On Lusternik-Schnirelmann category

A. Dranishnikov

Department of Mathematics University of Florida

FSU, February 22, 2013

Universities of Florida

A. Dranishnikov

Lusternik-Schnirelmann category

■ $cat_{LS} X \le n$ if there is an open covering $U_0, ..., U_n$ by contractible in X sets (X-contractible).

 \blacksquare cat_{LS} is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

 $\operatorname{cat}_{LS} M + 1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.

REMARK. For a Morse function the low bound is the sum of the Betti numbers.

Universities of Florida

A. Dranishnikov

■ $cat_{LS} X \le n$ if there is an open covering $U_0, ..., U_n$ by contractible in X sets (X-contractible).

 \blacksquare cat_{LS} is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

 $\operatorname{cat}_{\mathrm{LS}} M + 1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.

REMARK. For a Morse function the low bound is the sum of the Betti numbers.

Universities of Florida

A. Dranishnikov

■ $cat_{LS} X \le n$ if there is an open covering $U_0, ..., U_n$ by contractible in X sets (X-contractible).

 \blacksquare cat_{LS} is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

 $\operatorname{cat}_{LS} M + 1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.

REMARK. For a Morse function the low bound is the sum of the Betti numbers.

Universities of Florida

A. Dranishnikov

■ $cat_{LS} X \le n$ if there is an open covering $U_0, ..., U_n$ by contractible in X sets (X-contractible).

 \blacksquare cat_{LS} is a homotopy invariant.

Lusternik-Schnirelmann THEOREM:

 $\operatorname{cat}_{LS} M + 1 \leq \operatorname{Crit}(f)$ for any smooth function on a manifold M.

REMARK. For a Morse function the low bound is the sum of the Betti numbers.

Universities of Florida

A. Dranishnikov

Solution to Poincare Problem (1905): Every Riemannian metric on S^2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.

A. Dranishnikov

Universities of Florida

Solution to Poincare Problem (1905): Every Riemannian metric on S^2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.

A. Dranishnikov

Universities of Florida

Solution to Poincare Problem (1905): Every Riemannian metric on S^2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.

A. Dranishnikov

Universities of Florida

Solution to Poincare Problem (1905): Every Riemannian metric on S^2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.

A. Dranishnikov

Universities of Florida

Image: A matrix

Solution to Poincare Problem (1905): Every Riemannian metric on S^2 has at least three closed geodesics.

The minimum (=3) occurs on ellipsoids.

Birkhoff (1927). There is at least one closed geodesic.

A. Dranishnikov

Universities of Florida

Image: A matrix

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^n by n + 1 open sets one of the sets contains an antipodal pair of points.

Follows from the computation $\operatorname{cat_{LS}} \mathbb{R}P^n = n$: If U_0, \ldots, U_n a cover of S^n without antipodal pairs, then $q(U_1), \ldots, q_n(U_n)$ is a cover of $\mathbb{R}P^n$ where $q: S^n \to \mathbb{R}P^n$ is the quotient map. Moreover, $q|_{U_i}: U_i \to q(U_i)$ is a homeomorphism. Since U_i are contractible in S^n , $q(U_i)$ are contractible in $\mathbb{R}P^n$. Then $\operatorname{cat_{LS}} \mathbb{R}P^n \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: *For every continuous map* $f : S^n \to \mathbb{R}^n$ *there is* $x \in S^n$ *with* f(x) = f(-x).

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^n by n + 1 open sets one of the sets contains an antipodal pair of points.

Follows from the computation $\operatorname{cat_{LS}} \mathbb{R}P^n = n$: If U_0, \ldots, U_n a cover of S^n without antipodal pairs, then $q(U_1), \ldots, q_n(U_n)$ is a cover of $\mathbb{R}P^n$ where $q: S^n \to \mathbb{R}P^n$ is the quotient map. Moreover, $q|_{U_i}: U_i \to q(U_i)$ is a homeomorphism. Since U_i are contractible in S^n , $q(U_i)$ are contractible in $\mathbb{R}P^n$. Then $\operatorname{cat_{LS}} \mathbb{R}P^n \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: *For every continuous map* $f : S^n \to \mathbb{R}^n$ *there is* $x \in S^n$ *with* f(x) = f(-x).

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^n by n + 1 open sets one of the sets contains an antipodal pair of points.

Follows from the computation $\operatorname{cat}_{LS} \mathbb{R}P^n = n$: If U_0, \ldots, U_n a cover of S^n without antipodal pairs, then $q(U_1), \ldots, q_n(U_n)$ is a cover of $\mathbb{R}P^n$ where $q: S^n \to \mathbb{R}P^n$ is the quotient map. Moreover, $q|_{U_i}: U_i \to q(U_i)$ is a homeomorphism. Since U_i are contractible in S^n , $q(U_i)$ are contractible in $\mathbb{R}P^n$. Then $\operatorname{cat}_{LS} \mathbb{R}P^n \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: *For every continuous map* $f : S^n \to \mathbb{R}^n$ *there is* $x \in S^n$ *with* f(x) = f(-x).

Theorem

(Lusternik-Schnirelmann, 1929) For every cover of S^n by n + 1 open sets one of the sets contains an antipodal pair of points.

Follows from the computation $\operatorname{cat}_{LS} \mathbb{R}P^n = n$: If U_0, \ldots, U_n a cover of S^n without antipodal pairs, then $q(U_1), \ldots, q_n(U_n)$ is a cover of $\mathbb{R}P^n$ where $q: S^n \to \mathbb{R}P^n$ is the quotient map. Moreover, $q|_{U_i}: U_i \to q(U_i)$ is a homeomorphism. Since U_i are contractible in S^n , $q(U_i)$ are contractible in $\mathbb{R}P^n$. Then $\operatorname{cat}_{LS} \mathbb{R}P^n \leq n-1$. Contradiction.

The Theorem is a reformulation of the Borsuk-Ulam theorem rediscovered in mid 30s: For every continuous map $f : S^n \to \mathbb{R}^n$ there is $x \in S^n$ with f(x) = f(-x).

Some examples

•
$$\operatorname{cat}_{\operatorname{LS}} X = 0 \Leftrightarrow X$$
 is contractible.

•
$$\operatorname{cat}_{\mathrm{LS}} S^n = 1.$$

•
$$\operatorname{cat}_{\operatorname{LS}}(S^1 \times S^1) = 2.$$

A. Dranishnikov

Universities of Florida

→ E → < E</p>

O > <
 O >

Some examples

•
$$\operatorname{cat}_{\operatorname{LS}} X = 0 \Leftrightarrow X$$
 is contractible.

•
$$\operatorname{cat}_{\mathrm{LS}} S^n = 1$$
.

•
$$\operatorname{cat}_{\operatorname{LS}}(S^1 \times S^1) = 2.$$

A. Dranishnikov

Universities of Florida

<ロ> <四> <四> <三</p>

Some examples

•
$$\operatorname{cat}_{\operatorname{LS}} X = 0 \Leftrightarrow X$$
 is contractible.

•
$$\operatorname{cat}_{\mathrm{LS}} S^n = 1.$$

•
$$\operatorname{cat}_{\operatorname{LS}}(S^1 \times S^1) = 2.$$

A. Dranishnikov

Universities of Florida

<ロ> <四> <四> <三</p>

Some properties

• $cat_{LS} \leq dim.$

- the cup-length $\leq cat_{LS}$.
- EXAMPLE (LS-theorem):

 $\operatorname{cat}_{\operatorname{LS}} \mathbb{R} P^n = n.$

▲ロト▲聞ト▲目ト▲目ト 目 のへの

A. Dranishnikov

Universities of Florida

Some properties

• $cat_{LS} \leq dim$.

• the cup-length $\leq cat_{LS}$.

EXAMPLE (LS-theorem):

 $\operatorname{cat}_{\operatorname{LS}} \mathbb{R} P^n = n.$

・ロ・・聞・・思・・思・ ほうのくの

A. Dranishnikov

Universities of Florida

Some properties

• $cat_{LS} \leq dim$.

• the cup-length \leq cat_{LS}.

EXAMPLE (LS-theorem):

 $\operatorname{cat}_{\operatorname{LS}} \mathbb{R}P^n = n.$

Universities of Florida

< **□** > < **□**

A. Dranishnikov

Manifolds with small category

Theorem

If $\operatorname{cat}_{LS} M = 1$ for a closed n-manifold, then $M = S^n$.

Theorem (D.-Katz-Rudyak)

If $\operatorname{cat}_{LS} M = 2$ for a closed n-manifold, $n \ge 3$, then $\pi_1(M)$ is free.

▲口 → ▲御 → ▲臣 → ▲臣 → ▲回 →

A. Dranishnikov

Universities of Florida

Manifolds with small category

Theorem

If $\operatorname{cat}_{LS} M = 1$ for a closed n-manifold, then $M = S^n$.

Theorem (D.-Katz-Rudyak)

If $\operatorname{cat}_{LS} M = 2$ for a closed n-manifold, $n \ge 3$, then $\pi_1(M)$ is free.

▲口 → ▲御 → ▲臣 → ▲臣 → ▲回 →

A. Dranishnikov

Universities of Florida

Manifolds with small category

Theorem

If $\operatorname{cat}_{LS} M = 1$ for a closed n-manifold, then $M = S^n$.

Theorem (D.-Katz-Rudyak)

If $\operatorname{cat}_{LS} M = 2$ for a closed n-manifold, $n \ge 3$, then $\pi_1(M)$ is free.

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

 $cat_{LS} = 3$

Theorem (D.-Katz-Rudyak)

For every nonfree f.p. group π there is a 4-manifold M with $\pi_1(M) = \pi$ and $\operatorname{cat}_{LS} M = 3$.

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

Definition of the BS-class

The Berstein-Šchwarz class b_π ∈ H¹(π; I(π)) of a group π is the image of the generator under connecting homomorphism H⁰(π; Z) → H¹(π; I(π)) in the long exact sequence generated by the short exact sequence of coefficients

$$0 \rightarrow I(\pi) \rightarrow \mathbb{Z}(\pi) \rightarrow \mathbb{Z} \rightarrow 0.$$

Universities of Florida

For a complex *N* with a map $f : N \to B\pi$ classifying the universal covering, the BS-class of *N* is $\mathfrak{b}_N = f^*\mathfrak{b}_{\pi}$.

A. Dranishnikov

Definition of the BS-class

The Berstein-Šchwarz class b_π ∈ H¹(π; I(π)) of a group π is the image of the generator under connecting homomorphism H⁰(π; Z) → H¹(π; I(π)) in the long exact sequence generated by the short exact sequence of coefficients

$$0
ightarrow I(\pi)
ightarrow \mathbb{Z}(\pi)
ightarrow \mathbb{Z}
ightarrow 0.$$

For a complex *N* with a map $f : N \to B\pi$ classifying the universal covering, the BS-class of *N* is $\mathfrak{b}_N = f^*\mathfrak{b}_{\pi}$.

Universities of Florida

A. Dranishnikov

The cup product $\alpha \smile \beta \in H^{p+q}(X; A \otimes B)$ is defined for $\alpha \in H^p(X; A)$ and $\beta \in H^q(X; B)$ for any π -modules A and B where $\pi = \pi_1(X)$.

Universality Theorem

For every π -module L, every cohomology class $\alpha \in H^k(\pi; L)$ is the image of $(\mathfrak{b}_{\pi})^k$ under a suitable coefficients homomorphism $\psi : I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi) \to L$.

Corollary

$cd(\pi) = \max\{n \mid \mathfrak{b}_{\pi}^n \neq 0\}.$

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

The cup product $\alpha \smile \beta \in H^{p+q}(X; A \otimes B)$ is defined for $\alpha \in H^p(X; A)$ and $\beta \in H^q(X; B)$ for any π -modules A and B where $\pi = \pi_1(X)$.

Universality Theorem

For every π -module *L*, every cohomology class $\alpha \in H^k(\pi; L)$ is the image of $(\mathfrak{b}_{\pi})^k$ under a suitable coefficients homomorphism $\psi: I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi) \to L.$

Corollary

$cd(\pi) = \max\{n \mid \mathfrak{b}_{\pi}^{n} \neq 0\}.$

A. Dranishnikov

Universities of Florida

The cup product $\alpha \smile \beta \in H^{p+q}(X; A \otimes B)$ is defined for $\alpha \in H^p(X; A)$ and $\beta \in H^q(X; B)$ for any π -modules A and B where $\pi = \pi_1(X)$.

Universality Theorem

For every π -module *L*, every cohomology class $\alpha \in H^k(\pi; L)$ is the image of $(\mathfrak{b}_{\pi})^k$ under a suitable coefficients homomorphism $\psi: I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi) \to L.$

Corollary

$cd(\pi) = \max\{n \mid \mathfrak{b}_{\pi}^{n} \neq 0\}.$

A. Dranishnikov

Universities of Florida

The cup product $\alpha \smile \beta \in H^{p+q}(X; A \otimes B)$ is defined for $\alpha \in H^p(X; A)$ and $\beta \in H^q(X; B)$ for any π -modules A and B where $\pi = \pi_1(X)$.

Universality Theorem

For every π -module *L*, every cohomology class $\alpha \in H^k(\pi; L)$ is the image of $(\mathfrak{b}_{\pi})^k$ under a suitable coefficients homomorphism $\psi: I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi) \to L.$

Corollary

$$cd(\pi) = \max\{n \mid \mathfrak{b}_{\pi}^{n} \neq 0\}.$$

A. Dranishnikov

Universities of Florida

イロン イロン イヨン イヨ

Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.

Consider $f: M \to B\pi$ that induces iso on π_1 .

- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

A. Dranishnikov

Universities of Florida

- Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.
- Consider $f: M \to B\pi$ that induces iso on π_1 .
- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

- Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.
- Consider $f: M \to B\pi$ that induces iso on π_1 .
- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

- Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.
- Consider $f: M \to B\pi$ that induces iso on π_1 .
- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

- Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.
- Consider $f: M \to B\pi$ that induces iso on π_1 .
- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

• • • • • • • • • • • •

- Assume that $\pi = \pi_1(M)$ is not free. Then $cd(\pi) \ge 2$.
- Consider $f: M \to B\pi$ that induces iso on π_1 .
- Then $f^*: H^2(B\pi; L) \to H^2(M; L)$ is mono.
- Then $\mathfrak{b}_M^2 \neq 0$ for $\mathfrak{b}_M = f^*(\mathfrak{b}_\pi)$.
- By the (twisted) PD there is α such that $\mathfrak{b}_M^2 \smile \alpha \neq 0$.
- Then $\operatorname{cat}_{LS} M \ge 3$ by the cup-length inequality. Contradiction.

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\operatorname{LS}}M\leq \dim M/2+1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\operatorname{LS}}M\leq \dim M/2+1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\operatorname{LS}}M\leq \dim M/2+1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\operatorname{LS}}M\leq \dim M/2+1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\operatorname{LS}}M\leq \dim M/2+1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\mathrm{LS}} M \leq \dim M/2 + 1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\mathrm{LS}} M \leq \dim M/2 + 1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Whitehead's Theorem.

 $\operatorname{cat}_{LS} M \leq \dim M/2$ for simply connected M.

First proved by Grossman in 1940s

Rudyak's Conjcture

If $\pi_1(M)$ is free, then the upper bound for $\operatorname{cat}_{LS} M$ is of order dim M/2.

Theorem

If $\pi_1(M)$ is free, then $\operatorname{cat}_{\mathrm{LS}} M \leq \dim M/2 + 1$.

Example: $M = \mathbb{C}P^n \times S^1$, then $\operatorname{cat}_{LS} M = n + 1 = [\dim M/2 + 1]$.

A. Dranishnikov

Universities of Florida

Main Result

THEOREM

For every complex X,

$$\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cd}(\pi_1(X)) + \left\lceil \frac{\operatorname{hd}(X) - 1}{2} \right\rceil$$

Here $\lceil z \rceil$ is the smallest integer *n* with $z \le n$.

• hd(X) is the homotopical dimension of X.

A. Dranishnikov

Universities of Florida

メロト メヨト メヨト メ

Main Result

THEOREM.

For every complex X,

$$\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cd}(\pi_1(X)) + \left\lceil \frac{\operatorname{hd}(X) - 1}{2} \right\rceil$$

< □ > < □ > < □ > < □ > < □</p>

Universities of Florida

Here $\lceil z \rceil$ is the smallest integer *n* with $z \le n$. • hd(X) is the homotopical dimension of *X*.

A. Dranishnikov

Analogy with dimension

■ DEFINITION. For a space X, dimX ≤ n iff X admits an arbitrary small locally finite open cover V with OrdV ≤ n + 1.

■ PROPOSITION. For a space X, $\operatorname{cat}_{LS} X \leq n$ iff X admits an X-contractible locally finite open cover V with $OrdV \leq n + 1$.

A. Dranishnikov

Universities of Florida

- DEFINITION. For a space X, dimX ≤ n iff X admits an arbitrary small locally finite open cover V with OrdV ≤ n + 1.
- PROPOSITION. For a space X, $\operatorname{cat}_{LS} X \leq n$ iff X admits an X-contractible locally finite open cover \mathcal{V} with $Ord\mathcal{V} \leq n+1$.

Hurewicz Theorem for dimension. For $f : X \to Y$,

 $\dim X \leq \dim Y + \max\{\dim f^{-1}(y)\}.$

In particular, $\dim(X \times Y) \leq \dim X + \dim Y$.

For the product the cat_{LS} -analog holds true: $\operatorname{cat}_{LS}(X \times Y) \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y.$

What about Hurewicz for cat_{LS}? Does the inequality

 $\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cat}_{\operatorname{LS}} Y + \operatorname{cat}_{\operatorname{LS}} F$

hold for locally trivial bundles $X \xrightarrow{F} Y$?

A. Dranishnikov

Universities of Florida

A B >
 A
 B >
 A
 A
 B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Hurewicz Theorem for dimension. For $f : X \to Y$,

 $\dim X \leq \dim Y + \max\{\dim f^{-1}(y)\}.$

- In particular, $\dim(X \times Y) \leq \dim X + \dim Y$.
- For the product the cat_{LS} -analog holds true: $\operatorname{cat}_{LS}(X \times Y) \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y.$
- What about Hurewicz for cat_{LS}? Does the inequality

 $\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cat}_{\operatorname{LS}} Y + \operatorname{cat}_{\operatorname{LS}} F$

hold for locally trivial bundles $X \xrightarrow{F} Y$?

A. Dranishnikov

Universities of Florida

• Hurewicz Theorem for dimension. For $f : X \to Y$,

 $\dim X \leq \dim Y + \max\{\dim f^{-1}(y)\}.$

- In particular, $\dim(X \times Y) \leq \dim X + \dim Y$.
- For the product the cat_{LS} -analog holds true: $\operatorname{cat}_{LS}(X \times Y) \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y.$
- What about Hurewicz for cat_{LS}? Does the inequality

 $\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cat}_{\operatorname{LS}} Y + \operatorname{cat}_{\operatorname{LS}} F$

hold for locally trivial bundles $X \xrightarrow{F} Y$?

A. Dranishnikov

Universities of Florida

Image: A matrix

• Hurewicz Theorem for dimension. For $f : X \to Y$,

 $\dim X \leq \dim Y + \max\{\dim f^{-1}(y)\}.$

- In particular, $\dim(X \times Y) \leq \dim X + \dim Y$.
- For the product the cat_{LS} -analog holds true: $\operatorname{cat}_{LS}(X \times Y) \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y.$
- What about Hurewicz for catLS? Does the inequality

 $\operatorname{cat}_{\operatorname{LS}} X \leq \operatorname{cat}_{\operatorname{LS}} Y + \operatorname{cat}_{\operatorname{LS}} F$

Universities of Florida

hold for locally trivial bundles $X \xrightarrow{F} Y$?

A. Dranishnikov

The answer is 'No': $f : RP^5 \to \mathbb{C}P^2$ with fiber S^1 . Then $5 = \operatorname{cat}_{LS} \mathbb{R}P^5 > \operatorname{cat}_{LS} CP^2 + \operatorname{cat}_{LS} S^1 = 2 + 1$.

CONJECTURE

 $\operatorname{cat}_{\mathrm{LS}} X \leq \operatorname{dim} Y + \operatorname{cat}_{\mathrm{LS}} F$

for locally trivial bundles $X \xrightarrow{F} Y$.

A. Dranishnikov

Universities of Florida

(日)

Apply the formula from CONJECTURE to *f* in the Borel construction

$$M \longleftarrow \widetilde{M} \times_{\pi} E\pi \xrightarrow{f} B\pi.$$

where $\pi = \pi_1(M)$ and \widetilde{M} is the universal cover of M. Then

 $\operatorname{cat}_{\operatorname{LS}}(M \times_{\pi} E\pi) \leq \dim B\pi + \operatorname{cat}_{\operatorname{LS}} M.$

Note that $\operatorname{cat}_{LS}(\widetilde{M} \times_{\pi} E\pi) = \operatorname{cat}_{LS} M$. Also $\operatorname{cat}_{LS} \widetilde{M} \leq \dim M/2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{LS} M \leq cd(\pi) + \dim M/2$ if Eilenberg-Ganea holds true.

Image: A matched block of the second seco

Universities of Florida

Apply the formula from CONJECTURE to *f* in the Borel construction

$$M \longleftarrow \widetilde{M} \times_{\pi} E\pi \xrightarrow{f} B\pi$$

where $\pi = \pi_1(M)$ and \widetilde{M} is the universal cover of M. Then

 $\operatorname{cat}_{\operatorname{LS}}(\widetilde{M} \times_{\pi} E\pi) \leq \dim B\pi + \operatorname{cat}_{\operatorname{LS}} \widetilde{M}.$

Note that $\operatorname{cat}_{LS}(\widetilde{M} \times_{\pi} E\pi) = \operatorname{cat}_{LS} M$. Also $\operatorname{cat}_{LS} \widetilde{M} \leq \dim M/2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{LS} M \leq cd(\pi) + \dim M/2$ if Eilenberg-Ganea holds true.

Universities of Florida

Apply the formula from CONJECTURE to *f* in the Borel construction

$$M \longleftarrow \widetilde{M} \times_{\pi} E\pi \xrightarrow{f} B\pi$$

where $\pi = \pi_1(M)$ and \widetilde{M} is the universal cover of M. Then

 $\operatorname{cat}_{\operatorname{LS}}(\widetilde{M} \times_{\pi} E\pi) \leq \dim B\pi + \operatorname{cat}_{\operatorname{LS}} \widetilde{M}.$

Note that $\operatorname{cat}_{LS}(\widetilde{M} \times_{\pi} E\pi) = \operatorname{cat}_{LS} M$. Also $\operatorname{cat}_{LS} \widetilde{M} \leq \dim M/2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{LS} M \leq cd(\pi) + \dim M/2$ if Eilenberg-Ganea holds true.

Universities of Florida

Apply the formula from CONJECTURE to *f* in the Borel construction

$$M \longleftarrow \widetilde{M} \times_{\pi} E\pi \xrightarrow{f} B\pi$$

where $\pi = \pi_1(M)$ and \widetilde{M} is the universal cover of M. Then

 $\operatorname{cat}_{\operatorname{LS}}(\widetilde{M} \times_{\pi} E\pi) \leq \dim B\pi + \operatorname{cat}_{\operatorname{LS}} \widetilde{M}.$

Note that $\operatorname{cat}_{LS}(\widetilde{M} \times_{\pi} E\pi) = \operatorname{cat}_{LS} M$. Also $\operatorname{cat}_{LS} \widetilde{M} \leq \dim M/2$ by the Whitehead theorem. Thus, $\operatorname{cat}_{LS} M \leq cd(\pi) + \dim M/2$ if Eilenberg-Ganea holds true.

Universities of Florida

A. Dranishnikov

Hilbert's 13th problem

- Hilbert-13 (1900): "Prove that the equation of seventh degree x⁷ + ax³ + bx² + cx + 1 = 0 is not solvable by means of any continuous functions of only two variables."
 ⇔ Each of the implicit functions x = x(a, b, c) is not representable as a composition of functions of two variables.
- Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.
- Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

A. Dranishnikov

Hilbert's 13th problem

- Hilbert-13 (1900): "Prove that the equation of seventh degree x⁷ + ax³ + bx² + cx + 1 = 0 is not solvable by means of any continuous functions of only two variables."
 ⇔ Each of the implicit functions x = x(a, b, c) is not representable as a composition of functions of two variables.
- Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.
- Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

A. Dranishnikov

Universities of Florida

Hilbert's 13th problem

- Hilbert-13 (1900): "Prove that the equation of seventh degree x⁷ + ax³ + bx² + cx + 1 = 0 is not solvable by means of any continuous functions of only two variables."
 ⇔ Each of the implicit functions x = x(a, b, c) is not representable as a composition of functions of two variables.
- Kolmogorov's Superposition theorem (1957). Every function of n variables can be represented as a composition of functions of two variables.
- Ostrand (1960) Kolmogorov's result is of dimension-theoretical nature.

Ostrand: A cover $U = \{U_i\}$ is called an *n*-cover if every *n* elements of U form a cover.

Kolmogorov-Ostrand's Theorem. dim $X \le n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \ge n$ there is an (n + 1)-cover U_0, \ldots, U_m such that $U_i = \coprod U_i^{\alpha}$ where $\{U_i^{\alpha}\}_{i,\alpha} \prec \mathcal{V}$.

catLs-Analog of Kolmogorov-Ostrand Theorem.

 $\operatorname{cat}_{LS} X \leq n \Leftrightarrow$ for any $m \geq n$ there is an (n + 1)-cover U_0, \ldots, U_m by open X-contractible sets.

A. Dranishnikov

Universities of Florida

Ostrand: A cover $\mathcal{U} = \{U_i\}$ is called an *n*-cover if every *n* elements of \mathcal{U} form a cover. **Kolmogorov-Ostrand's Theorem.** dim $X \le n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \ge n$ there is an (n + 1)-cover U_0, \ldots, U_m such that $U_i = \prod U_i^{\alpha}$ where $\{U_i^{\alpha}\}_{i,\alpha} \prec \mathcal{V}$.

catLS-Analog of Kolmogorov-Ostrand Theorem.

 $\operatorname{cat}_{LS} X \leq n \Leftrightarrow$ for any $m \geq n$ there is an (n + 1)-cover U_0, \ldots, U_m by open X-contractible sets.

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

Ostrand: A cover $U = \{U_i\}$ is called an *n*-cover if every *n* elements of U form a cover.

Kolmogorov-Ostrand's Theorem. dim $X \le n \Leftrightarrow$ for any open cover \mathcal{V} and for every $m \ge n$ there is an (n + 1)-cover U_0, \ldots, U_m such that $U_i = \coprod U_i^{\alpha}$ where $\{U_i^{\alpha}\}_{i,\alpha} \prec \mathcal{V}$.

イロト イヨト イヨト イヨト

Universities of Florida

cat_{LS}-Analog of Kolmogorov-Ostrand Theorem.

 $\operatorname{cat}_{\operatorname{LS}} X \leq n \Leftrightarrow$ for any $m \geq n$ there is an (n+1)-cover U_0, \ldots, U_m by open X-contractible sets.

A. Dranishnikov

Proposition

A family \mathcal{U} that consists of m subsets of X is an (n+1)-cover of X if and only if $Ord_x\mathcal{U} \ge m - n$ for all $x \in X$.

Here $Ord_x \mathcal{U}$ is the number of elements of \mathcal{U} that contain x *Proof of* $\operatorname{cat}_{LS} X \times Y \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y$: Let $\operatorname{cat}_{LS} X = n$ and $\operatorname{cat}_{LS} Y = m$. Let $\mathcal{U} = \{U_0, \dots, U_{m+n+1}\}$ be an (n + 1)-cover of X and let $\mathcal{V} = \{V_0, \dots, V_{m+n+1}\}$ be an (m + 1)-cover of Y by X and Y-contractible sets. Claim: $\mathcal{W} = \{U_i \times V_i\}_{i=0}^{m+n+1}$ is a cover of $X \times Y$. Indeed, given (x, y), point x is covered by m + n + 1 - n sets. Then the corresponding $U_i \times V_i$ cover $x \times Y$.

イロン イヨン イヨン イヨン

Proposition

A family \mathcal{U} that consists of m subsets of X is an (n+1)-cover of X if and only if $Ord_x\mathcal{U} \ge m - n$ for all $x \in X$.

Here $Ord_x \mathcal{U}$ is the number of elements of \mathcal{U} that contain x *Proof of* $\operatorname{cat}_{LS} X \times Y \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y$: Let $\operatorname{cat}_{LS} X = n$ and $\operatorname{cat}_{LS} Y = m$. Let $\mathcal{U} = \{U_0, \dots, U_{m+n+1}\}$ be an (n + 1)-cover of X and let $\mathcal{V} = \{V_0, \dots, V_{m+n+1}\}$ be an (m + 1)-cover of Y by X and Y-contractible sets. Claim: $\mathcal{W} = \{U_i \times V_i\}_{i=0}^{m+n+1}$ is a cover of $X \times Y$. Indeed, given (x, y), point x is covered by m + n + 1 - n sets. Then the corresponding $U_i \times V_i$ cover $x \times Y$.

イロン イヨン イヨン イヨン

Proposition

A family \mathcal{U} that consists of m subsets of X is an (n+1)-cover of X if and only if $Ord_x\mathcal{U} \ge m - n$ for all $x \in X$.

Here $Ord_x\mathcal{U}$ is the number of elements of \mathcal{U} that contain x *Proof of* $\operatorname{cat}_{LS} X \times Y \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y$: Let $\operatorname{cat}_{LS} X = n$ and $\operatorname{cat}_{LS} Y = m$. Let $\mathcal{U} = \{U_0, \ldots, U_{m+n+1}\}$ be an (n+1)-cover of X and let $\mathcal{V} = \{V_0, \ldots, V_{m+n+1}\}$ be an (m+1)-cover of Y by X and Y-contractible sets. Claim: $\mathcal{W} = \{U_i \times V_i\}_{i=0}^{m+n+1}$ is a cover of $X \times Y$. Indeed, given (x, y), point x is covered by m + n + 1 - n sets. Then the corresponding $U_i \times V_i$ cover $x \times Y$.

イロト イヨト イヨト イヨト

Proposition

A family \mathcal{U} that consists of m subsets of X is an (n+1)-cover of X if and only if $Ord_x\mathcal{U} \ge m - n$ for all $x \in X$.

Here $Ord_x\mathcal{U}$ is the number of elements of \mathcal{U} that contain x *Proof of* $\operatorname{cat}_{LS} X \times Y \leq \operatorname{cat}_{LS} X + \operatorname{cat}_{LS} Y$: Let $\operatorname{cat}_{LS} X = n$ and $\operatorname{cat}_{LS} Y = m$. Let $\mathcal{U} = \{U_0, \ldots, U_{m+n+1}\}$ be an (n + 1)-cover of X and let $\mathcal{V} = \{V_0, \ldots, V_{m+n+1}\}$ be an (m + 1)-cover of Y by X and Y-contractible sets. Claim: $\mathcal{W} = \{U_i \times V_i\}_{i=0}^{m+n+1}$ is a cover of $X \times Y$. Indeed, given (x, y), point x is covered by m + n + 1 - n sets. Then the corresponding $U_i \times V_i$ cover $x \times Y$.

イロト イヨト イヨト イヨト

■ RECALL: Path fibration: $p : PX \to X$, PX is the path space on X (with fixed $x_0 \in X$), $p(\phi) = \phi(0)$. The fiber of p is the loop space ΩX .

X is contractible \Leftrightarrow there is a section $s : X \to PX$.

- The *n*-th Ganea fibration $p_n : G_n(X) \to X$ is the fiber-wise join of n + 1 copies of the path fibration. Thus, the fiber $p_n^{-1}(x_0) = *^{n+1}\Omega X$.
- **REMARK.** $G_0 = PX$, $p_0 = p$, and the fiber is ΩX .

A. Dranishnikov

• • • • • • • • • • • • •

■ RECALL: Path fibration: $p : PX \to X$, PX is the path space on X (with fixed $x_0 \in X$), $p(\phi) = \phi(0)$. The fiber of p is the loop space ΩX .

X is contractible \Leftrightarrow there is a section $s : X \to PX$.

- The *n*-th Ganea fibration $p_n : G_n(X) \to X$ is the fiber-wise join of n + 1 copies of the path fibration. Thus, the fiber $p_n^{-1}(x_0) = *^{n+1}\Omega X$.
- **REMARK.** $G_0 = PX$, $p_0 = p$, and the fiber is ΩX .

A. Dranishnikov

Universities of Florida

■ RECALL: Path fibration: $p : PX \to X$, PX is the path space on X (with fixed $x_0 \in X$), $p(\phi) = \phi(0)$. The fiber of p is the loop space ΩX .

X is contractible \Leftrightarrow there is a section $s : X \to PX$.

- The *n*-th Ganea fibration $p_n : G_n(X) \to X$ is the fiber-wise join of n + 1 copies of the path fibration. Thus, the fiber $p_n^{-1}(x_0) = *^{n+1}\Omega X$.
- **EXAMPLE :** REMARK. $G_0 = PX$, $p_0 = p$, and the fiber is ΩX .

• • • • • • • • • • • • •

A. Dranishnikov

Ganea-Schwarz Approach to catLS

THEOREM [Ganea-Schwarz]

$\operatorname{cat}_{\operatorname{LS}} X \leq n \Leftrightarrow p_n : G_n(X) \to X$ admits a section.

EXAMPLE (n = 0). $p_0 : G_0(X) = PX \rightarrow X$ admits a section if and only if X is contractible.

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

Ganea-Schwarz Approach to catLS

THEOREM [Ganea-Schwarz]

$\operatorname{cat}_{\operatorname{LS}} X \leq n \Leftrightarrow p_n : G_n(X) \to X$ admits a section.

EXAMPLE (n = 0). $p_0 : G_0(X) = PX \rightarrow X$ admits a section if and only if X is contractible.

A. Dranishnikov

Universities of Florida

イロト イヨト イヨト イヨト

Ganea-Schwarz Approach to cat_{LS}

THEOREM [Ganea-Schwarz]

 $\operatorname{cat}_{\operatorname{LS}} X \leq n \Leftrightarrow p_n : G_n(X) \to X$ admits a section.

EXAMPLE (n = 0). $p_0 : G_0(X) = PX \rightarrow X$ admits a section if and only if X is contractible.

A. Dranishnikov

Universities of Florida

(日)

THANK YOU!!!

▲□▶▲□▶▲□▶▲□▶ □ のへの

A. Dranishnikov

Universities of Florida