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Remark. Let us observe that if f : S(R™) — R" is a continuous map
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INTRODUCTION

The classical Borsuk-Ulam theorem says that: V continuous map f
from the sphere S(R"*!) into R"™,
Jx € S(R™*1) such that f(x) = f(—x).

Remark. Let us observe that if f : S(R™) — R" is a continuous map
and

Af) = {x € SR |f(x) = f(=x) },
we can define an equivariant map
h: SR"™) —R"
x e fx) —f(-)

for which

Zy = h7'(0) = {x € SR™) [ h(x) = f(x) — f(~x) = 0, } = A(f).

Then, to give an estimate for a covering dimension of A(f), it is
enough to give an estimate for a covering dimension of Z;,.
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Bourgin-Yang proved the following important extension of the B.U.T.

Bourgin-Yang Theorem Let f : S(R™) — R” be a equivariant map.
Then,
dimZ; >m—n—1

» To prove this theorem it is enough to show that
H"="=Y(Z¢/Z,) # 0, which implies dim Z¢ > m —n — 1.

» The situation for Z,, p prime, is analogous. [Munkholm,
Izydorek & Rybicki, de Mattos & dos Santos, ... ]
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o G = Zy, p prime ( equivariant K-theory ).
Bourgin-Yang version of the Borsuk-Ulam theorem for Zpk -equivariant maps, Algebraic and Geometric Topology 12 (2012)
2146 - 2151.

e G = (Z,)* be the p-torus of rank k, p a prime, or G = T" = (S')* be a
k-dimensional torus (Borel cohomology, Borel localization theorem,
Borel cohomology of stable cohomotopy theory).

Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

» Let V, W be two orthogonal representations of G such that
V& = WC = {0} (fixed points of G).

» Ifpisodd, V and W admit the complex structure. Put
d(V) = dim¢ V = } dimg V and the same for d(W).
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Our main results is the following

Theorem. Let V, W be two orthogonal representations of Z.
Letf : S(V) — W be a G-equivariant map and Z; := f~1(0).
Then, dim(Zy) = dim(Z¢/G) > ¢(V, W), where ¢ is a function
which we describe later. In particular, if

d(W) < d(v)/p,

then ¢(V, W) > 0 (e.g it implies that there is no G-equivariant
map from S(V) into S(W)).
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formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite)
group G which contains an element g of order p? there exist two
complex representations V, W, dim V > dim W, and an equivariant
map f : S(V) — S(W).

Remark
Anyway in [2] Bartsch has shown that there is not a G-equivariant
map from S(V) into S(W) if

d(W) < d(v)/p*1,

He used an kind of cup-length theory defined in the equivariant
K-theory, we shall use to.
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The (A, K&) — cup length of X is the smallest r such that there exist
A1, Ay, ... A € Aand G-maps

Bi:Ai— X, 1<i<r,

with the following property:

u]
]
I

w
i
N
yel
P



Let A be a set of G-spaces (usually, it is a family of orbits).
Let X be a G-spaces.

Definition
The (A, K&) — cup length of X is the smallest r such that there exist
A1, Ay, ... A € Aand G-maps

fi:Ai—= X, 1<i<r,

with the following property:
V vy € K§(X) and V w; € ker 3},

w JUwpU ... Uw, Uy =0 € KE(X).

» If there is not such 7, (A, K&) — cup length of X is oo.
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» We can consider the notion of (A, K&, I) - length index defined in
a little bit different way.

» For the equivariant cohomology theory K and a G-space X, the
cohomology
K&(X)

is a R-module over the coefficient ring R =: K& (pt) via the
natural G-map px : X — pt.

» We write
w-y =px(w)Uy, and w; - wy = wi Uwy,

for v € K§(X) and wy, wo € R.
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Taking the ideal I := Ks(pt) = R(G) C K& (pt) =R

Definition.
The (A, K¢, I) — length index of X is the smallest r such that there exist
Aq, Az, ..., A, € Awith the following property:

Vv e KE(X)and V w; € INker(R — KE(A;j)) = ker(Kg(pt) = Kg(Ai)),
i=1,2,...,1,
the product

W1 Wy« .wr-’yzoeKz(X).
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» Giventwopowers 1 <m<n< pkfl of p, we put
Apn:={G/H|/HC G, m<|H|<n}, 1)
where |H| is the cardinality of H.
» Next we put

1,(X) = (Amn, KG, I) — length index of (X). (2)

» The index I, does not depend on m.
Taking A’ = {G/H | |H| = n } we can show that

1(X) = (Amn, KE,I) — length index of X = (A’,KE,I) — length index of X.
Therefore, to compute this index it is enough to consider

wi € ker(Kg(pt) — Kg(G/H)) Vi






» The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Z.




» The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Z.

» We denote by Ax a set of all G-orbits of X.



» The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Z.

» We denote by Ax a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of G = Z with V¢ = {0} and

d=d(V) =1 dimg V. Fix m, n two powers of p as above.



» The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Z.

» We denote by Ax a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of G = Z with V¢ = {0} and

d=d(V) =1 dimg V. Fix m, n two powers of p as above.
Then

1+ (Y20 if Ay C Aw,
zn<s<V>>z{ (5] 7 Ao € A

oo 1f AS(V) ,@ -Al,n7

where [x] denotes the least integer greater than or equal to x.



» The following result of Bartsch ([2]) is fundamental for the
estimate from below of the index of Z.

» We denote by Ax a set of all G-orbits of X.

Theorem A.
Let V be an orthogonal representation of G = Z with V¢ = {0} and

d=d(V) =1 dimg V. Fix m, n two powers of p as above.
Then

1+ (Y20 if Ay C Aw,
zn<s<V>>z{ (5] 7 Ao € A

oo 1f AS(V) ,@ -Al,n7

where [x] denotes the least integer greater than or equal to x.
Moreover, if Asyy C Apn, then

1.(S(V)) = d.
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How to relate the length index in K¢(X) and the covering dimension
of X?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral
sequence for the equivariant K-theory

Ey' = HV(X/G; KK m) = K& (X),

where K[ is the sheaf on X/G associated to the presheaf
V — KL(m71V) (7 : X — X/G is the projection) with the stalk KL at
an orbit Gx = G/G, equal to R(G,), if g is even, and K. = 0, if ¢ is odd.

Consider the filtration of K (X) associated to this spectral
sequence:we

Ke(X) D Kg1(X) D ... DKg p(X) Do
such that K& (X) is a filtered ring in the sense that

Ké,p(x) : Ké,q(X) C Ké,p-&-q (X)
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Lemma A. If X is a compact G-space such that dim X/G < 2r — 1, then
(i) Ko,1(X) = K& 1 (X) = K& ,(X) = Kg2(X)
(iD) (Ke2(X))" = (K& 2(X))" = 0.

Lemma B.If the subgroups of G are totally ordered and H is the largest
isotropic subgroup on X, then

Kg1(X) = ker(Kg(X) — Ko(G/H)).

Theorem B. Let X be a compact G-space, with G = Z, and suppose that
Ax C Ay If1,(X) > v+ 1 then dim X = dim X/G > 2r.
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Theorem 1.
Let V, W be two complex orthogonal representations of G = Zy., p prime,

such that V6 = WS = {0}. Consider f : S(V) % W an equivariant map.

Suppose Asvy C Apu and Asowy C Amn-
Then

@) —m

Wiz 21+ .

] —d(W).

Consequently,

dim(Zy) > 2([@} fd(W)> = $(V, W).

In particular, if d(W) < d(V)/p*=1, then ¢(V, W) > 0, which means
that there is no G-equivariant map from S(V') into S(W).
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Idea of the proof.

» Using monotonicity and additivity properties of the length
index we show that

ln(Zf) > ln(s(v)) - ln(s(w))
» By assumption, Agy) C Ay, and from Theorem A
aiv)-1
L(Zs) > 1+ [M} —d(W).
n
» Consequently, from Theorem B,

dim(Z;) > 2({@} —d(W)) = 6(V. W).






Theorem 2.

Let V, W be two real orthogonal representations of G = Zy, with

G — WG = {0}. Consider f : S(V) % W an equivariant map. Suppose
that AS(V) C Ay and .As(w) C Ay




Theorem 2.
Let V, W be two real orthogonal representations of G = Zy, with

G — WG = {0}. Consider f : S(V) % W an equivariant map. Suppose
that AS(V) C Ay and .As(w) C Ay

Then

. @dV)—-1)m _
dim(Z;) > #} —A(W) = 6(V, W)




Theorem 2.

Let V, W be two real orthogonal representations of G = Zy, with

VG = WS = {0}. Consider f : S(V) % W an equivariant map. Suppose
that AS(V) C Ay and .As(w) C Ay

Then

@dV) = 1)m

dim(Zf) >
1m(f)7 .

| = dw) = o(v. w).

In particular, if W) < d(V) /2571, then ¢(V, W) > 0, which means that
there is no G-equivariant map from S(V') into S(W).



Atiyah, M. E. ; Segal, G. B. Equivariant K-theory and completion. J.
Differential Geometry 3 (1969), 1-18.

Bartsch, T. On the genus of representation spheres. Comment. Math.
Helv. 65 (1990), n° 1, 85-95.

Bartsch, T. Topological Methods for Variational Problems with

Symmetries. Lecture Notes in Mathematics 1560, Springer-Verlag,
Berlin (1993).

Bourgin, D. G. On some separation and mapping theorems.
Comment. Math. Helv. 29 (1955), 199-214.



[ Izydorek, M. ; Rybicki, S. On parametrized Borsuk-Ulam theorem for
free Zy,-action. Algebraic topology (San Feliu de Guixols 1990)
227-234, Lecture Notes in Math., 1509, Springer, Berlin, (1992).

@ de Mattos, D. ; dos Santos, E. L. A parametrized Borsuk-Ulam

theorem for a product of spheres with free Z,-action and free S*-action.
Algebraic and Geometric Topology 7 (2007) 1791-1804.

[4 Munkholm, H. J. Borsuk-Ulam theorem for proper Zy-actions on (mod
p homology) n-spheres. Math. Scan. 24 (1969) 167-185.

[3 Munkholm, H. J. On the Borsuk-Ulam theorem for Z-actions on
S?"=1 and maps S**~1 — R™. Osaka J. Math. 7 (1970) 451-456.



Segal, G. Equivariant K-theory. Publ. Math. IHES 34 (1968)
129-151.

Segal, G. Categories and cohomology theories. Topology 13
(1974), 293-312.

Serre, J. P. Linear representations of finite groups. Translated
from the second French edition by Leonard L. Scott.,
Graduate Texts in Mathematics 42, Springer-Verlag, New
York-Heidelberg, (1977).

Yang, C. T. On theorems of Borsuk-Ulam,
Kakutani-Yamabe-Yujob and Dyson. I., Ann. of Math. (2) 60,
(1954), 262-282.

Yang, C. T. On theorems of Borsuk-Ulam,
Kakutani-Yamabe-Yujob and Dyson. II. Ann. of Math. (2) 62
(1955), 271-283.



	

