Essential manifolds and macroscopic dimension

A. Dranishnikov

Department of Mathematics University of Florida

Tallahassee, February 23, 2013

くロト (過) (目) (日)

ъ

Essential Manifolds

- An *n*-manifold *M* is called *essential* if the classifying map $f: M \to B\pi$ of its universal covering \widetilde{M} cannot be deformed to the (n-1)-skeleton.
- Otherwise it is called *inessential*.
- EXAMPLE: Torus *Tⁿ* is essential. Sphere *Sⁿ* is inessential.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Essential Manifolds

- An *n*-manifold *M* is called *essential* if the classifying map $f: M \to B\pi$ of its universal covering \widetilde{M} cannot be deformed to the (n-1)-skeleton.
- Otherwise it is called *inessential*.
- EXAMPLE: Torus *Tⁿ* is essential. Sphere *Sⁿ* is inessential.

ヘロト ヘアト ヘビト ヘビト

1

Essential Manifolds

- An *n*-manifold *M* is called *essential* if the classifying map $f: M \to B\pi$ of its universal covering \widetilde{M} cannot be deformed to the (n-1)-skeleton.
- Otherwise it is called *inessential*.
- EXAMPLE: Torus *Tⁿ* is essential. Sphere *Sⁿ* is inessential.

Gromov's observation

- Manifolds with positive scalar curvature (PSC) tend to be inessential.
- For example *Sⁿ* has PSC and it is inessential.
- But it's not true for $\mathbb{R}P^n$ which has PSC and is essential.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Gromov's observation

- Manifolds with positive scalar curvature (PSC) tend to be inessential.
- For example Sⁿ has PSC and it is inessential.
- But it's not true for $\mathbb{R}P^n$ which has PSC and is essential.

ヘロト ヘアト ヘビト ヘビト

1

Gromov's observation

- Manifolds with positive scalar curvature (PSC) tend to be inessential.
- For example S^n has PSC and it is inessential.
- But it's not true for $\mathbb{R}P^n$ which has PSC and is essential.

・ 同 ト ・ 臣 ト ・ 臣 ト …

æ

Go Macroscopic

 Gromov suggested that a proper formulation of his observation about PSC manifolds *M* should be in terms of universal covering *M*:

$$PSC \Rightarrow dim_{mc}\widetilde{M} < dimM$$

• DEFINITION. A manifold *M* is called *md-small* if

 $dim_{mc}\widetilde{M} < dimM.$

A. Dranishnikov On md-small manifolds

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Go Macroscopic

 Gromov suggested that a proper formulation of his observation about PSC manifolds *M* should be in terms of universal covering *M*:

$$PSC \Rightarrow dim_{mc}\widetilde{M} < dimM$$

• DEFINITION. A manifold M is called *md-small* if

 $dim_{mc}\widetilde{M} < dimM.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• For a metric space *X*, the *macroscopic dimension*

$dim_{mc}X \leq k$

iff there is a uniformly cobounded map $\phi : X \to N^k$ to a *k*-dimensional simplicial complex.

 A map φ : X → N is uniformly cobounded if there is b > 0 such that diam(φ⁻¹(y)) ≤ b for all y ∈ N.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• For a metric space *X*, the *macroscopic dimension*

$$dim_{mc}X \leq k$$

iff there is a uniformly cobounded map $\phi : X \to N^k$ to a *k*-dimensional simplicial complex.

 A map φ : X → N is uniformly cobounded if there is b > 0 such that diam(φ⁻¹(y)) ≤ b for all y ∈ N.

ヘロン 人間 とくほ とくほ とう

3

- $dim_{mc}X \leq dimX$
- $dim_{mc}X \leq asdimX$
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

- $dim_{mc}X \leq dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

- $dim_{mc}X \leq dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

ヘロン 人間 とくほ とくほ とう

3

- $dim_{mc}X \leq dimX$
- dim_{mc}X ≤ asdimX
- $dim_{mc}\mathbb{R}^n = n$ and
- generally, $dim_{mc}V^n = n$ for every uniformly contractible manifold with proper metric.

ヘロン 人間 とくほ とくほ とう

3

• If M^n is inessential, then M^n is md-small.

- The universal covering map p : M
 ⁿ → Mⁿ admits an extension to the Stone-Čech compactification p

 ρ : β(M
 ⁿ) → Mⁿ.
- PROPOSITION. M^n is md-small $\Leftrightarrow f \circ \overline{p} : \beta(\widetilde{M}^n) \to B\pi$ can be deformed to the (n-1)-skeleton.
- Here $f: M^n \to B\pi$ classifies the universal covering.

- If M^n is inessential, then M^n is md-small.
- The universal covering map p : M̃ⁿ → Mⁿ admits an extension to the Stone-Čech compactification p̄ : β(M̃ⁿ) → Mⁿ.
- PROPOSITION. M^n is md-small $\Leftrightarrow f \circ \overline{p} : \beta(\widetilde{M}^n) \to B\pi$ can be deformed to the (n-1)-skeleton.
- Here $f: M^n \to B\pi$ classifies the universal covering.

- If M^n is inessential, then M^n is md-small.
- The universal covering map p : M
 ⁿ → Mⁿ admits an extension to the Stone-Čech compactification *p* : β(M
 ⁿ) → Mⁿ.
- PROPOSITION. M^n is md-small $\Leftrightarrow f \circ \overline{p} : \beta(\widetilde{M^n}) \to B\pi$ can be deformed to the (n-1)-skeleton.
- Here $f: M^n \to B\pi$ classifies the universal covering.

- If M^n is inessential, then M^n is md-small.
- The universal covering map p : M̃ⁿ → Mⁿ admits an extension to the Stone-Čech compactification p̄ : β(M̃ⁿ) → Mⁿ.
- PROPOSITION. M^n is md-small $\Leftrightarrow f \circ \overline{p} : \beta(\widetilde{M}^n) \to B\pi$ can be deformed to the (n-1)-skeleton.
- Here $f: M^n \to B\pi$ classifies the universal covering.

ヘロン 人間 とくほ とくほ とう

Inessential manifolds Gromov Essentiality Conjecture

Homological formulation of essentiality

Theorem

TFAE

• An orientable *n*-manifold *M* is inessential

•
$$f_*([M]) = 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Rational essentiality

DEFINITION. An orientable *n*-manifold *M* is *rationally inessential* if f_{*}([*M*]) = 0 in H_{*}(Bπ; Q).

GROMOV's CONJECTURE:

Every md-small manifold is rationally inessential.

• The conjecture is from Gelfand-80 book [1996]

ヘロト ヘアト ヘビト ヘビト

1

Modification of *dim_{mc}*

dim_{MC}X ≤ *k* if there is a uniformly cobounded Lipschitz map *f* : *X* → *K* to a *k*-dimensional simplicial complex.

• $dim_{mc}X \leq dim_{MC}X \leq asdimX$ for all X.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Modification of dimmc

- dim_{MC}X ≤ k if there is a uniformly cobounded Lipschitz map f : X → K to a k-dimensional simplicial complex.
- $dim_{mc}X \leq dim_{MC}X \leq asdimX$ for all X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Main Result

THEOREM .

For all $n \ge 4$ there are rationally essential md-small *n*-manifolds.

THEOREM gives a counterexample to Gromov's Conjecture.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem.

Let $L = \pi_{n-1}(B\pi^{n-1})$ denote the corresponding π -module where $\pi = \pi_1(M^n)$. Let $\kappa \in H^n(B\pi; L)$ be the primary obstruction to the retraction of $B\pi$ to $B\pi^{n-1}$. TFAE

- *Mⁿ* is inessential;
- $f^*(\kappa) = 0;$
- $f^*(\beta^n) = 0$ where $\beta \in H^1(\pi, I(\pi))$ is the Berstein-Schwartz class.
- $f_*([M]) = 0.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem.

Let $L = \pi_{n-1}(B\pi^{n-1})$ denote the corresponding π -module where $\pi = \pi_1(M^n)$. Let $\kappa \in H^n(B\pi; L)$ be the primary obstruction to the retraction of $B\pi$ to $B\pi^{n-1}$. TFAE

- *Mⁿ* is inessential;
- f*(κ) = 0;
- $f^*(\beta^n) = 0$ where $\beta \in H^1(\pi, I(\pi))$ is the Berstein-Schwartz class.
- $f_*([M]) = 0.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem.

Let $L = \pi_{n-1}(B\pi^{n-1})$ denote the corresponding π -module where $\pi = \pi_1(M^n)$. Let $\kappa \in H^n(B\pi; L)$ be the primary obstruction to the retraction of $B\pi$ to $B\pi^{n-1}$. TFAE

- *Mⁿ* is inessential;
- f*(κ) = 0;
- *f*^{*}(βⁿ) = 0 where β ∈ H¹(π, I(π)) is the Berstein-Schwartz class.
- $f_*([M]) = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem.

Let $L = \pi_{n-1}(B\pi^{n-1})$ denote the corresponding π -module where $\pi = \pi_1(M^n)$. Let $\kappa \in H^n(B\pi; L)$ be the primary obstruction to the retraction of $B\pi$ to $B\pi^{n-1}$. TFAE

- *Mⁿ* is inessential;
- f*(κ) = 0;
- *f*^{*}(βⁿ) = 0 where β ∈ H¹(π, I(π)) is the Berstein-Schwartz class.

•
$$f_*([M]) = 0.$$

Equivariant vs almost equivariant

 Cohomology with local coefficients *Hⁿ*(*X*; *L*) are defined by means of equivariant cochains on *X̃*. A homomorphism ψ : *C_n*(*X̃*) → *L* is *equivariant* if the set

$$\{\gamma^{-1}\psi(\gamma e) \mid \gamma \in \pi\} \subset L$$

consists of one element $\psi(e)$ for every *n*-cell *e* in \widetilde{X} .

A homomorphism ψ : C_n(X) → L is called almost equivariant, if the set

$$\{\gamma^{-1}\psi(\gamma e) \mid \gamma \in \pi\} \subset L$$

is finite for every *n*-cell e in X.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Equivariant vs almost equivariant

 Cohomology with local coefficients *Hⁿ*(*X*; *L*) are defined by means of equivariant cochains on *X̃*. A homomorphism ψ : *C_n*(*X̃*) → *L* is *equivariant* if the set

$$\{\gamma^{-1}\psi(\gamma e) \mid \gamma \in \pi\} \subset L$$

consists of one element $\psi(e)$ for every *n*-cell *e* in \widetilde{X} .

A homomorphism ψ : C_n(X̃) → L is called almost equivariant, if the set

$$\{\gamma^{-1}\psi(\gamma e) \mid \gamma \in \pi\} \subset L$$

is finite for every *n*-cell *e* in \widetilde{X} .

Almost equivariant cohomology

Let Hom_{ae}(C_n(X̃), L) be the group of all almost equivariant homomorphisms from C_n(X̃) to L.

• The homology groups of corresponding cochain complex $H_{ae}^*(\widetilde{X}; L)$ are called the *almost equivariant cohomology* of \widetilde{X} with coefficients in a π -module *L*.

ヘロン 人間 とくほ とくほ とう

Almost equivariant cohomology

- Let Hom_{ae}(C_n(X̃), L) be the group of all almost equivariant homomorphisms from C_n(X̃) to L.
- The homology groups of corresponding cochain complex *H*^{*}_{ae}(X̃; *L*) are called the *almost equivariant cohomology* of *X̃* with coefficients in a π-module *L*.

く 同 と く ヨ と く ヨ と

Perturbation homomorphism

Since every equivariant homomorphism is almost equivariant, there is a natural transformation

$$pert_X^*: H^*(X; L) = H^*_{\pi}(\widetilde{X}; L) \to H^*_{ae}(\widetilde{X}; L)$$

called a *perturbation homomorphism* from the cohomology of X to the almost equivariant cohomology.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Primary obstruction to being md-small

Let *f* : *M* → *B*π be a classifying *M* map and let *o_f* ∈ *Hⁿ*(*M*; π_{n-1}(*B*π⁽ⁿ⁻¹⁾)) denote the primary obstruction to a deformation of *M* to the (*n* − 1)-skeleton.

• Thus, *o_f* is the primary obstruction to essentiality.

THEOREM

Let *M* be an *n*-manifold. Then the primary obstruction to $\dim_{MC}\widetilde{M} < n$ is $pert^*_M(o_f) \in H^n_{ae}(\widetilde{M}; \pi_{n-1}(B\pi^{(n-1)}))$.

イロト 不得 とくほ とくほ とうほ

Primary obstruction to being md-small

- Let *f* : *M* → *B*π be a classifying *M* map and let
 o_f ∈ *Hⁿ*(*M*; π_{n-1}(*B*π⁽ⁿ⁻¹⁾)) denote the primary obstruction
 to a deformation of *M* to the (*n* − 1)-skeleton.
- Thus, *o_f* is the primary obstruction to essentiality.

THEOREM

Let *M* be an *n*-manifold. Then the primary obstruction to $\dim_{MC}\widetilde{M} < n$ is $pert^*_{M}(o_f) \in H^n_{ae}(\widetilde{M}; \pi_{n-1}(B\pi^{(n-1)}))$.

イロト 不得 とくほ とくほ とうほ

Almost equivariant homology

- Let X be a CW complex with the universal cover \widetilde{X} and let L be a π -module. We call an infinite chain $\sum_{e \in E_n(\widetilde{X})} \lambda_e e$ almost equivariant if the set $\{\gamma^{-1}\lambda_{\gamma e} \mid \gamma \in \pi\} \subset L$ is finite for every cell e. We call the homology defined by the almost equivariant locally finite chain the almost equivariant locally finite homology $H_*^{\text{lf,ae}}(\widetilde{X}; L)$.
- Note that the complex of equivariant locally finite chains defines equivariant locally finite homology H^{If,π}_{*}(X; L). Then as in the case of cohomology for any complex K there is a perturbation homomorphism

$$pert_*^K : H_*(K; L) = H_*^{lf, \pi}(\widetilde{K}; L) \to H_*^{lf, ae}(\widetilde{K}; L).$$

・ロト ・回ト ・ヨト ・ヨト

Almost equivariant homology

- Let X be a CW complex with the universal cover \widetilde{X} and let L be a π -module. We call an infinite chain $\sum_{e \in E_n(\widetilde{X})} \lambda_e e$ almost equivariant if the set $\{\gamma^{-1}\lambda_{\gamma e} \mid \gamma \in \pi\} \subset L$ is finite for every cell e. We call the homology defined by the almost equivariant locally finite chain the almost equivariant locally finite homology $H_*^{\text{lf,ae}}(\widetilde{X}; L)$.
- Note that the complex of equivariant locally finite chains defines equivariant locally finite homology H^{If,π}_{*}(X; L). Then as in the case of cohomology for any complex K there is a perturbation homomorphism

$$pert_*^{\mathcal{K}}: H_*(\mathcal{K}; \mathcal{L}) = H_*^{lf, \pi}(\widetilde{\mathcal{K}}; \mathcal{L}) \to H_*^{lf, ae}(\widetilde{\mathcal{K}}; \mathcal{L}).$$

・ロト ・回 ト ・ヨト ・ヨト

Obstruction to being md-small

THEOREM

TFAE

- *Mⁿ* is md-small;
- $pert_M^*(o_f) = 0;$
- $pert_M^*(f^*\beta^n) = 0;$
- $pert_*^{\pi}(f_*([M])) = 0.$

A. Dranishnikov On md-small manifolds

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Obstruction to being md-small

THEOREM

TFAE

- *Mⁿ* is md-small;
- $pert_{M}^{*}(o_{f}) = 0;$
- $pert_M^*(f^*\beta^n) = 0;$
- $pert_*^{\pi}(f_*([M])) = 0.$

A. Dranishnikov On md-small manifolds

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Obstruction to being md-small

THEOREM

TFAE

- *Mⁿ* is md-small;
- $pert_{M}^{*}(o_{f}) = 0;$
- $pert_M^*(f^*\beta^n) = 0;$
- $pert_*^{\pi}(f_*([M])) = 0.$

A. Dranishnikov On md-small manifolds

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Obstruction to being md-small

THEOREM

TFAE

- *Mⁿ* is md-small;
- $pert_{M}^{*}(o_{f}) = 0;$
- $pert_M^*(f^*\beta^n) = 0;$
- $pert_*^{\pi}(f_*([M])) = 0.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

md-small homology

We define the group of *small macroscopic dimension classes* as $H_n^{sm}(\pi) = ker(pert_*^{\pi}) \subset H_n(\pi)$.

THEOREM

For a closed oriented *n*-manifold *M* the following are equivalent: 1. *M* is md-small (i.e. $dim_{MC}\widetilde{M} < n$); 2. $f_*([M]) \in H_n^{sm}(\pi)$ where $f : M \to B\pi$ is the map classifying the universal covering \widetilde{M} of *M*.

This theorem is in spirit of Brunnbauer-Hanke results on some large (in Gromov's sense) classes of manifolds.

ヘロン 人間 とくほど くほとう

md-small homology

We define the group of *small macroscopic dimension classes* as $H_n^{sm}(\pi) = ker(pert_*^{\pi}) \subset H_n(\pi)$.

THEOREM.

For a closed oriented *n*-manifold *M* the following are equivalent: 1. *M* is md-small (i.e. $dim_{MC}\widetilde{M} < n$); 2. $f_*([M]) \in H_n^{sm}(\pi)$ where $f : M \to B\pi$ is the map classifying the universal covering \widetilde{M} of *M*.

This theorem is in spirit of Brunnbauer-Hanke results on some large (in Gromov's sense) classes of manifolds.

・ロト ・ 理 ト ・ ヨ ト ・

md-small homology

We define the group of *small macroscopic dimension classes* as $H_n^{sm}(\pi) = ker(pert_*^{\pi}) \subset H_n(\pi)$.

THEOREM.

For a closed oriented *n*-manifold *M* the following are equivalent: 1. *M* is md-small (i.e. $dim_{MC}\widetilde{M} < n$); 2. $f_*([M]) \in H_n^{sm}(\pi)$ where $f : M \to B\pi$ is the map classifying the universal covering \widetilde{M} of *M*.

This theorem is in spirit of Brunnbauer-Hanke results on some large (in Gromov's sense) classes of manifolds.

ヘロン 人間 とくほ とくほ とう

Uniformly finite homology

When $L = \mathbb{Z}$ (or \mathbb{R}) is a trivial π -module, the almost equivariant locally finite homology groups $H^{If,ae}_*(\widetilde{K};L)$ coincide with the *uniformly finite homology* $H^{uf}_*(\widetilde{K};\mathbb{Z})$ defined by J. Block and S. Weinberger

・ 戸 ・ ・ 三 ・ ・

Uniformly finite homology

Block-Weinberger Theorem

For a finite complex K, $H_0^{uf}(\widetilde{K}; \mathbb{Z}) = 0$ if and only if $\pi_1(K)$ is not amenable.

Counter-Example to Gromov's Conjecture

There is a closed rationally essential *n*-manifold M, $n \ge 5$, with the fundamental group $\pi_1(M) = \mathbb{Z}^n \times F_2$ such that $\dim_{MC} \widetilde{M} < n$.

イロト 不得 とくほ とくほ とうほ

Uniformly finite homology

Block-Weinberger Theorem

For a finite complex K, $H_0^{uf}(\widetilde{K}; \mathbb{Z}) = 0$ if and only if $\pi_1(K)$ is not amenable.

Counter-Example to Gromov's Conjecture

There is a closed rationally essential *n*-manifold *M*, $n \ge 5$, with the fundamental group $\pi_1(M) = \mathbb{Z}^n \times F_2$ such that $\dim_{MC} \widetilde{M} < n$.

イロト 不得 とくほ とくほ とうほ

Proof

We note that $B\pi = T^n \times (S^1 \vee S^1)$ for $\pi = \pi_1(M)$ where T^n is the *n*-torus. Consider the natural inclusion of T^n into $B\pi$. Then the image of the fundamental class $[T^n]$ in $H_n(B\pi)$ is $[T^n] \otimes 1$ where $1 \in H_0(S^1 \vee S^1)$. By Remark and Block-Weinberger theorem, $pert_*^{F_2}(1) = 0$. Therefore,

$$pert^{\pi}_{*}([T^{n}]\otimes 1) = pert^{\mathbb{Z}^{n}}_{*}([T^{n}])\otimes pert^{F_{2}}_{*}(1) = 0$$

By a surgery in dimension 1 and 2 performed on the torus T^n we can obtain a manifold M together with a map $f: M \to B\pi$ inducing isomorphism of the fundamental groups and such that $f([M]) = [T^n] \otimes 1$. Then dim_{*MC*} $\widetilde{M} < n$.

ヘロン ヘアン ヘビン ヘビン