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Lusternik-Schnirelmann category

m cat s X < nif there is an open covering Uy, ..., U, by
contractible in X sets (X-contractible).

B catr g is @ homotopy invariant.

] Lusternik-Schnirelmann THEOREM:

catps M + 1 < Crit(f) for any smooth function on a manifold M.

m REMARK. For a Morse function the low bound is the sum
of the Betti numbers.
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Applications

Lusternik-Schnirelmann theorem (1929).

Solution to Poincare Problem (1905): Every Riemannian metric
on S? has at least three closed geodesics.
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Applications

(Lusternik-Schnirelmann, 1929) For every cover of S" by n + 1
open sets one of the sets contains an antipodal pair of points.
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Applications

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S" by n + 1
open sets one of the sets contains an antipodal pair of points.

Follows from the computation catp s RP"” = n: If Uy, .. .. U,a
cover of S" without antipodal pairs, then q(U,), .. ., gn(Un) is a
cover of RP" where g : S” — RP" is the quotient map.
Moreover, q|y, : Ui = q(U;) is a homeomorphism. Since U; are
contractible in S, q(U;) are contractible in RP". Then

catis RP" < n— 1. Contradiction.
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Applications

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S" by n + 1
open sets one of the sets contains an antipodal pair of points.

Follows from the computation catp s RP"” = n: If Uy, .. .. U,a
cover of S" without antipodal pairs, then q(U,), .. ., gn(Un) is a
cover of RP" where g : S” — RP" is the quotient map.
Moreover, q|y, : Ui = q(U;) is a homeomorphism. Since U; are
contractible in S, q(U;) are contractible in RP". Then

catis RP" < n— 1. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem
rediscovered in mid 30s: For every continuous map f : S" — R"
there is x € S" with f(x) = f(—x).
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Some examples

m cat;s X = 0 & X is contractible.
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Some examples

m cat;s X = 0 & X is contractible.
B cat g S =1.

m cat 5(S' x S') =2.
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Some properties

m catpg < dim.
m the cup-length < catgg.

m EXAMPLE (LS-theorem):

catis RP" = n.
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Manifolds with small category

If catps M = 1 for a closed n-manifold, then M = S".
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Manifolds with small category

If catps M = 1 for a closed n-manifold, then M = S".

Theorem (D.-Katz-Rudyak)

If catus M = 2 for a closed n-manifold, n > 3, then 71(M) is free.
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Theorem (D.-Katz-Rudyak)

For every nonfree f.p. group = there is a 4-manifold M with
7T1(M) = m and cats M = 3.
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Definition of the BS-class

m The Berstein-Schwarz class b, € H'(x; I(r)) of a group =
is the image of the generator under connecting
homomorphism H°(r; Z) — H'(x; I(x)) in the long exact
sequence generated by the short exact sequence of
coefficients

0— l(r) = Z(r) - Z — 0.
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Definition of the BS-class

m The Berstein-Schwarz class b, € H'(x; I(r)) of a group =
is the image of the generator under connecting
homomorphism H°(r; Z) — H'(x; I(x)) in the long exact
sequence generated by the short exact sequence of
coefficients

0— l(r) = Z(r) - Z — 0.

m For a complex N with a map f: N — Br classifying the
universal covering, the BS-class of N is by = f*b,.
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Universality of the BS-class

The cup product a — 3 € HPT9(X; A® B) is defined for
a € HP(X; A) and 5 € HY(X; B) for any m-modules A and B
where ™ = m¢(X).
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a € HP(X; A) and 5 € HY(X; B) for any m-modules A and B
where ™ = m¢(X).

Universality Theorem

For every m-module L, every cohomology class a € H*(; L) is
the image of (b, )* under a suitable coefficients homomorphism
Y (@ =I(r)®- - ® I(n) = L.
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Universality of the BS-class

The cup product a — 3 € HPT9(X; A® B) is defined for
a € HP(X; A) and 5 € HY(X; B) for any m-modules A and B
where ™ = m¢(X).

Universality Theorem

For every m-module L, every cohomology class a € H*(; L) is
the image of (b, )* under a suitable coefficients homomorphism
Y (@ =I(r)®- - ® I(n) = L.

Corollary

cd(mw) = max{n| bl # 0}.
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Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.

A. Dranishnikov Universities of Florida

On Lusternik-Schnirelmann category



Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.
m Consider f : M — Br that induces iso on 7.

A. Dranishnikov Universities of Florida

On Lusternik-Schnirelmann category



Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.
m Consider f : M — Br that induces iso on 7.
m Then * : H?(Br; L) — H?(M; L) is mono.

A. Dranishnikov Universities of Florida

On Lusternik-Schnirelmann category



Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.
m Consider f : M — Br that induces iso on 7.

m Then * : H?(Br; L) — H?(M; L) is mono.

m Then b3, # 0 for by = f*(b,).

A. Dranishnikov Universities of Florida

On Lusternik-Schnirelmann category



Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.
m Consider f : M — Br that induces iso on 7.

m Then * : H?(Br; L) — H?(M; L) is mono.

m Then b3, # 0 for by = f*(b,).

m By the (twisted) PD there is « such that b%,, — a #0.
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Proof of cat;s M = 2 Theorem

m Assume that 7 = m(M) is not free. Then cd(x) > 2.
m Consider f : M — Br that induces iso on 7.

m Then * : H?(Br; L) — H?(M; L) is mono.

m Then b3, # 0 for by = f*(b,).

m By the (twisted) PD there is « such that b%,, — a #0.

m Then cat s M > 3 by the cup-length inequality.
Contradiction.
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Simply connected spaces

Whitehead’s Theorem.

catps M < dim M/2 for simply connected M.
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Simply connected spaces

Whitehead’s Theorem.

catps M < dim M/2 for simply connected M.

First proved by Grossman in 1940s
Rudyak’s Conijcture

If 71(M) is free, then the upper bound for cat s M is of order
dimM/2.
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Simply connected spaces

Whitehead’s Theorem.

catps M < dim M/2 for simply connected M.

First proved by Grossman in 1940s
Rudyak’s Conijcture

If 71(M) is free, then the upper bound for cat s M is of order
dimM/2.

If (M) is free, then cat,s M < dimM/2 4 1.

Example: M = CP" x S', then cat;s M = n+1 = [dim M/2 4-1].
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Main Result

Here [Zz] is the smallest integer n with z < n.
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Main Result

] THEOREM.

For every complex X,

catps X < cd(mq(X)) + [%—‘ .

Here [Zz] is the smallest integer n with z < n.
m hd(X) is the homotopical dimension of X.
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Analogy with dimension

m DEFINITION. For a space X, dimX < n iff X admits an
arbitrary small locally finite open cover )V with
OrdV < n+1.

A. Dranishnikov Universities of Florida

On Lusternik-Schnirelmann category



Analogy with dimension

m DEFINITION. For a space X, dimX < n iff X admits an
arbitrary small locally finite open cover )V with
OrdV < n+1.

m PROPOSITION. For a space X, cat;s X < n iff X admits an
X-contractible locally finite open coverV with
Ordy < n+1.
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Hurewicz Mapping Theorem

m Hurewicz Theorem for dimension. For f: X — Y,

dim X < dim Y + max{dim f~'(y)}.
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Hurewicz Mapping Theorem

m Hurewicz Theorem for dimension. For f: X — Y,
dim X < dim Y + max{dim f~'(y)}.

m In particular, dim(X x Y) <dim X +dimY.

m For the product the cat; s-analog holds true:
cats(X x Y) < catg X + catrg Y.

m What about Hurewicz for cat s? Does the inequality

catpg X < catyg Y + caty g F

hold for locally trivial bundles X L
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Hurewicz Mapping Theorem

m The answer is 'No’: f : RP® — CP? with fiber S'. Then
5 = cat;s RP® > catp s CP? + cats ST =2 + 1.

CONJECTURE

catpg X < dim Y + caty g F

for locally trivial bundles X = Y.
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CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel
construction

M«—— Mx.Er —— Bnr.

where 7 = m1(M) and M is the universal cover of M.
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cath(l\/l X E7T) < dim Bm + caty s M.
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Note that cat,s(M x Ex) = cat s M. Also cat s M < dim M/2 by
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CONJECTURE implies THEOREM

Apply the formula from CONJECTURE to f in the Borel
construction

M«—— Mx.Er —— Bnr.

where 7 = m1(M) and M is the universal cover of M.
Then N B
cath(l\/l X E7T) < dim Bm + caty s M.

Note that cat,s(M x Ex) = cat s M. Also cat s M < dim M/2 by
the Whitehead theorem. Thus, cat.s M < cd(x) + dim M/2 if
Eilenberg-Ganea holds true.
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Hilbert’s 13th problem

m Hilbert-13 (1900): "Prove that the equation of seventh
degree x” + ax® + bx? 4 cx 4+ 1 = 0 is not solvable by
means of any continuous functions of only two variables."
< Each of the implicit functions x = x(a, b, ¢) is not
representable as a composition of functions of two
variables.
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Hilbert’s 13th problem

m Hilbert-13 (1900): "Prove that the equation of seventh
degree x” + ax® + bx? 4 cx 4+ 1 = 0 is not solvable by
means of any continuous functions of only two variables."
< Each of the implicit functions x = x(a, b, ¢) is not
representable as a composition of functions of two
variables.

m Kolmogorov’s Superposition theorem (1957). Every
function of n variables can be represented as a
composition of functions of two variables.
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Hilbert’s 13th problem

m Hilbert-13 (1900): "Prove that the equation of seventh
degree x” + ax® + bx? 4 cx 4+ 1 = 0 is not solvable by
means of any continuous functions of only two variables."
< Each of the implicit functions x = x(a, b, ¢) is not
representable as a composition of functions of two
variables.

m Kolmogorov’s Superposition theorem (1957). Every
function of n variables can be represented as a
composition of functions of two variables.

m Ostrand (1960) Kolmogorov’s result is of
dimension-theoretical nature.
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Analogy with dimension

Ostrand: A cover U = {U;} is called an n-cover if every n
elements of ¢/ form a cover.
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Analogy with dimension

Ostrand: A cover U = {U;} is called an n-cover if every n
elements of ¢/ form a cover.

Kolmogorov-Ostrand’s Theorem. dim X < n < for any open
coverV and for every m > n there is an (n+ 1)-cover

Uo, - .., Un such that U; = [T U~ where {U?} o, < V.
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Analogy with dimension

Ostrand: A cover U = {U;} is called an n-cover if every n
elements of ¢/ form a cover.

Kolmogorov-Ostrand’s Theorem. dim X < n < for any open
coverV and for every m > n there is an (n+ 1)-cover

Uo, - .., Un such that U; = [T U~ where {U?} o, < V.

cat s-Analog of Kolmogorov-Ostrand Theorem.

catps X < n< forany m > n there is an (n+ 1)-cover
Uo, - .., Un by open X-contractible sets.
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Kolmogorov’s trick

Proposition

A family U that consists of m subsets of X is an (n+ 1)-cover of
X if and only if Ordyd > m — nfor all x € X.

Here Ord U is the number of elements of ¢/ that contain x
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Kolmogorov’s trick

Proposition

A family U that consists of m subsets of X is an (n+ 1)-cover of
X if and only if Ordyd > m — nfor all x € X.

Here Ordy U is the number of elements of ¢/ that contain x
Proof of cat; s X x Y < caty g X + caty g Y:

Letcatts X = nand cat,s Y = m. Letd = {Up, ..., Unini1} be
an (n+ 1)-coverof X and letV ={Vp,..., Vpine1} be an
(m+ 1)-cover of Y by X and Y-contractible sets.
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Kolmogorov’s trick

Proposition

A family U that consists of m subsets of X is an (n+ 1)-cover of
X if and only if Ordyd > m — nfor all x € X.

Here Ord,U is the number of elements of &/ that contain x
Proof of cat; s X x Y < caty g X + caty g Y:
Letcatts X = nand cat,s Y = m. Letd = {Up, ..., Unini1} be
an (n+ 1)-coverof X and letV ={Vp,..., Vpine1} be an
(m+ 1)-cover of Y by X and Y-contractible sets.

Indeed, given
(x,y), point x is covered by m+ n+ 1 — n sets. Then the
corresponding U; x V; cover x x Y.
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Ganea’s Approach to cat g

m RECALL: Path fibration: p : PX — X, PX is the path space
on X (with fixed xo € X), p(¢) = #(0). The fiber of p is the
loop space QX.

X is contractible < there is a section s: X — PX.
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Ganea’s Approach to cat g

m RECALL: Path fibration: p : PX — X, PX is the path space
on X (with fixed xo € X), p(¢) = #(0). The fiber of p is the
loop space QX.

X is contractible < there is a section s : X — PX.

m The n-th Ganea fibration p, : Gn(X) — X is the fiber-wise
join of n+ 1 copies of the path fibration. Thus, the fiber
pn (x0) = *M1QX.
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Ganea’s Approach to cat g

m RECALL: Path fibration: p : PX — X, PX is the path space
on X (with fixed xo € X), p(¢) = #(0). The fiber of p is the
loop space QX.

X is contractible < there is a section s : X — PX.

m The n-th Ganea fibration p, : Gn(X) — X is the fiber-wise
join of n+ 1 copies of the path fibration. Thus, the fiber
pn (x0) = *M1QX.

m REMARK. Gy = PX, po = p, and the fiber is Q.X.
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Ganea-Schwarz Approach to cat; g

THEOREM [Ganea-Schwarz]

catps X < n< pp: Gp(X) — X admits a section.
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Ganea-Schwarz Approach to cat; g

THEOREM [Ganea-Schwarz]

catps X < n< pp: Gp(X) — X admits a section.

EXAMPLE (n = 0). py : Go(X) = PX — X admits a section if
and only if X is contractible.
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