Some invariants on coincidences of fiberwise maps

Alice Kimie Miwa Libardi
IGCE, São Paulo State University (Unesp) - Brazil

FSU Topology Week
February, 2013

In this talk I will present some results of Coincidences of fiberwise maps between sphere bundles over the circle, joint work with D. Gonçalves, U. Koschorke and O. Neto.

Let $A_{M}: F_{M} \rightarrow F_{M}$ and $A_{N}: F_{N} \rightarrow F_{N}$ be self diffeomorphisms of smooth, closed, connected manifolds F_{M} and F_{N} (of dimensions $m-1$ and $n-1$, resp.).

Consider the fiberwise maps

Question I

Can the coincidence locus

$$
C\left(f_{1}, f_{2}\right)=\left\{x \in M, f_{1}(x)=f_{2}(x)\right\}
$$

be made empty by suitable fiberwise homotopies of f_{1} and f_{2} ?
If this can be done, we say that $\left(f_{1}, f_{2}\right)$ is loose over S^{1}.

If Question I has no positive answer, we want to measure somehow to what extend the pair $\left(f_{1}, f_{2}\right)$ fails to be loose over S^{1}.

This can be done, via the minimum number of coincidences path-components

$$
M C C_{S^{1}}\left(f_{1}, f_{2}\right)=\min \left\{\sharp \pi_{0}\left(C\left(f_{1}^{\prime}, f_{2}^{\prime}\right)\right), f_{1}^{\prime} \sim_{S^{1}} f_{1}, f_{2}^{\prime} \sim_{S^{1}} f_{2}\right\} .
$$

Clearly, $\operatorname{MCC}_{S^{1}}\left(f_{1}, f_{2}\right)=0 \Leftrightarrow\left(f_{1}, f_{2}\right)$ is loose.

Question II

$\operatorname{MCC}_{S^{1}}\left(f_{1}, f_{2}\right)=N_{S^{1}}\left(f_{1}, f_{2}\right)$, for all fiberwise maps $f_{1}, f_{2}: M \rightarrow N$?

Question III

Can we classify the fiberwise homotopy classes of fiberwise maps, or at least, get some bounds for their number?

Let X be a topological space, $\phi=\phi^{+}-\phi^{-}$be a virtual bundle over X. An element of the nth normal bordism group of X, with coefficient ϕ, denoted by $\Omega_{n}(X ; \phi)$ is a class $\left[\left(K^{n}, g, \bar{g}\right)\right]$ where [K^{n}, g] is a bordism class (in the Conner-Floyd sense) and \bar{g} is a stable vector bundle isomorphism:

$$
\bar{g}: T K \oplus g^{*}\left(\phi^{+}\right) \rightarrow g^{*}\left(\phi^{-}\right)
$$

General case

Consider $f_{1}, f_{2}: M \rightarrow N$ fiberwise maps over B.

$$
\left(f_{1}, f_{2}\right): M \rightarrow N \times_{B} N
$$

and Δ the diagonal of $N \times N$.
After small deformation of f_{1} and f_{2} over $B,\left(f_{1}, f_{2}\right)$ is transversal to Δ and the coincidence locus $C=C\left(f_{1}, f_{2}\right)=\left(f_{1}, f_{2}\right)^{-1}(\Delta)$. So C is an $(m-n+b)$ dimensional submanifold of M with a vector bundle isomorphism

$$
\bar{g}_{B}: \nu(C, M)=\left.\left(f_{1}, f_{2}\right)\right|_{C} ^{*}\left(\nu\left(\Delta, N \times_{B} N\right)\right)=\left.f_{1}^{*}\left(T F\left(p_{N}\right)\right)\right|_{C} .
$$

Here $T F\left(p_{N}\right)$ denotes the tangent bundle along the fibers of p_{N}.

Also consider

where
$E_{B}\left(f_{1}, f_{2}\right):=\left\{(x, \theta) \in M \times N^{\prime}, p_{N} \theta \equiv p_{M}(x), \theta(0)=f_{1}(x), \theta(1)=f_{2}(x)\right\}$
and $\tilde{g}_{B}(x)=\left(x\right.$, cte path at $\left.f_{1}(x)=f_{2}(x)\right)$.
Then we define $\omega_{B}\left(f_{1}, f_{2}\right)=\left[\left(C, \tilde{g}_{B}, \bar{g}_{B}^{\sharp}\right)\right] \in \Omega_{m-n+b}\left(E_{B}\left(f_{1}, f_{2}\right) ; \varphi\right)$ where

$$
\bar{g}_{B}^{\sharp}:\left.T C \oplus f_{1}^{*}\left(T F\left(p_{N}\right)\right)\right|_{C} \rightarrow T M
$$

The class $\omega_{B}\left(f_{1}, f_{2}\right)$ is the strongest obstruction for coincidences of fiberwise maps, but it is difficult to calculate.
There is a weaker invariant, that is, the stabilized version

$$
\begin{aligned}
\tilde{\omega}_{B}\left(f_{1}, f_{2}\right) & =\left[\left(C, \tilde{g}_{B}, \bar{g}_{B}\right)\right] \in \Omega_{m-n+b}\left(E_{B}\left(f_{1}, f_{2}\right) ; \varphi\right) \\
& =\bigoplus_{A \in \pi_{0}\left(E_{B}\left(f_{1}, f_{2}\right)\right)} \Omega_{m-n+b}\left(A,\left.\varphi\right|_{A}\right)
\end{aligned}
$$

where

$$
\bar{g}_{B}: T C \oplus \tilde{g}_{B}^{*}\left(f_{1}^{*}\left(T F\left(p_{N}\right)\right) \oplus \epsilon^{k} \simeq \tilde{g}_{B}^{*}(T M) \oplus \epsilon^{k}, k \gg 0\right.
$$

and $\varphi:=p r^{*}\left(f_{1}^{*}\left(T F\left(p_{N}\right)\right)-T M\right)$.
A path component A of $E_{B}\left(f_{1}, f_{2}\right)$ is called essential if the correspondent direct summand of $\tilde{\omega}_{B}\left(f_{1}, f_{2}\right)$ is nontrivial. The Nielsen coincidence number $N\left(f_{1}, f_{2}\right)$ is the number of essential path components $A \in \pi_{0}\left(E_{B}\left(f_{1}, f_{2}\right)\right)$.

Theorem [K,G]: Assume that $m<2(n-b)-2$. Then a pair $\left(f_{1}, f_{2}\right)$ is loose over B if and only if $\tilde{\omega}_{B}\left(f_{1}, f_{2}\right)=0$.

In our case $B=S^{1},\left(f_{1}, f_{2}\right): M \rightarrow N \times{ }_{S^{1}} N, C=\left(f_{1}, f_{2}\right)^{-1}(\Delta)$ is an $(m-n+1)$ submanifold of M and the invariant $\omega_{S^{1}}\left(f_{1}, f_{2}\right) \in \Omega_{m-n+1}(M ; \varphi)$, where φ is trivial or $\varphi=p_{M}^{*}(\lambda)$, where λ denotes the nontrivial line bundle over S^{1}.

From now on we consider A_{M} and A_{N} orthogonal self diffeomorphisms and we assume A_{M} of the form

$$
A_{M}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{m-1}, \pm x_{m}\right)
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ and similarly $A_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Both gluing maps leave the point $*=(1,0, \ldots, 0)$ fixed. Thus we get zero-sections $s_{O M}$ in M and $s_{O N}$ in N described by $[t] \in S^{1} \mapsto[t, *]$ as well as the fiberwise maps $f_{0}=s_{0 N} \circ p_{M}: M \rightarrow N, f_{0}(x)=*$ and $a \circ f_{0}: M \rightarrow N$, $\left(a \circ f_{0}\right)(x)=a(*)$, where a denotes the antipodal map.

Let us consider

$$
\mathcal{F}:=\{f: M \rightarrow N \text { fiberwise maps }\} / \text { fiberwise homotopy. }
$$

The second invariant is defined as

$$
\begin{aligned}
\operatorname{deg}_{S^{1}}: \mathcal{F} & \rightarrow \Omega_{m-n+1}(M ; \varphi) \\
\operatorname{deg}_{S^{1}}([f]) & =\omega_{S^{1}}\left(f, a \circ f_{0}\right)
\end{aligned}
$$

For $m, n \geq 2$ the group $\Omega_{m-n+1}(M ; \varphi)$ fits into a long exact Gysin sequence
$\cdots \longrightarrow \Pi_{i}^{S} \oplus \Pi_{i-m+1}^{S} \xrightarrow{\mathrm{incl}_{*}}>\Omega_{i}(M ; \varphi) \xrightarrow{\pitchfork} \Pi_{i-1}^{S} \oplus \Pi_{i-m}^{S} \longrightarrow \cdots$
where Π_{i}^{S} is the stable homotopy groups of spheres.
Given an element of $\Omega_{i}(M ; \varphi)$ we may represent it by a singular manifold (C, c), $c: C \rightarrow M, c$ smooth and transverse to the fiber $F_{M} \subset M$.
Then the intersection manifold $c^{-1}\left(F_{M}\right)$ together with the stable framing \bar{c} induced from $c \mid: c^{-1}\left(F_{M}\right) \rightarrow F_{M}$, represents
$\pitchfork([C, c, \bar{c}])$ where \bar{c} is a vector bundle isomorphism relating the stable normal bundle of C to $c^{*}(\varphi)$.
In particular, $\forall\left[f_{1}\right],\left[f_{2}\right] \in \mathcal{F}$,

$$
\pitchfork\left(\omega_{S^{1}}\left(f_{1}, f_{2}\right)\right)=\omega\left(f_{1}\left|, f_{2}\right|\right)
$$

where $f_{1} \mid$ and $f_{2} \mid: F_{M} \rightarrow F_{N}$.

If $n=2$ we have a weaker invariant which in some cases it is still a complete looseness obstruction $\mu\left(\omega_{S^{1}}\left(f_{1}, f_{2}\right)\right)$ where

$$
\mu: \Omega_{m-1}(M ; \varphi) \rightarrow H_{m-1}\left(M ; \widetilde{\mathbb{Z}}_{\varphi}\right)
$$

is the generalized Hurewicz homomorphism.

Theorem: For $n \geq 3$, the following conditions are equivalent:

1. $\forall\left[f_{1}\right],\left[f_{2}\right] \in \mathcal{F}$ we have

$$
\omega_{S^{1}}\left(f_{1}, f_{2}\right)=0 \Leftrightarrow\left(f_{1}, f_{2}\right) \text { is loose over } S^{1}
$$

2. $\operatorname{MCC}_{S^{1}}\left(f_{1}, f_{2}\right)=N_{S^{1}}\left(f_{1}, f_{2}\right), \forall\left[f_{1}\right],\left[f_{2}\right] \in \mathcal{F}$
3. The map $\operatorname{deg}_{S^{1}}: \mathcal{F} \rightarrow \Omega_{m-n+1}(M ; \varphi)$ is injective

The proof uses the following diagram, $n \geq 3$

Here the lower horizontal sequence is exact and comes from Gysin and Pontriagin-Thom isomorphism.
E_{1}^{∞} and E_{2}^{∞} denote stable suspension homomorphism.
q is the restriction to the fiber $F_{M}=S^{m-1}$ over $[1]=[0] \in S^{1}$.
$d_{M}=\operatorname{det} A_{M} ; \quad d_{N}=\operatorname{det} A_{N} ; \quad d=d_{M} d_{N}$.
$\delta_{i}: \pi_{i}\left(S^{n-1}\right) \rightarrow \pi_{i}\left(S^{n-1}\right), \delta_{i}([u])=d_{M}\left(A_{N}\right)_{*}([u])$.

$$
m=n=3, d_{M}=d_{N}=1, \delta_{3}=\delta_{2}=i d, d=1
$$

$$
E_{1}^{\infty} \text { is an isomorphism and } \operatorname{deg}_{S^{1}} \text { is onto. }
$$

$n \geq 3$. If E_{1}^{∞} and E_{2}^{∞} are injective (or surjective, resp.) then $\operatorname{deg}_{S^{1}}$ is also injective (or surjective).
$\operatorname{deg}_{S^{1}}$ is an isomorphism in the stable dimension range $m \geq 2 n-4$.

圊 D. L. Gonçalves and U. Koschorke, Nielsen coincidence theory of fibre-preserving maps and Dold's fixed point index, Top. Math. in Nonlinear Analysis, 33 (2009), 85-103.
D. Gonçalves, U. Koschorke, A. Libardi and O. Neto, Coincidences of fiberwise maps between sphere bundles over the circle, (to appear in Proc. Edinburgh Math. Soc.)

