y+\max \left\{\operatorname{dim} f^{-1}(y)\right\}
$$

■ In particular, $\operatorname{dim}(X \times Y) \leq \operatorname{dim} X+\operatorname{dim} Y$.
■ For the product the cat ${ }_{L S}$-analog holds true: $\operatorname{cat}_{\mathrm{LS}}(X \times Y) \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$.
■ What about Hurewicz for cat ${ }_{\text {LS }}$? Does the inequality

$$
\operatorname{cat}_{\mathrm{LS}} X \leq \mathrm{cat}_{\mathrm{LS}} Y+\mathrm{cat}_{\mathrm{LS}} F
$$

hold for locally trivial bundles $X \xrightarrow{F} Y$?

Hurewicz Mapping Theorem

■ The answer is 'No': $f: R P^{5} \rightarrow \mathbb{C} P^{2}$ with fiber S^{1}. Then $5=\operatorname{cat}_{\mathrm{LS}} \mathbb{R} P^{5}>\mathrm{cat}_{\mathrm{LS}} C P^{2}+\mathrm{cat}_{\mathrm{LS}} S^{1}=2+1$.

CONJECTURE

$$
\operatorname{cat}_{\mathrm{LS}} X \leq \operatorname{dim} Y+\operatorname{cat}_{\mathrm{LS}} F
$$

for locally trivial bundles $X \xrightarrow{F} Y$.

CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel construction

$$
M \longleftarrow \widetilde{M} \times_{\pi} E \pi \xrightarrow{f} B \pi .
$$

where $\pi=\pi_{1}(M)$ and \widetilde{M} is the universal cover of M.
Then

$$
\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right) \leq \operatorname{dim} B \pi+\operatorname{cat}_{\mathrm{LS}} \widetilde{M} .
$$

Note that $\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right)=\operatorname{cat}_{\mathrm{LS}} M$. Also cat ${ }_{\mathrm{LS}} \widetilde{M} \leq \operatorname{dim} M / 2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{\mathrm{LS}} M \leq \operatorname{cd}(\pi)+\operatorname{dim} M / 2$ if Eilenberg-Ganea holds true.

CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel construction

$$
M \longleftarrow \widetilde{M} \times_{\pi} E \pi \xrightarrow{f} B \pi .
$$

where $\pi=\pi_{1}(M)$ and \widetilde{M} is the universal cover of M. Then

$$
\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right) \leq \operatorname{dim} B \pi+\operatorname{cat}_{\mathrm{LS}} \widetilde{M}
$$

Note that $\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right)=\operatorname{cat}_{\mathrm{LS}} M$. Also cat $\widetilde{\mathrm{LS}} \widetilde{M} \leq \operatorname{dim} M / 2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{\mathrm{LS}} M \leq c d(\pi)+\operatorname{dim} M / 2$ if Eilenberg-Ganea holds true.

CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel construction

$$
M \longleftarrow \widetilde{M} \times_{\pi} E \pi \xrightarrow{f} B \pi .
$$

where $\pi=\pi_{1}(M)$ and \widetilde{M} is the universal cover of M. Then

$$
\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right) \leq \operatorname{dim} B \pi+\operatorname{cat}_{\mathrm{LS}} \widetilde{M}
$$

Note that $\operatorname{cat}_{\text {LS }}\left(\widetilde{M} \times_{\pi} E \pi\right)=\operatorname{cat}_{\text {LS }} M$. Also cat ${ }_{\text {LS }} \widetilde{M} \leq \operatorname{dim} M / 2$ by the Whitehead theorem.
Eilenberg-Ganea holds true.

CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel construction

$$
M \longleftarrow \widetilde{M} \times_{\pi} E \pi \xrightarrow{f} B \pi .
$$

where $\pi=\pi_{1}(M)$ and \widetilde{M} is the universal cover of M. Then

$$
\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right) \leq \operatorname{dim} B \pi+\operatorname{cat}_{\mathrm{LS}} \widetilde{M}
$$

Note that $\operatorname{cat}_{\mathrm{LS}}\left(\widetilde{M} \times_{\pi} E \pi\right)=\operatorname{cat}_{\mathrm{LS}} M$. Also cat $\mathrm{LS}_{\mathrm{LS}} \widetilde{M} \leq \operatorname{dim} M / 2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{\mathrm{LS}} M \leq c d(\pi)+\operatorname{dim} M / 2$ if Eilenberg-Ganea holds true.

Hilbert's 13th problem

■ Hilbert-13 (1900): "Prove that the equation of seventh degree $x^{7}+a x^{3}+b x^{2}+c x+1=0$ is not solvable by means of any continuous functions of only two variables." \Leftrightarrow Each of the implicit functions $x=x(a, b, c)$ is not representable as a composition of functions of two variables.

- Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.
- Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

Hilbert's 13th problem

■ Hilbert-13 (1900): "Prove that the equation of seventh degree $x^{7}+a x^{3}+b x^{2}+c x+1=0$ is not solvable by means of any continuous functions of only two variables." \Leftrightarrow Each of the implicit functions $x=x(a, b, c)$ is not representable as a composition of functions of two variables.
■ Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.

- Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

Hilbert's 13th problem

■ Hilbert-13 (1900): "Prove that the equation of seventh degree $x^{7}+a x^{3}+b x^{2}+c x+1=0$ is not solvable by means of any continuous functions of only two variables." \Leftrightarrow Each of the implicit functions $x=x(a, b, c)$ is not representable as a composition of functions of two variables.
■ Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.
■ Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

Analogy with dimension

Ostrand: A cover $\mathcal{U}=\left\{U_{i}\right\}$ is called an n-cover if every n elements of \mathcal{U} form a cover.
Kolmogorov-Ostrand's Theorem. $\operatorname{dim} X \leq n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \geq n$ there is an $(n+1)$-cover U_{0}, \ldots, U_{m} such that $U_{i}=\coprod U_{i}^{\alpha}$ where $\left\{U_{i}^{\alpha}\right\}_{i, \alpha} \prec \mathcal{V}$.

Analogy with dimension

Ostrand: A cover $\mathcal{U}=\left\{U_{i}\right\}$ is called an n-cover if every n elements of \mathcal{U} form a cover. Kolmogorov-Ostrand's Theorem. $\operatorname{dim} X \leq n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \geq n$ there is an $(n+1)$-cover U_{0}, \ldots, U_{m} such that $U_{i}=\amalg U_{i}^{\alpha}$ where $\left\{U_{i}^{\alpha}\right\}_{i, \alpha} \prec \mathcal{V}$.

Analogy with dimension

Ostrand: A cover $\mathcal{U}=\left\{U_{i}\right\}$ is called an n-cover if every n elements of \mathcal{U} form a cover.
Kolmogorov-Ostrand's Theorem. $\operatorname{dim} X \leq n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \geq n$ there is an $(n+1)$-cover U_{0}, \ldots, U_{m} such that $U_{i}=\amalg U_{i}^{\alpha}$ where $\left\{U_{i}^{\alpha}\right\}_{i, \alpha} \prec \mathcal{V}$.

cat ${ }_{\text {LS }}$-Analog of Kolmogorov-Ostrand Theorem.

cat $_{\text {LS }} X \leq n \Leftrightarrow$ for any $m \geq n$ there is an $(n+1)$-cover U_{0}, \ldots, U_{m} by open X-contractible sets.

Kolmogorov's trick

Proposition

A family \mathcal{U} that consists of m subsets of X is an $(n+1)$-cover of X if and only if $\operatorname{Ord}_{x} \mathcal{U} \geq m-n$ for all $x \in X$.

Here $\operatorname{Ord}_{x} \mathcal{U}$ is the number of elements of \mathcal{U} that contain x
Let cat ${ }_{\mathrm{LS}} X=n$ and cat $\mathrm{LS} Y=m$. Let $\mathcal{U}=\left\{U_{0}, \ldots, U_{m+n+1}\right\}$ be
an $(n+1)$-cover of X and let $\mathcal{V}=\left\{V_{0}, \ldots, V_{m+n+1}\right\}$ be an
$(m+1)$-cover of Y by X and Y-contractible sets.
Indeed, given
(x, y), point x is covered by $m+n+1-n$ sets. Then the corresponding $U_{i} \times V_{i}$ cover $x \times Y$.

Kolmogorov's trick

Proposition

A family \mathcal{U} that consists of m subsets of X is an $(n+1)$-cover of X if and only if $\operatorname{Ord}_{x} \mathcal{U} \geq m-n$ for all $x \in X$.

Here $\operatorname{Ord}_{x} \mathcal{U}$ is the number of elements of \mathcal{U} that contain x
Let cat ${ }_{\mathrm{LS}} X=n$ and cat $\mathrm{LS} Y=m$. Let $\mathcal{U}=\left\{U_{0}, \ldots, U_{m+n+1}\right\}$ be
an $(n+1)$-cover of X and let $\mathcal{V}=\left\{V_{0}, \ldots, V_{m+n+1}\right\}$ be an
$(m+1)$-cover of Y by X and Y-contractible sets.
Indeed, given
(x, y), point x is covered by $m+n+1-n$ sets. Then the corresponding $U_{i} \times V_{i}$ cover $x \times Y$.

Kolmogorov's trick

Proposition

A family \mathcal{U} that consists of m subsets of X is an $(n+1)$-cover of X if and only if $\operatorname{Ord}_{x} \mathcal{U} \geq m-n$ for all $x \in X$.

Here $\operatorname{Ord}_{x} \mathcal{U}$ is the number of elements of \mathcal{U} that contain x Proof of cat ${ }_{\mathrm{LS}} X \times Y \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$:
Let cat ${ }_{\mathrm{LS}} X=n$ and cat $\mathrm{LS}_{\mathrm{LS}} Y=m$. Let $\mathcal{U}=\left\{U_{0}, \ldots, U_{m+n+1}\right\}$ be an $(n+1)$-cover of X and let $\mathcal{V}=\left\{V_{0}, \ldots, V_{m+n+1}\right\}$ be an $(m+1)$-cover of Y by X and Y-contractible sets.

Indeed, given
(x, y), point x is covered by $m+n+1-n$ sets. Then the corresponding $U_{i} \times V_{i}$ cover $x \times Y$

Kolmogorov's trick

Proposition

A family \mathcal{U} that consists of m subsets of X is an $(n+1)$-cover of X if and only if $\operatorname{Ord}_{x} \mathcal{U} \geq m-n$ for all $x \in X$.

Here $\operatorname{Ord}_{x} \mathcal{U}$ is the number of elements of \mathcal{U} that contain x Proof of cat ${ }_{\mathrm{LS}} X \times Y \leq \operatorname{cat}_{\mathrm{LS}} X+\operatorname{cat}_{\mathrm{LS}} Y$:
Let cat ${ }_{\text {LS }} X=n$ and cat LS $Y=m$. Let $\mathcal{U}=\left\{U_{0}, \ldots, U_{m+n+1}\right\}$ be an $(n+1)$-cover of X and let $\mathcal{V}=\left\{V_{0}, \ldots, V_{m+n+1}\right\}$ be an $(m+1)$-cover of Y by X and Y-contractible sets.
Claim: $\mathcal{W}=\left\{U_{i} \times V_{i}\right\}_{i=0}^{m+n+1}$ is a cover of $X \times Y$. Indeed, given (x, y), point x is covered by $m+n+1-n$ sets. Then the corresponding $U_{i} \times V_{i}$ cover $x \times Y$.

Ganea's Approach to catLs

\square RECALL: Path fibration: $p: P X \rightarrow X, P X$ is the path space on X (with fixed $x_{0} \in X$), $p(\phi)=\phi(0)$. The fiber of p is the loop space ΩX.
X is contractible \Leftrightarrow there is a section $s: X \rightarrow P X$.

- The n-th Ganea fibration $p_{n}: G_{n}(X) \rightarrow X$ is the fiber-wise join of $n+1$ copies of the path fibration. Thus, the fiber $p_{n}^{-1}\left(x_{0}\right)=*^{n+1} \Omega X$.
- REMARK. $G_{0}=P X, p_{0}=p$, and the fiber is ΩX.

Ganea's Approach to catLs

■ RECALL: Path fibration: $p: P X \rightarrow X, P X$ is the path space on X (with fixed $x_{0} \in X$), $p(\phi)=\phi(0)$. The fiber of p is the loop space ΩX.
X is contractible \Leftrightarrow there is a section $s: X \rightarrow P X$.

- The n-th Ganea fibration $p_{n}: G_{n}(X) \rightarrow X$ is the fiber-wise join of $n+1$ copies of the path fibration. Thus, the fiber $p_{n}^{-1}\left(x_{0}\right)=*^{n+1} \Omega X$.
- REMARK. $G_{0}=P X, p_{0}=p$, and the fiber is ΩX.

Ganea's Approach to catLs

■ RECALL: Path fibration: $p: P X \rightarrow X, P X$ is the path space on X (with fixed $x_{0} \in X$), $p(\phi)=\phi(0)$. The fiber of p is the loop space ΩX.
X is contractible \Leftrightarrow there is a section $s: X \rightarrow P X$.

- The n-th Ganea fibration $p_{n}: G_{n}(X) \rightarrow X$ is the fiber-wise join of $n+1$ copies of the path fibration. Thus, the fiber $p_{n}^{-1}\left(x_{0}\right)=*^{n+1} \Omega X$.
\square REMARK. $G_{0}=P X, p_{0}=p$, and the fiber is ΩX.

Ganea-Schwarz Approach to catLS

THEOREM [Ganea-Schwarz]

$\operatorname{cat}_{\mathrm{LS}} X \leq n \Leftrightarrow p_{n}: G_{n}(X) \rightarrow X$ admits a section.
EXAMPLE $(n=0) . p_{0}: G_{0}(X)=P X \rightarrow X$ admits a section if and only if X is contractible.

Ganea-Schwarz Approach to catLS

THEOREM [Ganea-Schwarz]

$\operatorname{cat}_{\mathrm{LS}} X \leq n \Leftrightarrow p_{n}: G_{n}(X) \rightarrow X$ admits a section.
EXAMPLE $(n=0) . p_{0}: G_{0}(X)=P X \rightarrow X$ admits a section if and only if X is contractible.

Ganea-Schwarz Approach to cat_S

THEOREM [Ganea-Schwarz]

cat $_{\mathrm{LS}} X \leq n \Leftrightarrow p_{n}: G_{n}(X) \rightarrow X$ admits a section.
EXAMPLE $(n=0) . p_{0}: G_{0}(X)=P X \rightarrow X$ admits a section if and only if X is contractible.

THANK YOU!!!

