Bourgin-Yang Theorem for G-equivariant maps

Edivaldo Lopes dos Santos - UFSCar
Joint work with
W. Marzantowicz - AMU - Poznań-Poland \& D. de Mattos - ICMC - USP

Florida State University Tallahassee
February 21, 2013

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m}, $\exists x \in S\left(\mathbb{R}^{m+1}\right)$ such that $f(x)=f(-x)$.

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m},

$$
\exists x \in S\left(\mathbb{R}^{m+1}\right) \text { such that } f(x)=f(-x)
$$

Remark. Let us observe that if $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ is a continuous map and

$$
A(f)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid f(x)=f(-x)\right\}
$$

we can define an equivariant map

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m},

$$
\exists x \in S\left(\mathbb{R}^{m+1}\right) \text { such that } f(x)=f(-x)
$$

Remark. Let us observe that if $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ is a continuous map and

$$
A(f)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid f(x)=f(-x)\right\},
$$

we can define an equivariant map

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m},

$$
\exists x \in S\left(\mathbb{R}^{m+1}\right) \text { such that } f(x)=f(-x)
$$

Remark. Let us observe that if $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ is a continuous map and

$$
A(f)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid f(x)=f(-x)\right\}
$$

we can define an equivariant map

$$
\begin{aligned}
h: \quad S\left(\mathbb{R}^{m}\right) & \rightarrow \mathbb{R}^{n} \\
x & \mapsto f(x)-f(-x)
\end{aligned}
$$

for which

$$
Z_{h}=h^{-1}(0)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid h(x)=f(x)-f(-x)=0,\right\}=A(f)
$$

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m},

$$
\exists x \in S\left(\mathbb{R}^{m+1}\right) \text { such that } f(x)=f(-x)
$$

Remark. Let us observe that if $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ is a continuous map and

$$
A(f)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid f(x)=f(-x)\right\}
$$

we can define an equivariant map

$$
\begin{aligned}
h: \quad S\left(\mathbb{R}^{m}\right) & \rightarrow \mathbb{R}^{n} \\
x & \mapsto f(x)-f(-x)
\end{aligned}
$$

for which

$$
Z_{h}=h^{-1}(0)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid h(x)=f(x)-f(-x)=0,\right\}=A(f)
$$

Then, to give an estimate for a covering dimension of $A(f)$, it is enough to give an estimate for a covering dimensigiqn of $Z_{d \equiv} \equiv$, $\bar{\equiv}$

Introduction

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S\left(\mathbb{R}^{m+1}\right)$ into \mathbb{R}^{m},

$$
\exists x \in S\left(\mathbb{R}^{m+1}\right) \text { such that } f(x)=f(-x)
$$

Remark. Let us observe that if $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ is a continuous map and

$$
A(f)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid f(x)=f(-x)\right\},
$$

we can define an equivariant map

$$
\begin{aligned}
h: \quad S\left(\mathbb{R}^{m}\right) & \rightarrow \mathbb{R}^{n} \\
x & \mapsto f(x)-f(-x)
\end{aligned}
$$

for which

$$
Z_{h}=h^{-1}(0)=\left\{x \in S\left(\mathbb{R}^{m}\right) \mid h(x)=f(x)-f(-x)=0,\right\}=A(f)
$$

Then, to give an estimate for a covering dimension of $A(f)$, it is enough to give an estimate for a covering dimension of Z_{h}.

Bourgin-Yang proved the following important extension of the B.U.T. Bourgin-Vang Theorem I et $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ be a equivariant map. Then,

$$
\operatorname{dim} Z_{f} \geq m-n-1
$$

Bourgin-Yang proved the following important extension of the B.U.T.
Bourgin-Yang Theorem Let $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ be a equivariant map. Then,

$$
\operatorname{dim} Z_{f} \geq m-n-1
$$

Bourgin-Yang proved the following important extension of the B.U.T.
Bourgin-Yang Theorem Let $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ be a equivariant map. Then,

$$
\operatorname{dim} Z_{f} \geq m-n-1
$$

- To prove this theorem it is enough to show that $H^{m-n-1}\left(Z_{f} / \mathbb{Z}_{2}\right) \neq 0$, which implies $\operatorname{dim} Z_{f} \geq m-n-1$.
- The situation for \mathbb{Z}_{p}, p prime, is analogous. [Munkholm, Izydorek \& Rybicki, de Mattos \& dos Santos, ...]

Bourgin-Yang proved the following important extension of the B.U.T.
Bourgin-Yang Theorem Let $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ be a equivariant map. Then,

$$
\operatorname{dim} Z_{f} \geq m-n-1
$$

- To prove this theorem it is enough to show that $H^{m-n-1}\left(Z_{f} / \mathbb{Z}_{2}\right) \neq 0$, which implies $\operatorname{dim} Z_{f} \geq m-n-1$.
- The situation for \mathbb{Z}_{p}, p prime, is analogous. [Munkholm, Izydorek \& Rybicki, de Mattos \& dos Santos, ...]

Bourgin-Yang proved the following important extension of the B.U.T.
Bourgin-Yang Theorem Let $f: S\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ be a equivariant map. Then,

$$
\operatorname{dim} Z_{f} \geq m-n-1
$$

- To prove this theorem it is enough to show that $H^{m-n-1}\left(Z_{f} / \mathbb{Z}_{2}\right) \neq 0$, which implies $\operatorname{dim} Z_{f} \geq m-n-1$.
- The situation for \mathbb{Z}_{p}, p prime, is analogous. [Munkholm, Izydorek \& Rybicki, de Mattos \& dos Santos, ...]

We study the $B-Y$ problem for G, as follows.

- $G=\mathbb{Z}_{p^{k}}, p$ prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for $\mathbb{Z}_{p^{k}}$-equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146-2151.

We study the B-Y problem for G, as follows.

- $G=\mathbb{Z}_{p^{k}}, p$ prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for $\mathbb{Z}_{p^{k}}$-equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146-2151.

- $G=\left(\mathbb{Z}_{p}\right)^{k}$ be the p-torus of rank k, p a prime, or $G=\mathbb{T}^{k}=\left(S^{1}\right)^{k}$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).
Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

We study the B-Y problem for G, as follows.

- $G=\mathbb{Z}_{p^{k}}, p$ prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for $\mathbb{Z}_{p^{k}}$-equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146-2151.

- $G=\left(\mathbb{Z}_{p}\right)^{k}$ be the p-torus of rank k, p a prime, or $G=\mathbb{T}^{k}=\left(S^{1}\right)^{k}$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).
Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494
- Let V, W be two orthogonal representations of G such that $V^{G}=W^{G}=\{0\}$ (fixed points of G).

We study the B-Y problem for G, as follows.

- $G=\mathbb{Z}_{p^{k}}, p$ prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for $\mathbb{Z}_{p^{k}}$-equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146-2151.

- $G=\left(\mathbb{Z}_{p}\right)^{k}$ be the p-torus of rank k, p a prime, or $G=\mathbb{T}^{k}=\left(S^{1}\right)^{k}$ be a k-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).
Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494
- Let V, W be two orthogonal representations of G such that $V^{G}=W^{G}=\{0\}$ (fixed points of G).
- If p is odd, V and W admit the complex structure. Put $d(V)=\operatorname{dim}_{\mathbb{C}} V=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} V$ and the same for $d(W)$.

Our main results is the following
Theorem. Let V. We two orthogonal representations of \mathbb{Z}_{p}. Let $f: S(V) \rightarrow W$ be a G-equivariant map and $Z_{f}:=f^{-1}(0)$.

Our main results is the following
Theorem. Let V, W be two orthogonal representations of $\mathbb{Z}_{p^{k}}$.

Our main results is the following
Theorem. Let V, W be two orthogonal representations of $\mathbb{Z}_{p^{k}}$. Let $f: S(V) \rightarrow W$ be a G-equivariant map and $Z_{f}:=f^{-1}(0)$. Then, $\operatorname{dim}\left(Z_{f}\right)$ which we describe later:

Our main results is the following
Theorem. Let V, W be two orthogonal representations of $\mathbb{Z}_{p^{k}}$. Let $f: S(V) \rightarrow W$ be a G-equivariant map and $Z_{f}:=f^{-1}(0)$.

Our main results is the following
Theorem. Let V, W be two orthogonal representations of $\mathbb{Z}_{p^{k}}$. Let $f: S(V) \rightarrow W$ be a G-equivariant map and $Z_{f}:=f^{-1}(0)$. Then, $\operatorname{dim}\left(Z_{f}\right)=\operatorname{dim}\left(Z_{f} / G\right) \geq \phi(V, W)$, where ϕ is a function which we describe later.
then $\phi(V, W) \geq 0$ (e.g it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).

Our main results is the following
Theorem. Let V, W be two orthogonal representations of $\mathbb{Z}_{p^{k}}$. Let $f: S(V) \rightarrow W$ be a G-equivariant map and $Z_{f}:=f^{-1}(0)$. Then, $\operatorname{dim}\left(Z_{f}\right)=\operatorname{dim}\left(Z_{f} / G\right) \geq \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

$$
d(W)<d(V) / p^{k-1}
$$

then $\phi(V, W) \geq 0$ (e.g it implies that there is no G-equivariant map from $S(V)$ into $S(W)$).

Remark

Note that opposite to the case $G=\mathbb{Z}_{p}$, for $G=\mathbb{Z}_{p^{k}}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^{2} there exist two complex representations $V, W, \operatorname{dim} V>\operatorname{dim} W$, and an equivariant map $f: S(V) \rightarrow S(W)$.

Remark

Anvwav in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

Remark
Note that opposite to the case $G=\mathbb{Z}_{p}$, for $G=\mathbb{Z}_{p^{k}}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^{2} there exist two complex representations $V, W, \operatorname{dim} V>\operatorname{dim} W$, and an equivariant $\operatorname{map} f: S(V) \rightarrow S(W)$.

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

Remark

Note that opposite to the case $G=\mathbb{Z}_{p}$, for $G=\mathbb{Z}_{p^{k}}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^{2} there exist two complex representations $V, W, \operatorname{dim} V>\operatorname{dim} W$, and an equivariant $\operatorname{map} f: S(V) \rightarrow S(W)$.

Remark

Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$
d(W)<d(V) / p^{k-1}
$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.

Remark

Note that opposite to the case $G=\mathbb{Z}_{p}$, for $G=\mathbb{Z}_{p^{k}}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group G which contains an element g of order p^{2} there exist two complex representations $V, W, \operatorname{dim} V>\operatorname{dim} W$, and an equivariant $\operatorname{map} f: S(V) \rightarrow S(W)$.

Remark

Anyway in [2] Bartsch has shown that there is not a G-equivariant map from $S(V)$ into $S(W)$ if

$$
d(W)<d(V) / p^{k-1}
$$

He used an kind of cup-length theory defined in the equivariant K-theory, we shall use to.

Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition

The $\left(\mathcal{A}, K_{G}^{*}\right)$ - cup length of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{T} \in \mathcal{A}$ and G-maps

Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits).

Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition

The $\left(\mathcal{A}, K_{G}^{*}\right)$ - cup length of X is the smallest r such that there exist

 with the following property:Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition

The $\left(\mathcal{A}, K_{G}^{*}\right)$ - cup length of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ and G-maps

$$
\beta_{i}: A_{i} \rightarrow X, 1 \leq i \leq r
$$

with the following property:

Let \mathcal{A} be a set of G-spaces (usually, it is a family of orbits). Let X be a G-spaces.

Definition

The $\left(\mathcal{A}, K_{G}^{*}\right)$ - cup length of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ and G-maps

$$
\beta_{i}: A_{i} \rightarrow X, 1 \leq i \leq r
$$

with the following property:

$$
\begin{aligned}
& \forall \gamma \in K_{G}^{*}(X) \text { and } \forall \omega_{i} \in \operatorname{ker} \beta_{i}^{*}, \\
& \qquad \omega_{1} \cup \omega_{2} \cup \ldots \cup \omega_{r} \cup \gamma=0 \in K_{G}^{*}(X) .
\end{aligned}
$$

- If there is not such $r,\left(\mathcal{A}, K_{G}^{*}\right)$ - cup length of X is ∞.
- We can consider the notion of $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index defined in a little bit different way.
- For the equivariant cohomology theory K_{G}^{*} and a G-space X, the cohomology

$$
K_{G}^{*}(X)
$$

is a R-module over the coefficient ring $R=: K_{G}^{*}(\mathrm{pt})$ via the natural G-map $p_{X}: X \rightarrow p t$.

- We write

$$
\omega \cdot \gamma=p_{X}^{*}(\omega) \cup \gamma, \text { and } \omega_{1} \cdot \omega_{2}=\omega_{1} \cup \omega_{2}
$$

for $\gamma \in K_{G}^{*}(X)$ and $\omega_{1}, \omega_{2} \in R$.

- We can consider the notion of $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index defined in a little bit different way.
- For the equivariant cohomology theory K_{G}^{*} and a G-space X, the cohomology
is a R-module over the coefficient ring $R=: K_{G}^{*}(\mathrm{pt})$ via the natural G-map $p_{X}: X \rightarrow \mathrm{pt}$.
for $\gamma \in K_{G}^{*}(X)$ and $\omega_{1}, \omega_{2} \in R$.
- We can consider the notion of $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index defined in a little bit different way.
- For the equivariant cohomology theory K_{G}^{*} and a G-space X, the cohomology

$$
K_{G}^{*}(X)
$$

is a R-module over the coefficient ring $R=: K_{G}^{*}(\mathrm{pt})$ via the natural G-map $p_{X}: X \rightarrow \mathrm{pt}$.

- We write
for $\gamma \in K_{G}^{*}(X)$ and $\omega_{1}, \omega_{2} \in R$.
- We can consider the notion of $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index defined in a little bit different way.
- For the equivariant cohomology theory K_{G}^{*} and a G-space X, the cohomology

$$
K_{G}^{*}(X)
$$

is a R-module over the coefficient ring $R=: K_{G}^{*}(\mathrm{pt})$ via the natural G-map $p_{X}: X \rightarrow \mathrm{pt}$.

- We write

$$
\omega \cdot \gamma=p_{X}^{*}(\omega) \cup \gamma, \text { and } \omega_{1} \cdot \omega_{2}=\omega_{1} \cup \omega_{2},
$$

for $\gamma \in K_{G}^{*}(X)$ and $\omega_{1}, \omega_{2} \in R$.

Taking the ideal $I:=K_{G}(\mathrm{pt})=R(G) \subset K_{G}^{*}(\mathrm{pt})=R$

Definition.
The $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ with the following property:
$\forall \gamma \in K_{G}^{*}(X)$ and $\forall \omega_{i} \in I \cap \operatorname{ker}\left(R \rightarrow K_{G}^{*}\left(A_{i}\right)\right)=\operatorname{ker}\left(K_{G}(\mathrm{pt}) \rightarrow K_{\mathrm{G}}\left(A_{i}\right)\right)$, $i=1,2, \ldots, r$,

Taking the ideal $I:=K_{G}(\mathrm{pt})=R(G) \subset K_{G}^{*}(\mathrm{pt})=R$

Definition.

The $\left(\mathcal{A}, K_{G}^{*}, I\right)$-length index of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ with the following property:

Taking the ideal $I:=K_{G}(\mathrm{pt})=R(G) \subset K_{G}^{*}(\mathrm{pt})=R$

Definition.
The $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ with the following property:

Taking the ideal $I:=K_{G}(\mathrm{pt})=R(G) \subset K_{G}^{*}(\mathrm{pt})=R$

Definition.
The $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ with the following property:
$\forall \gamma \in K_{G}^{*}(X)$ and $\forall \omega_{i} \in I \cap \operatorname{ker}\left(R \rightarrow K_{G}^{*}\left(A_{i}\right)\right)=\operatorname{ker}\left(K_{G}(\mathrm{pt}) \rightarrow K_{G}\left(A_{i}\right)\right)$, $i=1,2, \ldots, r$,

Taking the ideal $I:=K_{G}(\mathrm{pt})=R(G) \subset K_{G}^{*}(\mathrm{pt})=R$

Definition.
The $\left(\mathcal{A}, K_{G}^{*}, I\right)$ - length index of X is the smallest r such that there exist $A_{1}, A_{2}, \ldots, A_{r} \in \mathcal{A}$ with the following property:
$\forall \gamma \in K_{G}^{*}(X)$ and $\forall \omega_{i} \in I \cap \operatorname{ker}\left(R \rightarrow K_{G}^{*}\left(A_{i}\right)\right)=\operatorname{ker}\left(K_{G}(\mathrm{pt}) \rightarrow K_{G}\left(A_{i}\right)\right)$, $i=1,2, \ldots, r$,
the product

$$
\omega_{1} \cdot \omega_{2} \cdot \cdots \cdot \omega_{r} \cdot \gamma=0 \in K_{G}^{*}(X) .
$$

- Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$
\begin{equation*}
\mathcal{A}_{m, n}:=\{G / H|H \subset G ; m \leq|H| \leq n\} \tag{1}
\end{equation*}
$$

where $|H|$ is the cardinality of H.

- Next wre put

$$
\begin{equation*}
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of }(X) \tag{2}
\end{equation*}
$$

- The index l_{n} does not depend on m.
- Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$
\begin{equation*}
\mathcal{A}_{m, n}:=\{G / H|H \subset G ; m \leq|H| \leq n\}, \tag{1}
\end{equation*}
$$

where $|H|$ is the cardinality of H.

$$
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of }(X) .
$$

- The index l_{n} does not depend on m.
- Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$
\begin{equation*}
\mathcal{A}_{m, n}:=\{G / H|H \subset G ; m \leq|H| \leq n\}, \tag{1}
\end{equation*}
$$

where $|H|$ is the cardinality of H.

- Next we put

$$
\begin{equation*}
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of }(X) . \tag{2}
\end{equation*}
$$

- The index l_{n} does not depend on m.
- Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$
\begin{equation*}
\mathcal{A}_{m, n}:=\{G / H|H \subset G ; m \leq|H| \leq n\}, \tag{1}
\end{equation*}
$$

where $|H|$ is the cardinality of H.

- Next we put

$$
\begin{equation*}
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of }(X) . \tag{2}
\end{equation*}
$$

- The index l_{n} does not depend on m.

Taking $\mathcal{A}^{\prime}=\{G / H| | H \mid=n\}$ we can show that $I_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-$ length index of $X=\left(\mathcal{A}^{\prime}, K_{G}^{*}, I\right)-$ length index of X.

Therefore to compute this index it is enough to consider

- Given two powers $1 \leq m \leq n \leq p^{k-1}$ of p, we put

$$
\begin{equation*}
\mathcal{A}_{m, n}:=\{G / H|H \subset G ; m \leq|H| \leq n\}, \tag{1}
\end{equation*}
$$

where $|H|$ is the cardinality of H.

- Next we put

$$
\begin{equation*}
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of }(X) . \tag{2}
\end{equation*}
$$

- The index l_{n} does not depend on m.

Taking $\mathcal{A}^{\prime}=\{G / H| | H \mid=n\}$ we can show that

$$
l_{n}(X)=\left(\mathcal{A}_{m, n}, K_{G}^{*}, I\right)-\text { length index of } X=\left(\mathcal{A}^{\prime}, K_{G}^{*}, I\right)-\text { length index of } X .
$$

Therefore, to compute this index it is enough to consider

$$
\omega_{i} \in \operatorname{ker}\left(K_{G}(\mathrm{pt}) \rightarrow K_{G}(\mathrm{G} / H)\right) \forall i
$$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.
- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.
- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of $G=\mathbb{Z}_{p^{k}}$ with $V^{G}=\{0\}$ and $d=d(V)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} V$. Fix m, n two powers of p as above.

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of $G=\mathbb{Z}_{p^{k}}$ with $V^{G}=\{0\}$ and $d=d(V)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} V$. Fix m, n two powers of p as above.
Then

$$
l_{n}(S(V)) \geq \begin{cases}1+\left[\frac{(d-1) m}{n}\right] & \text { if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n} \\ \infty & \text { if } \mathcal{A}_{S(V)} \nsubseteq \mathcal{A}_{1, n}\end{cases}
$$

where $[x]$ denotes the least integer greater than or equal to x.

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_{f}.
- We denote by \mathcal{A}_{X} a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of $G=\mathbb{Z}_{p^{k}}$ with $V^{G}=\{0\}$ and $d=d(V)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} V$. Fix m, n two powers of p as above.
Then

$$
l_{n}(S(V)) \geq \begin{cases}1+\left[\frac{(d-1) m}{n}\right] & \text { if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n} \\ \infty & \text { if } \mathcal{A}_{S(V)} \nsubseteq \mathcal{A}_{1, n}\end{cases}
$$

where $[x]$ denotes the least integer greater than or equal to x. Moreover, if $\mathcal{A}_{S(V)} \subset \mathcal{A}_{n, n}$, then

$$
l_{n}(S(V))=d .
$$

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K -theory

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$
E_{2}^{p, q}=H^{p}\left(X / G ; \mathcal{K}_{G}^{q} \pi\right) \Rightarrow K_{G}^{*}(X),
$$

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K -theory

$$
E_{2}^{p, q}=H^{p}\left(X / G ; \mathcal{K}_{G}^{q} \pi\right) \Rightarrow K_{G}^{*}(X),
$$

where \mathcal{K}_{G}^{q} is the sheaf on X / G associated to the presheaf
$V \rightarrow K_{G}^{q}\left(\pi^{-1} \bar{V}\right)\left(\pi: X \rightarrow X / G\right.$ is the projection) with the stalk K_{G}^{q} at an orbit $G x=G / G_{x}$ equal to $R\left(G_{x}\right)$, if q is even, and $K_{G}^{q}=0$, if q is odd. Consider the filtration of $K_{G}^{*}(X)$ associated to this spectral sequence:

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K -theory

$$
E_{2}^{p, q}=H^{p}\left(X / G ; \mathcal{K}_{G}^{q} \pi\right) \Rightarrow K_{G}^{*}(X)
$$

where \mathcal{K}_{G}^{q} is the sheaf on X / G associated to the presheaf $V \rightarrow K_{G}^{q}\left(\pi^{-1} \bar{V}\right)\left(\pi: X \rightarrow X / G\right.$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $G x=G / G_{x}$ equal to $R\left(G_{x}\right)$, if q is even, and $\mathcal{K}_{G}^{q}=0$, if q is odd.

Consider the filtration of $K_{G}^{*}(X)$ associated to this spectral sequence:we

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K -theory

$$
E_{2}^{p, q}=H^{p}\left(X / G ; \mathcal{K}_{G}^{q} \pi\right) \Rightarrow K_{G}^{*}(X),
$$

where \mathcal{K}_{G}^{q} is the sheaf on X / G associated to the presheaf $V \rightarrow K_{G}^{q}\left(\pi^{-1} \bar{V}\right)\left(\pi: X \rightarrow X / G\right.$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $G x=G / G_{x}$ equal to $R\left(G_{x}\right)$, if q is even, and $\mathcal{K}_{G}^{q}=0$, if q is odd.

Consider the filtration of $K_{G}^{*}(X)$ associated to this spectral sequence:
such that $K_{G}^{*}(X)$ is a filtered ring in the sense that

Relation between the length index and dimension
How to relate the length index in $K_{G}(X)$ and the covering dimension of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K -theory

$$
E_{2}^{p, q}=H^{p}\left(X / G ; \mathcal{K}_{G}^{q} \pi\right) \Rightarrow K_{G}^{*}(X),
$$

where \mathcal{K}_{G}^{q} is the sheaf on X / G associated to the presheaf $V \rightarrow K_{G}^{q}\left(\pi^{-1} \bar{V}\right)\left(\pi: X \rightarrow X / G\right.$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $G x=G / G_{x}$ equal to $R\left(G_{x}\right)$, if q is even, and $\mathcal{K}_{G}^{q}=0$, if q is odd.

Consider the filtration of $K_{G}^{*}(X)$ associated to this spectral sequence:we

$$
K_{G}^{*}(X) \supset K_{G, 1}^{*}(X) \supset \ldots \supset K_{G, p}^{*}(X) \supset \ldots
$$

such that $K_{G}^{*}(X)$ is a filtered ring in the sense that

$$
K_{G, p}^{*}(X) \cdot K_{G, q}^{*}(X) \subset K_{G, p+q}^{*}(X)
$$

Lemma A. If X is a compact G-space such that $\operatorname{dim} X / G \leq 2 r-1$, then (i) $K_{G, 1}(X)=K_{G, 1}^{0}(X)=K_{G, 2}^{0}(X)=K_{G, 2}(X)$
(ii) $\left(K_{G, 2}(X)\right)^{r}=\left(K_{G, 2}(X)\right)^{\prime}=0$.

Lemma B.If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

Lemma A. If X is a compact G-space such that $\operatorname{dim} X / G \leq 2 r-1$, then (ii) $\left(K_{G, 2}(X)\right)^{r}=\left(K_{G, 2}^{0}(X)\right)^{r}=0$.

Lemma B.If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

Lemma A. If X is a compact G-space such that $\operatorname{dim} X / G \leq 2 r-1$, then (i) $K_{G, 1}(X)=K_{G, 1}^{0}(X)=K_{G, 2}^{0}(X)=K_{G, 2}(X)$
(ii) $\left(K_{G, 2}(X)\right)^{r}=\left(K_{G, 2}^{0}(X)\right)^{r}=0$.

Lemma B.If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

Lemma A. If X is a compact G-space such that $\operatorname{dim} X / G \leq 2 r-1$, then (i) $K_{G, 1}(X)=K_{G, 1}^{0}(X)=K_{G, 2}^{0}(X)=K_{G, 2}(X)$
(ii) $\left(K_{G, 2}(X)\right)^{r}=\left(K_{G, 2}^{0}(X)\right)^{r}=0$.

Lemma B.If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$
K_{G, 1}(X)=\operatorname{ker}\left(K_{G}(X) \rightarrow K_{G}(G / H)\right)
$$

Theorem B. Let X be a compact G-space, with $G=\mathbb{Z}_{p^{k}}$, and suppose that $\mathcal{A}_{X} \subset \mathcal{A}_{m, n}$. If $l_{n}(X) \geq r+1$ then $\operatorname{dim} X=\operatorname{dim} X / G \geq 2 r$.

Lemma A. If X is a compact G-space such that $\operatorname{dim} X / G \leq 2 r-1$, then (i) $K_{G, 1}(X)=K_{G, 1}^{0}(X)=K_{G, 2}^{0}(X)=K_{G, 2}(X)$
(ii) $\left(K_{G, 2}(X)\right)^{r}=\left(K_{G, 2}^{0}(X)\right)^{r}=0$.

Lemma B.If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then

$$
K_{G, 1}(X)=\operatorname{ker}\left(K_{G}(X) \rightarrow K_{G}(G / H)\right) .
$$

Theorem B. Let X be a compact G-space, with $G=\mathbb{Z}_{p^{k}}$, and suppose that $\mathcal{A}_{X} \subset \mathcal{A}_{m, n}$. If $l_{n}(X) \geq r+1$ then $\operatorname{dim} X=\operatorname{dim} X / G \geq 2 r$.

Theorem 1.

Let V, W be two complex orthogonal representations of $G=\mathbb{Z}_{p}$, p prime, such that $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
l_{n}\left(Z_{f}\right) \geq 1+\left[\frac{(d(V)-1) m}{n}\right]-d(W)
$$

Consequently,

$$
\operatorname{dim}\left(Z_{f}\right) \geq 2\left(\left[\frac{(d(V)-1) m}{n}\right]-d(W)\right):=\phi(V, W)
$$

In particular, if $d(W)<d(V) / p^{k-1}$, then $\phi(V, W) \geq 0$, which means
that there is no G-equivariant map from $S(V)$ into $S(W)$.

Theorem 1.

Let V, W be two complex orthogonal representations of $G=\mathbb{Z}_{p^{k}}, p$ prime, such that $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.

Consequently,

Theorem 1.

Let V, W be two complex orthogonal representations of $G=\mathbb{Z}_{p^{k}}, p$ prime, such that $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
l_{n}\left(Z_{f}\right) \geq 1+\left[\frac{(d(V)-1) m}{n}\right]-d(W)
$$

Consequently,

$$
\operatorname{dim}\left(Z_{f}\right) \geq 2\left(\left[\frac{(d(V)-1) m}{n}\right]-d(W)\right):=\phi(V, W)
$$

Theorem 1.

Let V, W be two complex orthogonal representations of $G=\mathbb{Z}_{p^{k}}, p$ prime, such that $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
l_{n}\left(Z_{f}\right) \geq 1+\left[\frac{(d(V)-1) m}{n}\right]-d(W)
$$

Consequently,

$$
\operatorname{dim}\left(Z_{f}\right) \geq 2\left(\left[\frac{(d(V)-1) m}{n}\right]-d(W)\right):=\phi(V, W)
$$

In particular, if $d(W)<d(V) / p^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.

Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

$$
l_{n}\left(Z_{f}\right) \geq l_{n}(S(V))-l_{n}(S(W))
$$

- By assumption, $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and from Theorem A

$$
\ln \left(Z_{f}\right) \geq 1+\left[\frac{(d(P)-1) m}{n}\right]-d(W)
$$

Idea of the proof．
－Using monotonicity and additivity properties of the length index we show that

$$
l_{n}\left(Z_{f}\right) \geq l_{n}(S(V))-l_{n}(S(W))
$$

－By assumption， $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and from Theorem A

Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

$$
l_{n}\left(Z_{f}\right) \geq l_{n}(S(V))-l_{n}(S(W))
$$

- By assumption, $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and from Theorem A

- Consequently, from Theorem B,

Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

$$
l_{n}\left(Z_{f}\right) \geq l_{n}(S(V))-l_{n}(S(W))
$$

- By assumption, $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and from Theorem A

$$
l_{n}\left(Z_{f}\right) \geq 1+\left[\frac{(d(V)-1) m}{n}\right]-d(W)
$$

- Consequently, from Theorem B,

Idea of the proof.

- Using monotonicity and additivity properties of the length index we show that

$$
l_{n}\left(Z_{f}\right) \geq l_{n}(S(V))-l_{n}(S(W)) .
$$

- By assumption, $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and from Theorem A

$$
l_{n}\left(Z_{f}\right) \geq 1+\left[\frac{(d(V)-1) m}{n}\right]-d(W)
$$

- Consequently, from Theorem B,

$$
\operatorname{dim}\left(Z_{f}\right) \geq 2\left(\left[\frac{(d(V)-1) m}{n}\right]-d(W)\right):=\phi(V, W)
$$

Theorem 2.
Let V, W be two real orthogonal representations of $G=\mathbb{Z}_{2}$, with $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
\operatorname{dim}\left(Z_{f}\right) \geq\left[\frac{(d(V)-1) m}{n}\right]-d(W)=\phi(V, W)
$$

In particular, if $d(W)<d(V) / 2^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.

Theorem 2.

Let V, W be two real orthogonal representations of $G=\mathbb{Z}_{2^{k}}$, with $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then
$\operatorname{dim}\left(Z_{f}\right) \geq\left[\frac{(d(V)-1) m}{n}\right]-d(W)=\phi(V, W)$.

Theorem 2.

Let V, W be two real orthogonal representations of $G=\mathbb{Z}_{2^{k}}$, with $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
\operatorname{dim}\left(Z_{f}\right) \geq\left[\frac{(d(V)-1) m}{n}\right]-d(W)=\phi(V, W)
$$

Theorem 2.

Let V, W be two real orthogonal representations of $G=\mathbb{Z}_{2^{k}}$, with $V^{G}=W^{G}=\{0\}$. Consider $f: S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m, n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m, n}$.
Then

$$
\operatorname{dim}\left(Z_{f}\right) \geq\left[\frac{(d(V)-1) m}{n}\right]-d(W)=\phi(V, W)
$$

In particular, if $d(W)<d(V) / 2^{k-1}$, then $\phi(V, W) \geq 0$, which means that there is no G-equivariant map from $S(V)$ into $S(W)$.
（ Atiyah，M．F．；Segal，G．B．Equivariant K－theory and completion．J． Differential Geometry 3 （1969），1－18．
囯 Bartsch，T．On the genus of representation spheres．Comment．Math． Helv． 65 （1990），n ${ }^{\circ}$ 1，85－95．
囯 Bartsch，T．Topological Methods for Variational Problems with Symmetries．Lecture Notes in Mathematics 1560，Springer－Verlag， Berlin（1993）．
囯 Bourgin，D．G．On some separation and mapping theorems． Comment．Math．Helv． 29 （1955），199－214．

围 Izydorek，M．；Rybicki，S．On parametrized Borsuk－Ulam theorem for free \mathbb{Z}_{p}－action．Algebraic topology（San Feliu de Guixols 1990） 227－234，Lecture Notes in Math．，1509，Springer，Berlin，（1992）．
（ de Mattos，D．；dos Santos，E．L．A parametrized Borsuk－Ulam theorem for a product of spheres with free \mathbb{Z}_{p}－action and free S^{1}－action． Algebraic and Geometric Topology 7 （2007）1791－1804．
國 Munkholm，H．J．Borsuk－Ulam theorem for proper \mathbb{Z}_{p}－actions on（mod p homology）n－spheres．Math．Scan． 24 （1969）167－185．
囲 Munkholm，H．J．On the Borsuk－Ulam theorem for $Z_{p^{n}}$－actions on $S^{2 n-1}$ and maps $S^{2 n-1} \rightarrow \mathbb{R}^{m}$ ．Osaka J．Math． 7 （1970）451－456．

圊 Segal，G．Equivariant K－theory．Publ．Math．IHES 34 （1968） 129－151．
－Segal，G．Categories and cohomology theories．Topology 13 （1974），293－312．
（國 Serre，J．P．Linear representations of finite groups．Translated from the second French edition by Leonard L．Scott．， Graduate Texts in Mathematics 42，Springer－Verlag，New York－Heidelberg，（1977）．

國 Yang，C．T．On theorems of Borsuk－Ulam， Kakutani－Yamabe－Yujob and Dyson．I．，Ann．of Math．（2）60， （1954），262－282．

E－Yang，C．T．On theorems of Borsuk－Ulam， Kakutani－Yamabe－Yujob and Dyson．II．Ann．of Math．（2） 62 （1955），271－283．

