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INTRODUCTION

The classical Borsuk-Ulam theorem says that: ∀ continuous map f
from the sphere S(Rm+1) into Rm,

∃x ∈ S(Rm+1) such that f (x) = f (−x).

Remark. Let us observe that if f : S(Rm)→ Rn is a continuous map
and

A(f ) = {x ∈ S(Rm) | f (x) = f (−x) },

we can define an equivariant map

h : S(Rm) → Rn

x 7→ f (x)− f (−x)

for which

Zh = h−1(0) = {x ∈ S(Rm) | h(x) = f (x)− f (−x) = 0, } = A(f ).

Then, to give an estimate for a covering dimension of A(f ), it is
enough to give an estimate for a covering dimension of Zh.
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Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let f : S(Rm)→ Rn be a equivariant map.
Then,

dim Zf ≥ m− n− 1

.

I To prove this theorem it is enough to show that
Hm−n−1(Zf/Z2) 6= 0, which implies dim Zf ≥ m− n− 1.

I The situation for Zp, p prime, is analogous. [Munkholm,
Izydorek & Rybicki, de Mattos & dos Santos, ... ]
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We study the B-Y problem for G, as follows.

• G = Zpk , p prime ( equivariant K-theory ).
Bourgin-Yang version of the Borsuk-Ulam theorem for Zpk -equivariant maps, Algebraic and Geometric Topology 12 (2012)

2146 - 2151.

• G = (Zp)
k be the p-torus of rank k, p a prime, or G = Tk = (S1)k be a

k-dimensional torus (Borel cohomology, Borel localization theorem,
Borel cohomology of stable cohomotopy theory).
Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

I Let V, W be two orthogonal representations of G such that
VG = WG = {0} (fixed points of G).

I If p is odd, V and W admit the complex structure. Put
d(V) = dimC V = 1

2 dimR V and the same for d(W).
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Our main results is the following

Theorem. Let V, W be two orthogonal representations of Zpk .
Let f : S(V)→W be a G-equivariant map and Zf := f−1(0).
Then, dim(Zf ) = dim(Zf/G) ≥ φ(V,W), where φ is a function
which we describe later. In particular, if

d(W) < d(V)/pk−1,

then φ(V,W) ≥ 0 (e.g it implies that there is no G-equivariant
map from S(V) into S(W)).
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Remark
Note that opposite to the case G = Zp, for G = Zpk the classical
formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite)
group G which contains an element g of order p2 there exist two
complex representations V, W, dim V > dim W, and an equivariant
map f : S(V)→ S(W).

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant
map from S(V) into S(W) if

d(W) < d(V)/pk−1,

He used an kind of cup-length theory defined in the equivariant
K-theory, we shall use to.
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Let A be a set of G-spaces (usually, it is a family of orbits).
Let X be a G-spaces.

Definition
The (A,K∗

G) – cup length of X is the smallest r such that there exist
A1, A2, . . . ,Ar ∈ A and G-maps

βi : Ai → X, 1 ≤ i ≤ r,

with the following property:
∀ γ ∈ K∗

G(X) and ∀ ωi ∈ kerβ∗
i ,

ω1 ∪ ω2 ∪ . . . ∪ ωr ∪ γ = 0 ∈ K∗
G(X).

I If there is not such r, (A,K∗
G) – cup length of X is∞.
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I We can consider the notion of (A,K∗
G, I) – length index defined in

a little bit different way.
I For the equivariant cohomology theory K∗

G and a G-space X, the
cohomology

K∗
G(X)

is a R-module over the coefficient ring R =: K∗
G(pt) via the

natural G-map pX : X→ pt.
I We write

ω · γ = p∗X(ω) ∪ γ, and ω1 · ω2 = ω1 ∪ ω2,

for γ ∈ K∗
G(X) and ω1, ω2 ∈ R.
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I Given two powers 1 ≤ m ≤ n ≤ pk−1 of p, we put

Am,n := {G/H |H ⊂ G; m ≤ |H| ≤ n }, (1)

where |H| is the cardinality of H.

I Next we put

ln(X) = (Am,n,K∗
G, I)− length index of (X) . (2)

I The index ln does not depend on m.

TakingA′ = {G/H | |H| = n }we can show that

ln(X) = (Am,n,K∗G, I)− length index of X = (A′,K∗G, I)− length index of X .

Therefore, to compute this index it is enough to consider

ωi ∈ ker(KG(pt)→ KG(G/H)) ∀i
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I The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Zf .

I We denote by AX a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of G = Zpk with VG = {0} and
d = d(V) = 1

2 dimR V. Fix m, n two powers of p as above.
Then

ln(S(V)) ≥

1 +
[
(d−1)m

n

]
if AS(V) ⊂ Am,n,

∞ if AS(V) * A1,n ,

where [x] denotes the least integer greater than or equal to x.
Moreover, if AS(V) ⊂ An,n, then

ln(S(V)) = d.
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RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



RELATION BETWEEN THE length index AND DIMENSION

How to relate the length index in KG(X) and the covering dimension
of X ?
G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ep,q
2 = Hp(X/G;Kq

G π)⇒ K∗
G(X),

where Kq
G is the sheaf on X/G associated to the presheaf

V → Kq
G(π

−1V) ( π : X→ X/G is the projection) with the stalk Kq
G at

an orbit Gx = G/Gx equal to R(Gx), if q is even, andKq
G = 0, if q is odd.

Consider the filtration of K∗
G(X) associated to this spectral

sequence:we

K∗
G(X) ⊃ K∗

G,1(X) ⊃ . . . ⊃ K∗
G,p(X) ⊃ . . . ,

such that K∗
G(X) is a filtered ring in the sense that

K∗
G,p(X) · K∗

G,q(X) ⊂ K∗
G,p+q(X)



Lemma A. If X is a compact G-space such that dim X/G ≤ 2r− 1, then
(i) KG,1(X) = K0

G,1(X) = K0
G,2(X) = KG,2(X)

(ii) (KG,2(X))r = (K0
G,2(X))r = 0.

Lemma B.If the subgroups of G are totally ordered and H is the largest
isotropic subgroup on X, then

KG,1(X) = ker(KG(X)→ KG(G/H)).

Theorem B. Let X be a compact G-space, with G = Zpk , and suppose that
AX ⊂ Am,n. If ln(X) ≥ r + 1 then dim X = dim X/G ≥ 2r.
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Theorem 1.
Let V, W be two complex orthogonal representations of G = Zpk , p prime,

such that VG = WG = {0}. Consider f : S(V)
G→ W an equivariant map.

Suppose AS(V) ⊂ Am,n and AS(W) ⊂ Am,n.
Then

ln(Zf ) ≥ 1 +
[ (d(V)− 1)m

n

]
− d(W).

Consequently,

dim(Zf ) ≥ 2
([ (d(V)− 1)m

n

]
− d(W)

)
:= φ(V,W).

In particular, if d(W) < d(V)/pk−1, then φ(V,W) ≥ 0, which means
that there is no G-equivariant map from S(V) into S(W).
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Idea of the proof.
I Using monotonicity and additivity properties of the length

index we show that

ln(Zf ) ≥ ln(S(V))− ln(S(W)).

I By assumption, AS(V) ⊂ Am,n and from Theorem A
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Theorem 2.
Let V, W be two real orthogonal representations of G = Z2k , with
VG = WG = {0}. Consider f : S(V)

G→ W an equivariant map. Suppose
that AS(V) ⊂ Am,n and AS(W) ⊂ Am,n.
Then

dim(Zf ) ≥
[ (d(V)− 1)m

n

]
− d(W) = φ(V,W).

In particular, if d(W) < d(V)/2k−1, then φ(V,W) ≥ 0, which means that
there is no G-equivariant map from S(V) into S(W).
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