Bourgin-Yang Theorem for G-equivariant maps

Edivaldo Lopes dos Santos - UFSCar
Joint work with
W. Marzantowicz - AMU - Poznań-Poland & D. de Mattos
- ICMC - USP

Florida State University
Tallahassee
February 21, 2013
INTRODUCTION

The classical Borsuk-Ulam theorem says that: \(\forall \) continuous map \(f \) from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),

\[\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x). \]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \rightarrow \mathbb{R}^n \) is a continuous map and

\[A(f) = \{ x \in S(\mathbb{R}^m) \mid f(x) = f(-x) \}, \]

we can define an equivariant map

\[h : S(\mathbb{R}^m) \rightarrow \mathbb{R}^n \]

\[x \mapsto f(x) - f(-x) \]

for which

\[Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0 \} = A(f). \]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
The classical Borsuk-Ulam theorem says that: \(\forall \) continuous map \(f \) from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),
\[\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x). \]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \to \mathbb{R}^n \) is a continuous map and
\[A(f) = \{ x \in S(\mathbb{R}^m) \mid f(x) = f(-x) \}, \]
we can define an equivariant map
\[
 h : S(\mathbb{R}^m) \to \mathbb{R}^n \\
 x \mapsto f(x) - f(-x)
\]
for which
\[
 Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f).
\]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
INTRODUCTION

The classical Borsuk-Ulam theorem says that: \(\forall \) continuous map \(f \) from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),
\[\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x). \]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \to \mathbb{R}^n \) is a continuous map and
\[A(f) = \{ x \in S(\mathbb{R}^m) \mid f(x) = f(-x) \}, \]
we can define an equivariant map
\[h : S(\mathbb{R}^m) \to \mathbb{R}^n \]
\[x \mapsto f(x) - f(-x) \]
for which
\[Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f). \]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
INTRODUCTION

The classical Borsuk-Ulam theorem says that: ∀ continuous map \(f \) from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),
\[\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x). \]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \to \mathbb{R}^n \) is a continuous map and
\[A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \}, \]
we can define an equivariant map
\[
\begin{align*}
 h : & \quad S(\mathbb{R}^m) \to \mathbb{R}^n \\
 x & \mapsto f(x) - f(-x)
\end{align*}
\]
for which
\[Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) | h(x) = f(x) - f(-x) = 0, \} = A(f). \]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
I N T R O D U C T I O N

The classical Borsuk-Ulam theorem says that: ∀ continuous map \(f \)
from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),
\[\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x). \]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \to \mathbb{R}^n \) is a continuous map
and
\[A(f) = \{ x \in S(\mathbb{R}^m) \mid f(x) = f(-x) \}, \]
we can define an equivariant map
\[h : S(\mathbb{R}^m) \to \mathbb{R}^n \]
\[x \mapsto f(x) - f(-x) \]
for which
\[Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f). \]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
INTRODUCTION

The classical Borsuk-Ulam theorem says that: \(\forall \) continuous map \(f \) from the sphere \(S(\mathbb{R}^{m+1}) \) into \(\mathbb{R}^m \),
\[
\exists x \in S(\mathbb{R}^{m+1}) \text{ such that } f(x) = f(-x).
\]

Remark. Let us observe that if \(f : S(\mathbb{R}^m) \rightarrow \mathbb{R}^n \) is a continuous map and
\[
A(f) = \{ x \in S(\mathbb{R}^m) \mid f(x) = f(-x) \},
\]
we can define an equivariant map
\[
h : S(\mathbb{R}^m) \rightarrow \mathbb{R}^n
\]
\[
x \mapsto f(x) - f(-x)
\]
for which
\[
Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f).
\]

Then, to give an estimate for a covering dimension of \(A(f) \), it is enough to give an estimate for a covering dimension of \(Z_h \).
Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let \(f : S(\mathbb{R}^m) \to \mathbb{R}^n \) be a equivariant map. Then,

\[
\dim Z_f \geq m - n - 1
\]

To prove this theorem it is enough to show that \(H^{m-n-1}(Z_f/Z_2) \neq 0 \), which implies \(\dim Z_f \geq m - n - 1 \).

The situation for \(Z_p \), \(p \) prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]
Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \rightarrow \mathbb{R}^n$ be a equivariant map. Then,

$$\dim Z_f \geq m - n - 1$$

To prove this theorem it is enough to show that

$$H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0,$$

which implies $\dim Z_f \geq m - n - 1$.

The situation for \mathbb{Z}_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]
Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,
\[\dim Z_f \geq m - n - 1. \]

- To prove this theorem it is enough to show that $H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0$, which implies $\dim Z_f \geq m - n - 1$.

- The situation for \mathbb{Z}_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]
Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

$$\dim Z_f \geq m - n - 1$$

To prove this theorem it is enough to show that $H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0$, which implies $\dim Z_f \geq m - n - 1$.

The situation for \mathbb{Z}_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]
Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

$$\text{dim } Z_f \geq m - n - 1$$

To prove this theorem it is enough to show that $H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0$, which implies $\text{dim } Z_f \geq m - n - 1$.

The situation for \mathbb{Z}_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]
We study the B-Y problem for G, as follows.

- $G = \mathbb{Z}_{p^k}, p$ prime (equivariant K-theory).

- $G = (\mathbb{Z}_p)^k$ be the p-torus of rank k, p a prime, or $G = T^k = (S^1)^k$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

We study the B-Y problem for G, as follows.

- $G = \mathbb{Z}_p^k$, p prime (equivariant K-theory).

- $G = (\mathbb{Z}_p)^k$ be the p-torus of rank k, p a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

Let V, W be two orthogonal representations of G such that $V^G = W^G = \{0\}$ (fixed points of G).

If p is odd, V and W admit the complex structure. Put $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ and the same for $d(W)$.
We study the B-Y problem for G, as follows.

- $G = \mathbb{Z}_{p^k}$, p prime (equivariant K-theory).

- $G = (\mathbb{Z}_p)^k$ be the p-torus of rank k, p a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

- Let V, W be two orthogonal representations of G such that $V^G = W^G = \{0\}$ (fixed points of G).

- If p is odd, V and W admit the complex structure. Put $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ and the same for $d(W)$.
We study the B-Y problem for G, as follows.

- $G = \mathbb{Z}_p^k$, p prime (equivariant K-theory).

- $G = (\mathbb{Z}_p)^k$ be the p-torus of rank k, p a prime, or $G = T^k = (S^1)^k$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

- Let V, W be two orthogonal representations of G such that $V^G = W^G = \{0\}$ (fixed points of G).

- If p is odd, V and W admit the complex structure. Put $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ and the same for $d(W)$.
Our main result is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \to W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < d(V)/p^{k-1},$$

then $\phi(V, W) \geq 0$ (e.g., it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Our main results is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \to W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < d(V)/p^{k-1},$$

then $\phi(V, W) \geq 0$ (e.g. it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Our main results is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \to W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < d(V)/p^{k-1},$$

then $\phi(V, W) \geq 0$ (e.g it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Our main results is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \to W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < \frac{d(V)}{p^{k-1}},$$

then $\phi(V, W) \geq 0$ (e.g. it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Our main results is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \rightarrow W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < d(V)/p^{k-1},$$

then $\phi(V, W) \geq 0$ (e.g. it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Our main results is the following

Theorem. Let V, W be two orthogonal representations of \mathbb{Z}_{p^k}. Let $f : S(V) \to W$ be a G-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$d(W) < d(V)/p^{k-1},$$

then $\phi(V, W) \geq 0$ (e.g it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).
Remark
Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^2 there exist two complex representations V, W, $\dim V > \dim W$, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$d(W) < d(V)/p^{k-1},$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.
Remark
Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^2 there exist two complex representations V, W, $\dim V > \dim W$, and an equivariant map $f : S(V) \to S(W)$.

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$d(W) < d(V)/p^{k-1},$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.
Remark
Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^2 there exist two complex representations V, W, $\dim V > \dim W$, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$d(W) < \frac{d(V)}{p^{k-1}},$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.
Remark
Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^2 there exist two complex representations V, W, $\dim V > \dim W$, and an equivariant map $f : S(V) \to S(W)$.

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$d(W) < \frac{d(V)}{p^{k-1}},$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.
Let \(A \) be a set of \(G \)-spaces (usually, it is a family of orbits). Let \(X \) be a \(G \)-spaces.

Definition

The \((A, K^*_G)\) – cup length of \(X \) is the **smallest** \(r \) such that there exist \(A_1, A_2, \ldots, A_r \in A \) and \(G \)-maps

\[\beta_i : A_i \to X, \ 1 \leq i \leq r, \]

with the following property:

\(\forall \gamma \in K^*_G(X) \) and \(\forall \omega_i \in \ker \beta_i^* \),

\[\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X). \]
Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits).
Let X be a G-spaces.

Definition
The (\mathcal{A}, K^*_G) – cup length of X is the smallest r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and G-maps

$$\beta_i : A_i \to X, \ 1 \leq i \leq r,$$

with the following property:
$\forall \gamma \in K^*_G(X)$ and $\forall \omega_i \in \ker \beta^*_i$,

$$\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$$

\Rightarrow If there is not such r, (\mathcal{A}, K^*_G) – cup length of X is ∞.
Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition
The (\mathcal{A}, K^*_G)–cup length of X is the smallest r such that there exist $A_1, A_2, \ldots , A_r \in \mathcal{A}$ and G-maps

$$\beta_i : A_i \to X, \ 1 \leq i \leq r,$$

with the following property:

$\forall \gamma \in K^*_G(X)$ and $\forall \omega_i \in \ker \beta_i^*$,

$$\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$$

If there is not such r, (\mathcal{A}, K^*_G)–cup length of X is ∞.
Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition

The (\mathcal{A}, K^*_G) – cup length of X is the **smallest** r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and G-maps $\beta_i : A_i \to X$, $1 \leq i \leq r$,

with the following property:

$\forall \gamma \in K^*_G(X)$ and $\forall \omega_i \in \ker \beta^*_i$,

$$\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$$

If there is not such r, (\mathcal{A}, K^*_G) – cup length of X is ∞.
Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition
The (\mathcal{A}, K^*_G) – cup length of X is the *smallest* r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and G-maps

$$\beta_i : A_i \to X, \ 1 \leq i \leq r,$$

with the following property:

$\forall \gamma \in K^*_G(X)$ and $\forall \omega_i \in \ker \beta_i^*$,

$$\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$$

- If there is not such r, (\mathcal{A}, K^*_G) – cup length of X is ∞.
We can consider the notion of $(A, K^*_G, I) – length index$ defined in a little bit different way.

For the equivariant cohomology theory K^*_G and a G-space X, the cohomology

$$K^*_G(X)$$

is a R-module over the coefficient ring $R =: K^*_G(pt)$ via the natural G-map $p_X : X \to pt$.

We write

$$\omega \cdot \gamma = p^*_X(\omega) \cup \gamma, \text{ and } \omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2,$$

for $\gamma \in K^*_G(X)$ and $\omega_1, \omega_2 \in R$.
We can consider the notion of \((A, \mathcal{K}^*, I)\) – length index defined in a little bit different way.

For the equivariant cohomology theory \(\mathcal{K}^*_G\) and a \(G\)-space \(X\), the cohomology \(\mathcal{K}^*_G(X)\) is a \(R\)-module over the coefficient ring \(R =: \mathcal{K}^*_G(pt)\) via the natural \(G\)-map \(p_X : X \to pt\).

We write
\[
\omega \cdot \gamma = p^*_X(\omega) \cup \gamma, \quad \text{and} \quad \omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2,
\]
for \(\gamma \in \mathcal{K}^*_G(X)\) and \(\omega_1, \omega_2 \in R\).
We can consider the notion of \((\mathcal{A}, K^*_G, I)\) – *length index* defined in a little bit different way.

For the equivariant cohomology theory \(K^*_G\) and a \(G\)-space \(X\), the cohomology

\[K^*_G(X) \]

is a \(R\)-module over the coefficient ring \(R =: K^*_G(pt)\) via the natural \(G\)-map \(p_X : X \to pt\).

We write

\[\omega \cdot \gamma = p^*_X(\omega) \cup \gamma, \text{ and } \omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2, \]

for \(\gamma \in K^*_G(X)\) and \(\omega_1, \omega_2 \in R\).
We can consider the notion of \((A, K^*_G, I)\) – *length index* defined in a little bit different way.

For the equivariant cohomology theory \(K^*_G\) and a \(G\)-space \(X\), the cohomology \(K^*_G(X)\) is a \(R\)-module over the coefficient ring \(R =: K^*_G(\text{pt})\) via the natural \(G\)-map \(p_X : X \to \text{pt}\).

We write

\[\omega \cdot \gamma = p_X^* (\omega) \cup \gamma, \text{ and } \omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2, \]

for \(\gamma \in K^*_G(X)\) and \(\omega_1, \omega_2 \in R\).
Taking the ideal $I := K_G(pt) = R(G) \subset K_G^*(pt) = R$

Definition.
The (\mathcal{A}, K_G^*, I) – length index of X is the smallest r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

$$\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \rightarrow K_G^*(A_i)) = \ker(K_G(pt) \rightarrow K_G(A_i)), \quad i = 1, 2, \ldots, r,$$

the product

$$\omega_1 \cdot \omega_2 \cdots \omega_r \cdot \gamma = 0 \in K_G^*(X).$$
Taking the ideal \(I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R \)

Definition.

The \((A, K_G^*, I)\)–length index of \(X \) is the smallest \(r \) such that there exist \(A_1, A_2, \ldots, A_r \in A \) with the following property:

\[
\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \rightarrow K_G^*(A_i)) = \ker(K_G(\text{pt}) \rightarrow K_G(A_i)), \quad i = 1, 2, \ldots, r,
\]

the product

\[
\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K_G^*(X).
\]
Taking the ideal $I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R$

Definition.
The $\langle A, K_G^*, I \rangle$–length index of X is the smallest r such that there exist $A_1, A_2, \ldots, A_r \in A$ with the following property:

\[\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\text{pt}) \to K_G(A_i)), \]

\[i = 1, 2, \ldots, r, \]

the product

\[\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K_G^*(X). \]
Taking the ideal $I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R$

Definition.
The (\mathcal{A}, K_G^*, I)–length index of X is the **smallest** r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

$\forall \gamma \in K_G^*(X)$ and $\forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\text{pt}) \to K_G(A_i))$, $i = 1, 2, \ldots, r$, the product

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K_G^*(X).$$
Taking the ideal $I := K_G(pt) = R(G) \subset K_G^*(pt) = R$

Definition.

The (\mathcal{A}, K_G^*, I)–length index of X is the smallest r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

$$\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \rightarrow K_G^*(A_i)) = \ker(K_G(pt) \rightarrow K_G(A_i)),$$

$i = 1, 2, \ldots, r$,

the product

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K_G^*(X).$$
Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$A_{m,n} := \{ G/H | H \subset G; \, m \leq |H| \leq n \}, \quad (1)$$

where $|H|$ is the cardinality of H.

Next we put

$$l_n(X) = (A_{m,n}, K^*_G, I) - \text{length index of } (X). \quad (2)$$

The index l_n does not depend on m.

Taking $A' = \{ G/H | |H| = n \}$ we can show that

$$l_n(X) = (A_{m,n}, K^*_G, I) - \text{length index of } X = (A', K^*_G, I) - \text{length index of } X.$$

Therefore, to compute this index it is enough to consider

$$v \in \ker(K_G^{(pt)} \to \ker(G/H)) \cap V$$.
Given two powers \(1 \leq m \leq n \leq p^{k-1} \) of \(p \), we put

\[
A_{m,n} := \{ G/H \mid H \subset G; m \leq |H| \leq n \},
\]

(1)

where \(|H| \) is the cardinality of \(H \).

Next we put

\[
l_n(X) = (A_{m,n}, K^*_G, I) - \text{length index of } (X).
\]

(2)

The index \(l_n \) does not depend on \(m \).

Taking \(A' = \{ G/H \mid |H| = n \} \) we can show that

\[
l_n(X) = (A_{m,n}, K^*_G, I) - \text{length index of } X = (A', K^*_G, I) - \text{length index of } X.
\]

Therefore, to compute this index it is enough to consider

\[
\omega_i \in \ker(K_G(pt) \to K_G(G/H)) \ \forall i
\]
Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$A_{m,n} := \{G/H \mid H \subset G; \ m \leq |H| \leq n\},$$

(1)

where $|H|$ is the cardinality of H.

Next we put

$$l_{n}(X) = (A_{m,n}, K_{G}^{\ast}, I) - \text{length index of } (X).$$

(2)

The index l_{n} does not depend on m.

Taking $A' = \{G/H \mid |H| = n\}$ we can show that

$$l_{n}(X) = (A_{m,n}, K_{G}^{\ast}, I) - \text{length index of } X = (A', K_{G}^{\ast}, I) - \text{length index of } X.$$

Therefore, to compute this index it is enough to consider

$$\omega_{i} \in \ker(K_{G}(pt) \to K_{G}(G/H)) \ \forall i$$
Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put
\[\mathcal{A}_{m,n} := \{ G/H | H \subset G; m \leq |H| \leq n \}, \] (1)
where $|H|$ is the cardinality of H.

Next we put
\[l_n(X) = (\mathcal{A}_{m,n}, K^*, I) - \text{length index of } (X). \] (2)

The index l_n does not depend on m.

Taking $\mathcal{A}' = \{ G/H | |H| = n \}$ we can show that
\[l_n(X) = (\mathcal{A}_{m,n}, K^*, I) - \text{length index of } X = (\mathcal{A}', K^*, I) - \text{length index of } X. \]

Therefore, to compute this index it is enough to consider
\[\omega_i \in \ker(K_G(\text{pt}) \to K_G(G/H)) \\forall i \]
Given two powers \(1 \leq m \leq n \leq p^{k-1} \) of \(p \), we put

\[
\mathcal{A}_{m,n} := \{ G/H \mid H \subset G; \ m \leq |H| \leq n \},
\]

where \(|H| \) is the cardinality of \(H \).

Next we put

\[
l_n(X) = (\mathcal{A}_{m,n}, K^*_G, I) - \text{length index of } (X).
\]

The index \(l_n \) does not depend on \(m \).

Taking \(\mathcal{A}' = \{ G/H \mid |H| = n \} \) we can show that

\[
l_n(X) = (\mathcal{A}_{m,n}, K^*_G, I) - \text{length index of } X = (\mathcal{A}', K^*_G, I) - \text{length index of } X.
\]

Therefore, to compute this index it is enough to consider

\[
\omega_i \in \ker(K_G(\text{pt}) \to K_G(G/H)) \ \forall i
\]
The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

We denote by A_X a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of $G = \mathbb{Z}_p^k$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_R V$. Fix m, n two powers of p as above. Then

$$
\ln(S(V)) \geq \begin{cases}
1 + \left\lceil \frac{\log m} \log n \right\rceil & \text{if } A_{1m} \subset A_{n1} \\
\infty & \text{if } A_{1m} \not\subset A_{n1}
\end{cases}
$$

where $[x]$ denotes the least integer greater than or equal to x.

Moreover, if $A_{1m} \subset A_{n1}$, then

$$
\ln(S(V)) = d.
$$
The following result of Bartsch ([2]) is fundamental for the \textbf{estimate from below of the index of Z_f}.

We denote by A_X a set of all G-orbits of X.

\textbf{Theorem A.}

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

\[l_n(S(V)) \geq \begin{cases}
1 + \left\lceil \frac{(d-1)m}{n} \right\rceil & \text{if } A_S(V) \subset A_{m,n}, \\
\infty & \text{if } A_S(V) \not\subset A_{1,n},
\end{cases} \]

where $[x]$ denotes the least integer greater than or equal to x. Moreover, if $A_S(V) \subset A_{n,n}$, then

\[l_n(S(V)) = d. \]
The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

We denote by A_X a set of all G-orbits of X.

Theorem A.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left\lfloor \frac{(d-1)m}{n} \right\rfloor & \text{if } A_{S(V)} \subset A_{m,n}, \\ \infty & \text{if } A_{S(V)} \not\subset A_{1,n}, \end{cases}$$

where $[x]$ denotes the least integer greater than or equal to x.

Moreover, if $A_{S(V)} \subset A_{n,n}$, then

$$l_n(S(V)) = d.$$
The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

We denote by A_X a set of all G-orbits of X.

Theorem A.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above.

Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left\lceil \frac{(d-1)m}{n} \right\rceil & \text{if } A_{S(V)} \subset A_{m,n}, \\ \infty & \text{if } A_{S(V)} \not\subset A_{1,n}, \end{cases}$$

where $[x]$ denotes the least integer greater than or equal to x.

Moreover, if $A_{S(V)} \subset A_{n,n}$, then

$$l_n(S(V)) = d.$$
The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

We denote by A_X a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_\mathbb{R} V$. Fix m, n two powers of p as above.

Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left[\frac{(d-1)m}{n} \right] & \text{if } A_S(V) \subset A_{m,n}, \\ \infty & \text{if } A_S(V) \not\subset A_{1,n}, \end{cases}$$

where $[x]$ denotes the least integer greater than or equal to x.

Moreover, if $A_S(V) \subset A_{n,n}$, then

$$l_n(S(V)) = d.$$
The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

We denote by A_X a set of all G-orbits of X.

Theorem A.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above.

Then

$$l_n(S(V)) \geq \begin{cases}
1 + \left\lceil \frac{(d-1)m}{n} \right\rceil & \text{if } A_S(V) \subset A_{m,n}, \\
\infty & \text{if } A_S(V) \not\subset A_{1,n},
\end{cases}$$

where $[x]$ denotes the least integer greater than or equal to x.

Moreover, if $A_S(V) \subset A_{n,n}$, then

$$l_n(S(V)) = d.$$
RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; K^q_G \pi) \Rightarrow K^*_G(X),$$

where K^q_G is the sheaf on X/G associated to the presheaf $V \rightarrow K^q_G(\pi^{-1}V)$ ($\pi : X \rightarrow X/G$ is the projection) with the stalk K^q_G at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $K^q_G = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

$$K^*_G(X) \supset K^*_G,1(X) \supset \ldots \supset K^*_G,p(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_G,p(X) \cdot K^*_G,q(X) \subset K^*_G,p+q(X).$$
How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K^*_G(X),$$

where \mathcal{K}_G^q is the sheaf on X/G associated to the presheaf $V \rightarrow K_G^q(\pi^{-1}V)$ ($\pi : X \rightarrow X/G$ is the projection) with the stalk \mathcal{K}_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $\mathcal{K}_G^q = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence:

$$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_{G,p}(X) \cdot K^*_{G,q}(X) \subset K^*_{G,p+q}(X).$$
RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}^q_G(\pi)) \Rightarrow K^*_G(X),$$

where \mathcal{K}^q_G is the sheaf on X/G associated to the presheaf $V \to K^q_G(\pi^{-1}V)$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}^q_G at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $\mathcal{K}^q_G = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

$$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_{G,p}(X) \cdot K^*_{G,q}(X) \subset K^*_{G,p+q}(X).$$
Relation between the length index and dimension

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; K_G^q \pi) \Rightarrow K^*_G(X),$$

where K_G^q is the sheaf on X/G associated to the presheaf $V \to K_G^q(\pi^{-1}V)$ ($\pi: X \to X/G$ is the projection) with the stalk K_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $K_G^q = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

$$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_{G,p}(X) \cdot K^*_{G,q}(X) \subset K^*_{G,p+q}(X)$$
RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K^*_G(X),$$

where \mathcal{K}_G^q is the sheaf on X/G associated to the presheaf $V \to K_G^q(\pi^{-1}V)$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $\mathcal{K}_G^q = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

$$K^*_G(X) \supset K^*_G,1(X) \supset \ldots \supset K^*_G,p(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_G,p(X) \cdot K^*_G,q(X) \subset K^*_G,p+q(X).$$
RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; K_G^q \pi) \Rightarrow K_G^*(X),$$

where K_G^q is the sheaf on X/G associated to the presheaf $V \rightarrow K_G^q(\pi^{-1}V) \ (\pi : X \rightarrow X/G$ is the projection) with the stalk K_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $K_G^q = 0$, if q is odd.

Consider the filtration of $K_G^*(X)$ associated to this spectral sequence: we

$$K_G^*(X) \supset K_G^{*,1}(X) \supset \ldots \supset K_G^{*,p}(X) \supset \ldots,$$

such that $K_G^*(X)$ is a filtered ring in the sense that

$$K_G^{*,p}(X) \cdot K_G^{*,q}(X) \subset K_G^{*,p+q}(X)$$
RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in $K_G(X)$ and the covering dimension of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K^*_G(X),$$

where \mathcal{K}_G^q is the sheaf on X/G associated to the presheaf $V \to K_G^q(\pi^{-1}V)$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $\mathcal{K}_G^q = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

$$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots,$$

such that $K^*_G(X)$ is a filtered ring in the sense that

$$K^*_{G,p}(X) \cdot K^*_{G,q}(X) \subset K^*_{G,p+q}(X).$$
Lemma A. If \(X \) is a compact \(G \)-space such that \(\dim X/G \leq 2r - 1 \), then

(i) \(K_{G,1}(X) = K_{G,1}^0(X) = K_{G,2}^0(X) = K_{G,2}(X) \)

(ii) \((K_{G,2}(X))^r = (K_{G,2}^0(X))^r = 0. \)

Lemma B. If the subgroups of \(G \) are totally ordered and \(H \) is the largest isotropic subgroup on \(X \), then

\[
K_{G,1}(X) = \ker(K_G(X) \to K_G(G/H)).
\]

Theorem B. Let \(X \) be a compact \(G \)-space, with \(G = \mathbb{Z}_{p^k} \), and suppose that \(A_X \subset A_{m,n} \). If \(l_n(X) \geq r + 1 \) then \(\dim X = \dim X/G \geq 2r. \)
Lemma A. If X is a compact G-space such that $\dim X/G \leq 2r - 1$, then

(i) $K_{G,1}(X) = K_{G,1}^0(X) = K_{G,2}^0(X) = K_{G,2}(X)$
(ii) $(K_{G,2}(X))^r = (K_{G,2}^0(X))^r = 0$.

Lemma B. If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$K_{G,1}(X) = \ker(K_G(X) \to K_G(G/H)).$$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$, and suppose that $A_X \subset A_{m,n}$. If $l_n(X) \geq r + 1$ then $\dim X = \dim X/G \geq 2r$.
Lemma A. If X is a compact G-space such that $\dim X/G \leq 2r - 1$, then

(i) $K_{G,1}(X) = K^0_{G,1}(X) = K^0_{G,2}(X) = K_{G,2}(X)$

(ii) $(K_{G,2}(X))^r = (K^0_{G,2}(X))^r = 0$.

Lemma B. If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$K_{G,1}(X) = \ker(K_G(X) \to K_G(G/H)).$$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$, and suppose that $A_X \subset A_{m,n}$. If $l_n(X) \geq r + 1$ then $\dim X = \dim X/G \geq 2r$.
Lemma A. If X is a compact G-space such that $\dim X/G \leq 2r - 1$, then
(i) $K_{G,1}(X) = K_{G,1}^0(X) = K_{G,2}^0(X) = K_{G,2}(X)$
(ii) $(K_{G,2}(X))^r = (K_{G,2}^0(X))^r = 0$.

Lemma B. If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$K_{G,1}(X) = \ker (K_G(X) \to K_G(G/H)).$$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$, and suppose that $A_X \subset A_{m,n}$. If $l_n(X) \geq r + 1$ then $\dim X = \dim X/G \geq 2r$.
Lemma A. If X is a compact G-space such that $\dim X/G \leq 2r - 1$, then

(i) $K_{G,1}(X) = K_{G,1}^0(X) = K_{G,2}^0(X) = K_{G,2}(X)$

(ii) $(K_{G,2}(X))^r = (K_{G,2}^0(X))^r = 0$.

Lemma B. If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$K_{G,1}(X) = \ker(K_G(X) \to K_G(G/H)).$$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$, and suppose that $A_X \subset A_{m,n}$. If $l_n(X) \geq r + 1$ then $\dim X = \dim X/G \geq 2r$.
Theorem 1. Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}, p$ prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$. Then

$$l_n(Z_f) \geq 1 + \left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2 \left(\left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W) \right) := \phi(V, W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 1.
Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \overset{G}{\to} W$ an equivariant map. Suppose $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$.

Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V) - 1)m}{n} \right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2 \left(\left[\frac{(d(V) - 1)m}{n} \right] - d(W) \right) := \phi(V, W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 1.
Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$.
Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V) - 1)m}{n} \right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2 \left(\left[\frac{(d(V) - 1)m}{n} \right] - d(W) \right) := \phi(V, W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 1.
Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$.
Then

$$l_n(Z_f) \geq 1 + \left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2 \left(\left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W) \right) := \phi(V, W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

\[l_n(Z_f) \geq l_n(S(V)) - l_n(S(W)). \]

- By assumption, \(A_{S(V)} \subset A_{m,n} \) and from Theorem A

\[l_n(Z_f) \geq 1 + \left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W). \]

- Consequently, from Theorem B,

\[\dim(Z_f) \geq 2 \left(\left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W) \right) := \phi(V, W). \]
Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

\[l_n(Z_f) \geq l_n(S(V)) - l_n(S(W)). \]

- By assumption, \(A_{S(V)} \subset A_{m,n} \) and from Theorem A

\[l_n(Z_f) \geq 1 + \left\lceil \frac{(d(V) - 1)m}{n} \right\rceil - d(W). \]

- Consequently, from Theorem B,

\[\dim(Z_f) \geq 2\left(\left\lceil \frac{(d(V) - 1)m}{n} \right\rceil - d(W) \right) := \phi(V, W). \]
Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

\[l_n(Z_f) \geq l_n(S(V)) - l_n(S(W)). \]

- By assumption, \(A_{S(V)} \subset A_{m,n} \) and from Theorem A

\[l_n(Z_f) \geq 1 + \left[\frac{(d(V) - 1)m}{n} \right] - d(W). \]

- Consequently, from Theorem B,

\[\dim(Z_f) \geq 2 \left(\left[\frac{(d(V) - 1)m}{n} \right] - d(W) \right) := \phi(V, W). \]
Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

\[l_n(Z_f) \geq l_n(S(V)) - l_n(S(W)). \]

- By assumption, \(A_{S(V)} \subset A_{m,n} \) and from Theorem A

\[l_n(Z_f) \geq 1 + \left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W). \]

- Consequently, from Theorem B,

\[\dim(Z_f) \geq 2\left(\left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W)\right) := \phi(V, W). \]
Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

\[l_n(Z_f) \geq l_n(S(V)) - l_n(S(W)). \]

- By assumption, \(A_{S(V)} \subset A_{m,n} \) and from Theorem A

\[l_n(Z_f) \geq 1 + \left[\frac{(d(V) - 1)m}{n} \right] - d(W). \]

- Consequently, from Theorem B,

\[\dim(Z_f) \geq 2\left(\left[\frac{(d(V) - 1)m}{n} \right] - d(W) \right) := \phi(V, W). \]
Theorem 2.
Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$.
Then
\[
\dim(Z_f) \geq \left[\frac{(d(V) - 1)m}{n}\right] - d(W) = \phi(V, W).
\]

In particular, if $d(W) < \frac{d(V)}{2^{k-1}}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 2.

Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \overset{G}{\rightarrow} W$ an equivariant map. Suppose that $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$.

Then

$$\dim(Z_f) \geq \left[\frac{(d(V) - 1)m}{n}\right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < \frac{d(V)}{2^{k-1}}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 2.
Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V)^G \rightarrow W$ an equivariant map. Suppose that $A_{S(V)} \subset A_{m,n}$ and $A_{S(W)} \subset A_{m,n}$.

Then

$$\dim(Z_f) \geq \left[\frac{(d(V) - 1)m}{n} \right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
Theorem 2.
Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \overset{G}{\to} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$.

Then

$$\dim(Z_f) \geq \left\lfloor \frac{(d(V) - 1)m}{n} \right\rfloor - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.

Munkholm, H. J. *On the Borsuk-Ulam theorem for \(\mathbb{Z}_p^a \)-actions on \(S^{2n-1} \) and maps \(S^{2n-1} \rightarrow \mathbb{R}^m \).* Osaka J. Math. 7 (1970) 451-456.

