Bourgin-Yang Theorem for G-equivariant maps

Edivaldo Lopes dos Santos - UFSCar Joint work with W. Marzantowicz - AMU - Poznań-Poland & D. de Mattos - ICMC - USP

> Florida State University Tallahassee February 21, 2013

> > ▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

 $A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & & & \\ & & x & \mapsto f(x) - f(-x) \end{array}$$

for which

 $Z_h = h^{-1}(0) = \{x \in S(\mathbb{R}^m) | h(x) = f(x) - f(-x) = 0, \} = A(f)$

くロケイボケイボケィーケ

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

$$A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & x & \mapsto f(x) - f(-x) \end{array}$$

for which

$$Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f).$$

Then, to give an estimate for a covering dimension of A(f), it is enough to give an estimate for a covering dimension A_{F}^{2} , A_{F}^{2} ,

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

$$A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & x & \mapsto f(x) - f(-x) \end{array}$$

for which

$$Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f).$$

Then, to give an estimate for a covering dimension of A(f), it is enough to give an estimate for a covering dimension of A(f), it is

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

$$A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & x & \mapsto f(x) - f(-x) \end{array}$$

for which

$$Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \mid h(x) = f(x) - f(-x) = 0, \} = A(f).$$

Then, to give an estimate for a covering dimension of A(f), it is enough to give an estimate for a covering dimension of $Z_{I=}, I= 200$

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

$$A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & x & \mapsto f(x) - f(-x) \end{array}$$

for which

$$Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \, | \, h(x) = f(x) - f(-x) = 0, \, \} = A(f).$$

Then, to give an estimate for a covering dimension of A(f), it is enough to give an estimate for a covering dimension of Z_{12} , Z_{12} , Z

The classical Borsuk-Ulam theorem says that: \forall continuous map f from the sphere $S(\mathbb{R}^{m+1})$ into \mathbb{R}^m , $\exists x \in S(\mathbb{R}^{m+1})$ such that f(x) = f(-x).

Remark. Let us observe that if $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ is a continuous map and

$$A(f) = \{ x \in S(\mathbb{R}^m) | f(x) = f(-x) \},\$$

we can define an equivariant map

$$\begin{array}{rcl} h: & S(\mathbb{R}^m) & \to \mathbb{R}^n \\ & x & \mapsto f(x) - f(-x) \end{array}$$

for which

$$Z_h = h^{-1}(0) = \{ x \in S(\mathbb{R}^m) \, | \, h(x) = f(x) - f(-x) = 0, \, \} = A(f).$$

Then, to give an estimate for a covering dimension of A(f), it is enough to give an estimate for a covering dimension of Z_{h} .

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

 $\dim Z_f \ge m-n-1$

- To prove this theorem it is enough to show that H^{m−n−1}(Z_ℓ/Z₂) ≠ 0, which implies dim Z_ℓ ≥ m − n − 1.
- The situation for Z_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

 $\dim Z_f \ge m-n-1$

- ▶ To prove this theorem it is enough to show that $H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0$, which implies dim $Z_f \geq m n 1$.
- The situation for Z_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

 $\dim Z_f \geq m-n-1$

- ▶ To prove this theorem it is enough to show that $H^{m-n-1}(Z_f/\mathbb{Z}_2) \neq 0$, which implies dim $Z_f \geq m n 1$.
- ▶ The situation for Z_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

 $\dim Z_f \geq m-n-1$

- ► To prove this theorem it is enough to show that $H^{m-n-1}(\mathbb{Z}_f/\mathbb{Z}_2) \neq 0$, which implies dim $\mathbb{Z}_f \geq m n 1$.
- ▶ The situation for Z_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Bourgin-Yang Theorem Let $f : S(\mathbb{R}^m) \to \mathbb{R}^n$ be a equivariant map. Then,

 $\dim Z_f \geq m-n-1$

- ► To prove this theorem it is enough to show that $H^{m-n-1}(\mathbb{Z}_f/\mathbb{Z}_2) \neq 0$, which implies dim $\mathbb{Z}_f \geq m n 1$.
- ► The situation for Z_p, p prime, is analogous. [Munkholm, Izydorek & Rybicki, de Mattos & dos Santos, ...]

• $G = \mathbb{Z}_{p^k}$, *p* prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for \mathbb{Z}_{pk} -equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146 - 2151.

• $G = (\mathbb{Z}_p)^k$ be the *p*-torus of rank *k*, *p* a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a *k*-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

• $G = \mathbb{Z}_{p^k}$, *p* prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for \mathbb{Z}_{pk} -equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146 - 2151.

• $G = (\mathbb{Z}_p)^k$ be the *p*-torus of rank *k*, *p* a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a *k*-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

 Let V, W be two orthogonal representations of G such that V^G = W^G = {0} (fixed points of G).

If p is odd, V and W admit the complex structure. Put d(V) = dim_C V = ¹/₂ dim_ℝ V and the same for d(W).

• $G = \mathbb{Z}_{p^k}$, *p* prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for \mathbb{Z}_{pk} -equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146 - 2151.

• $G = (\mathbb{Z}_p)^k$ be the *p*-torus of rank *k*, *p* a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a *k*-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

• Let *V*, *W* be two orthogonal representations of *G* such that $V^G = W^G = \{0\}$ (fixed points of *G*).

▶ If *p* is odd, *V* and *W* admit the complex structure. Put $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ and the same for d(W).

• $G = \mathbb{Z}_{p^k}$, *p* prime (equivariant K-theory).

Bourgin-Yang version of the Borsuk-Ulam theorem for \mathbb{Z}_{pk} -equivariant maps, Algebraic and Geometric Topology 12 (2012) 2146 - 2151.

• $G = (\mathbb{Z}_p)^k$ be the *p*-torus of rank *k*, *p* a prime, or $G = \mathbb{T}^k = (S^1)^k$ be a *k*-dimensional torus (Borel cohomology, Borel localization theorem, Borel cohomology of stable cohomotopy theory).

Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups, 2013, arXiv:1302.1494

- Let *V*, *W* be two orthogonal representations of *G* such that $V^G = W^G = \{0\}$ (fixed points of *G*).
- ▶ If *p* is odd, *V* and *W* admit the complex structure. Put $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ and the same for d(W).

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later.

d(N) < d(N) < d(N) > 0

then $\phi(V, W) \ge 0$ (e.g.if implies that there is no G-equivariant in a phone S(W) into S(W).

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

 $d(W) < d(V)/p^{k-1},$

then $\phi(V, W) \ge 0$ (e.g it implies that there is no *G*-equivariant map from S(V) into S(W)).

・ロト (四) (日) (日) (日) (日) (日)

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

 $d(W) < d(V)/p^{k-1},$

then $\phi(V, W) \ge 0$ (e.g it implies that there is no *G*-equivariant map from S(V) into S(W)).

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

 $d(W) < d(V)/p^{k-1},$

then $\phi(V, W) \ge 0$ (e.g it implies that there is no *G*-equivariant map from S(V) into S(W)).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

 $d(W) < d(V)/p^{k-1},$

then $\phi(V, W) \ge 0$ (e.g it implies that there is no *G*-equivariant map from S(V) into S(W)).

Theorem. Let *V*, *W* be two orthogonal representations of \mathbb{Z}_{p^k} . Let $f : S(V) \to W$ be a *G*-equivariant map and $Z_f := f^{-1}(0)$. Then, $\dim(Z_f) = \dim(Z_f/G) \ge \phi(V, W)$, where ϕ is a function which we describe later. In particular, if

 $d(W) < d(V)/p^{k-1},$

then $\phi(V, W) \ge 0$ (e.g it implies that there is no *G*-equivariant map from *S*(*V*) into *S*(*W*)).

Remark Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group *G* which contains an element *g* of order p^2 there exist two complex representations *V*, *W*, dim *V* > dim *W*, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark Anyway in [2] Bartsch has shown that there is not a *G*-equivariant map from S(V) into S(W) if

 $d(W) < d(V)/p^{k-1},$

Remark

Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group *G* which contains an element *g* of order p^2 there exist two complex representations *V*, *W*, dim *V* > dim *W*, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark Anyway in [2] Bartsch has shown that there is not a *G*-equivariant map from S(V) into S(W) if

 $d(W) < d(V)/p^{k-1},$

Remark

Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group *G* which contains an element *g* of order p^2 there exist two complex representations *V*, *W*, dim *V* > dim *W*, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark Anyway in [2] Bartsch has shown that there is not a *G*-equivariant map from S(V) into S(W) if

 $d(W) < d(V)/p^{k-1},$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Remark

Note that opposite to the case $G = \mathbb{Z}_p$, for $G = \mathbb{Z}_{p^k}$ the classical formulation of the Borsuk-Ulam theorem does not hold.

In Bartsch Lecture Notes [3] (Th. 3.22) it is shown that for any (finite) group *G* which contains an element *g* of order p^2 there exist two complex representations *V*, *W*, dim *V* > dim *W*, and an equivariant map $f : S(V) \rightarrow S(W)$.

Remark Anyway in [2] Bartsch has shown that there is not a *G*-equivariant map from S(V) into S(W) if

 $d(W) < d(V)/p^{k-1},$

Definition The (\mathcal{A}, K_G^*) – cup length of X is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and *G*-maps

 $\beta_i: A_i \to X, \ 1 \le i \le r,$

with the following property: $\forall \gamma \in K^*_G(X) \text{ and } \forall \omega_i \in \ker \beta^*_i,$

 $\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Let A be a set of G-spaces (usually, it is a family of orbits).

Let X be a G-spaces.

Definition The (\mathcal{A}, K_G^*) – cup length of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and *G*-maps

 $\beta_i: A_i \to X, \ 1 \le i \le r,$

with the following property: $\forall \ \gamma \in K^*_G(X) \ and \ \forall \ \omega_i \in \ker \beta^*_i,$

 $\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$

▶ If there is not such r, (A, K) – cup length of X is co.

Definition The (\mathcal{A}, K_G^*) – cup length of X is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and *G*-maps

 $\beta_i : A_i \to X, \ 1 \le i \le r,$

with the following property: $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in \ker \beta_i^*,$

 $\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$

▶ If there is not such r_r (\mathcal{A}, K_G^*) – cup length of X is ∞ .

Definition

The (\mathcal{A}, K_G^*) – cup length of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and *G*-maps

 $\beta_i: A_i \to X, \ 1 \le i \le r,$

with the following property:

 $\forall \gamma \in K^*_G(X) \text{ and } \forall \omega_i \in \ker \beta_i^*$,

 $\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$

▶ If there is not such r, (\mathcal{A}, K_G^*) – cup length of X is ∞.

Definition

The (\mathcal{A}, K_G^*) – cup length of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ and *G*-maps

 $\beta_i: A_i \to X, \ 1 \le i \le r,$

with the following property: $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in \ker \beta_i^*,$

 $\omega_1 \cup \omega_2 \cup \ldots \cup \omega_r \cup \gamma = 0 \in K^*_G(X).$

• If there is not such r, (\mathcal{A}, K_G^*) – cup length of X is ∞ .

- ▶ We can consider the notion of (A, K^{*}_G, I) *length index* defined in a little bit different way.
- For the equivariant cohomology theory K_G^* and a *G*-space *X*, the cohomology

is a *R*-module over the coefficient ring $R =: K_G^*(\text{pt})$ via the natural *G*-map $p_X : X \to \text{pt}$.

► We write

 $\omega \cdot \gamma = p_X^*(\omega) \cup \gamma$, and $\omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2$,

- ► We can consider the notion of (A, K^{*}_G, I) *length index* defined in a little bit different way.
- For the equivariant cohomology theory K_G^* and a *G*-space *X*, the cohomology

is a *R*-module over the coefficient ring $R =: K_G^*(\text{pt})$ via the natural *G*-map $p_X : X \to \text{pt}$.

► We write

 $\omega \cdot \gamma = p_X^*(\omega) \cup \gamma$, and $\omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► We can consider the notion of (A, K^{*}_G, I) *length index* defined in a little bit different way.
- ► For the equivariant cohomology theory *K*^{*}_{*G*} and a *G*-space *X*, the cohomology

is a *R*-module over the coefficient ring $R =: K_G^*(\text{pt})$ via the natural *G*-map $p_X : X \to \text{pt}$.

► We write

 $\omega \cdot \gamma = p_X^*(\omega) \cup \gamma$, and $\omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2$,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- ► We can consider the notion of (A, K^{*}_G, I) *length index* defined in a little bit different way.
- ► For the equivariant cohomology theory *K*^{*}_{*G*} and a *G*-space *X*, the cohomology

is a *R*-module over the coefficient ring $R =: K_G^*(\text{pt})$ via the natural *G*-map $p_X : X \to \text{pt}$.

► We write

$$\omega \cdot \gamma = p_X^*(\omega) \cup \gamma$$
, and $\omega_1 \cdot \omega_2 = \omega_1 \cup \omega_2$,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Taking the ideal $I := K_G(pt) = R(G) \subset K_G^*(pt) = R$

Definition.

The (\mathcal{A}, K_G^*, I) – *length index* of X is the **smallest** r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

 $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\operatorname{pt}) \to K_G(A_i)),$ $i = 1, 2, \ldots, r,$ the product

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K^*_G(X).$$
Taking the ideal $I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R$

Definition.

The (\mathcal{A}, K_G^*, I) – *length index* of X is the **smallest** r such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

 $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\operatorname{pt}) \to K_G(A_i)),$ $i = 1, 2, \dots, r,$ the product

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K^*_G(X).$$

Taking the ideal $I := K_G(pt) = R(G) \subset K_G^*(pt) = R$

Definition.

The (\mathcal{A}, K_G^*, I) – *length index* of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

 $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\operatorname{pt}) \to K_G(A_i)),$ $i = 1, 2, \dots, r,$ the product

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K^*_G(X).$$

Taking the ideal $I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R$

Definition.

The (\mathcal{A}, K_G^*, I) – *length index* of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

 $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\text{pt}) \to K_G(A_i)),$ $i = 1, 2, \dots, r,$ the product

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K^*_G(X).$$

Taking the ideal $I := K_G(\text{pt}) = R(G) \subset K_G^*(\text{pt}) = R$

Definition.

The (\mathcal{A}, K_G^*, I) – *length index* of *X* is the **smallest** *r* such that there exist $A_1, A_2, \ldots, A_r \in \mathcal{A}$ with the following property:

 $\forall \gamma \in K_G^*(X) \text{ and } \forall \omega_i \in I \cap \ker(R \to K_G^*(A_i)) = \ker(K_G(\text{pt}) \to K_G(A_i)), i = 1, 2, \dots, r,$ the product

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

$$\omega_1 \cdot \omega_2 \cdot \cdots \cdot \omega_r \cdot \gamma = 0 \in K^*_G(X).$$

• Given two powers $1 \le m \le n \le p^{k-1}$ of p, we put $\mathcal{A}_{m,n} := \{G/H \mid H \subset G; \ m \le |H| \le n \}, \tag{1}$

▶ Next we put

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of (X).$ (2)

• The index l_n does not depend on m.

Taking $\mathcal{A}' = \{G/H \,|\, |H| = n \,\}$ we can show that

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of X = (\mathcal{A}', K_G^*, I) - length index of X.$

Therefore, to compute this index it is enough to consider

 $\omega_i \in kar(K_G(pt) \rightarrow K_G(G/H))$ Vi

► Given two powers $1 \le m \le n \le p^{k-1}$ of p, we put $\mathcal{A}_{m,n} := \{G/H | H \subset G; m \le |H| \le n \},$ (1)

where |H| is the cardinality of H.

Next we put

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length \ index \ of \ (X) \ .$ (2)

• The index l_n does not depend on m.

Taking $\mathcal{A}' = \{G/H \mid |H| = n\}$ we can show that

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of X = (\mathcal{A}', K_G^*, I) - length index of X.$

Therefore, to compute this index it is enough to consider

 $\omega_i \in \ker(K_G(\mathrm{pt}) \to K_G(G/H)) \ \forall i$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

• Given two powers $1 \le m \le n \le p^{k-1}$ of p, we put

$$\mathcal{A}_{m,n} := \{ G/H \, | \, H \subset G; \, m \le |H| \le n \, \}, \tag{1}$$

where |H| is the cardinality of *H*.

Next we put

$$l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of (X).$$
(2)

• The index l_n does not depend on m.

Taking $\mathcal{A}' = \{G/H \mid |H| = n\}$ we can show that

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of X = (\mathcal{A}', K_G^*, I) - length index of X.$

Therefore, to compute this index it is enough to consider

 $\omega_i \in \ker(K_G(\mathrm{pt}) \to K_G(G/H)) \ \forall i$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Given two powers $1 \le m \le n \le p^{k-1}$ of p, we put

$$\mathcal{A}_{m,n} := \{ G/H \, | \, H \subset G; \, m \le |H| \le n \, \}, \tag{1}$$

where |H| is the cardinality of *H*.

Next we put

$$l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of (X).$$
(2)

• The index l_n does not depend on m.

Taking $\mathcal{A}' = \{G/H \mid |H| = n\}$ we can show that

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of X = (\mathcal{A}', K_G^*, I) - length index of X.$

Therefore, to compute this index it is enough to consider

 $\omega_i \in \ker(K_G(\mathrm{pt}) \to K_G(G/H)) \ \forall i$

・ロト・西ト・ヨト・ヨー もくの

• Given two powers $1 \le m \le n \le p^{k-1}$ of p, we put

$$\mathcal{A}_{m,n} := \{ G/H \, | \, H \subset G; \, m \le |H| \le n \, \}, \tag{1}$$

where |H| is the cardinality of *H*.

Next we put

$$l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of (X).$$
(2)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• The index l_n does not depend on m.

Taking $\mathcal{A}' = \{G/H \mid |H| = n\}$ we can show that

 $l_n(X) = (\mathcal{A}_{m,n}, K_G^*, I) - length index of X = (\mathcal{A}', K_G^*, I) - length index of X.$

Therefore, to compute this index it is enough to consider

 $\omega_i \in \ker(K_G(\mathrm{pt}) \to K_G(G/H)) \ \forall i$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.
- We denote by A_X a set of all *G*-orbits of *X*.

Let V be an orthogonal representation of $G = \mathbb{Z}_{qk}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Eix m, n two powers of p as above. Then

in the local sector of the local statement of the local sector secto

$L_n(S(\mathbb{V})) = d...$

The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.

• We denote by A_X a set of all *G*-orbits of *X*.

Theorem A.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left[\frac{(d-1)m}{n}\right] & \text{if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}, \\ \infty & \text{if } \mathcal{A}_{S(V)} \notin \mathcal{A}_{1,n}, \end{cases}$$

where [x] denotes the least integer greater than or equal to x. Moreover, if $A_{5(V)} \subset A_{n,n}$, then

 $l_n(S(V)) = d.$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.
- We denote by A_X a set of all *G*-orbits of *X*.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left[\frac{(d-1)m}{n}\right] & \text{if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}, \\ \infty & \text{if } \mathcal{A}_{S(V)} \notin \mathcal{A}_{1,n}, \end{cases}$$

where [x] denotes the least integer greater than or equal to x. Moreover, if $\mathcal{A}_{S(V)} \subset \mathcal{A}_{n,n}$, then

 $l_n(S(V))=d.$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.
- We denote by A_X a set of all *G*-orbits of *X*.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left[\frac{(d-1)m}{n}\right] & \text{if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}, \\ \infty & \text{if } \mathcal{A}_{S(V)} \notin \mathcal{A}_{1,n}, \end{cases}$$

where [x] denotes the least integer greater than or equal to x. Moreover, if $\mathcal{A}_{S(V)} \subset \mathcal{A}_{n,n}$, then

 $l_n(S(V)) = d.$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.
- We denote by A_X a set of all *G*-orbits of *X*.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \geq \begin{cases} 1 + \left[\frac{(d-1)m}{n}\right] & \text{if } \mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}, \\ \infty & \text{if } \mathcal{A}_{S(V)} \nsubseteq \mathcal{A}_{1,n}, \end{cases}$$

where [x] denotes the least integer greater than or equal to x. Moreover, if $A_{S(V)} \subset A_{n,n}$, then

 $l_n(S(V)) = d.$

- The following result of Bartsch ([2]) is fundamental for the estimate from below of the index of Z_f.
- We denote by A_X a set of all *G*-orbits of *X*.

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$ with $V^G = \{0\}$ and $d = d(V) = \frac{1}{2} \dim_{\mathbb{R}} V$. Fix m, n two powers of p as above. Then

$$l_n(S(V)) \ge egin{cases} 1+\left[rac{(d-1)m}{n}
ight] & \textit{if} \ \mathcal{A}_{S(V)}\subset\mathcal{A}_{m,n}, \ \infty & \textit{if} \ \mathcal{A}_{S(V)}
ot\subseteq\mathcal{A}_{1,n}, \end{cases}$$

where [x] denotes the least integer greater than or equal to x. Moreover, if $\mathcal{A}_{S(V)} \subset \mathcal{A}_{n,n}$, then

$$l_n(S(V)) = d.$$

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_G^q is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_G^q(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_G^q at an orbit $Gx = G/G_x$ equal to $R(G_x)$, if q is even, and $\mathcal{K}_G^q = 0$, if q is odd.

Consider the filtration of $K^*_{\mathcal{C}}(X)$ associated to this spectral sequence:we

 $K^*_{\mathbf{C}}(X) \supset K^*_{\mathbf{C},1}(X) \supset \ldots \supset K^*_{\mathbf{C},p}(X) \supset \ldots$ such that $K^*_{\mathbf{C}}(X)$ is a filtered ring in the sense that

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K^*_{\mathcal{C}}(X)$ associated to this spectral sequence:we

 $K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots$ such that $K^*_G(X)$ is a filtered ring in the sense that

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

 $E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence: we

 $K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset .$ such that $K^*_G(X)$ is a filtered ring in the sense that

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence:we

 $K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset .$ such that $K^*_G(X)$ is a filtered ring in the sense that

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence:we

 $K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots$ the that $K^*_G(X)$ is a filtered ring in the sense that

 $K_{G,p}^*(X) \cdot K_{G,q}^*(X) \subset K_{G,p+q}^*(X)$

・ロト・日本・日本・日本・日本・日本

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K^*_G(X)$ associated to this spectral sequence:we

$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots$

such that $K_G^*(X)$ is a filtered ring in the sense that

How to relate the length index in $K_G(X)$ and the covering dimension of X ?

G. Segal showed that there exists an Atiyah-Hirzebruch spectral sequence for the equivariant K-theory

$$E_2^{p,q} = H^p(X/G; \mathcal{K}_G^q \pi) \Rightarrow K_G^*(X),$$

where \mathcal{K}_{G}^{q} is the sheaf on X/G associated to the presheaf $V \to \mathcal{K}_{G}^{q}(\pi^{-1}\overline{V})$ ($\pi : X \to X/G$ is the projection) with the stalk \mathcal{K}_{G}^{q} at an orbit $Gx = G/G_{x}$ equal to $R(G_{x})$, if q is even, and $\mathcal{K}_{G}^{q} = 0$, if q is odd.

Consider the filtration of $K_G^*(X)$ associated to this spectral sequence:we

$$K^*_G(X) \supset K^*_{G,1}(X) \supset \ldots \supset K^*_{G,p}(X) \supset \ldots,$$

such that $K_G^*(X)$ is a filtered ring in the sense that

$$K^*_{G,p}(X) \cdot K^*_{G,q}(X) \subset K^*_{G,p+q}(X)$$

Lemma B.*If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then*

 $K_{G,1}(X) = ker(K_G(X) \to K_G(G/H)).$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$, and suppose that $\mathcal{A}_X \subset \mathcal{A}_{m,n}$. If $l_n(X) \ge r+1$ then dim $X = \dim X/G \ge 2r$.

イロト イロト イモト イモト 三日

Sac

Lemma B.*If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then*

 $K_{G,1}(X) = ker(K_G(X) \rightarrow K_G(G/H)).$

Theorem B. Let X *be a compact* G*-space, with* $G = \mathbb{Z}_{p^k}$ *, and suppose that* $\mathcal{A}_X \subset \mathcal{A}_{m,n}$ *. If* $l_n(X) \ge r + 1$ *then* dim $X = \dim X/G \ge 2r$.

イロト イポト イヨト イヨト 三日

Sac

Lemma B.*If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then*

 $K_{G,1}(X) = ker(K_G(X) \to K_G(G/H)).$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$ *, and suppose that* $\mathcal{A}_X \subset \mathcal{A}_{m,n}$ *. If* $l_n(X) \ge r + 1$ *then* dim $X = \dim X/G \ge 2r$ *.*

Lemma B.*If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then*

 $K_{G,1}(X) = ker(K_G(X) \to K_G(G/H)).$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$ *, and suppose that* $\mathcal{A}_X \subset \mathcal{A}_{m,n}$ *. If* $l_n(X) \ge r+1$ *then* dim $X = \dim X/G \ge 2r$ *.*

Lemma B.*If the subgroups of G are totally ordered and H is the largest isotropic subgroup on X, then*

 $K_{G,1}(X) = ker(K_G(X) \to K_G(G/H)).$

Theorem B. Let X be a compact G-space, with $G = \mathbb{Z}_{p^k}$ *, and suppose that* $\mathcal{A}_X \subset \mathcal{A}_{m,n}$ *. If* $l_n(X) \ge r + 1$ *then* dim $X = \dim X/G \ge 2r$.

Theorem 1. Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Theorem 1. Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

Theorem 1. Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

・ロト・西ト・ヨト・ヨー もくの

Theorem 1. Let V, W be two complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, such that $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$l_n(Z_f) \geq 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W).$$

In particular, if $d(W) < d(V)/p^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no *G*-equivariant map from S(V) into S(W).

 Using monotonicity and additivity properties of the length index we show that

$$l_n(Z_f) \ge l_n(S(V)) - l_n(S(W)).$$

▶ By assumption, $A_{S(V)} \subset A_{m,n}$ and from Theorem A

$$l_n(Z_f) \ge 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently, from Theorem B,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V, W)$$

 Using monotonicity and additivity properties of the length index we show that

$$l_n(Z_f) \ge l_n(S(V)) - l_n(S(W)).$$

▶ By assumption, $A_{S(V)} \subset A_{m,n}$ and from Theorem A

$$l_n(Z_f) \ge 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently, from Theorem B,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V, W)$$

< □ > < @ > < E > < E > E のQ@

 Using monotonicity and additivity properties of the length index we show that

$$l_n(Z_f) \ge l_n(S(V)) - l_n(S(W)).$$

▶ By assumption, $A_{S(V)} \subset A_{m,n}$ and from Theorem A

$$l_n(Z_f) \ge 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

► Consequently, from Theorem B,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V, W)$$

< □ > < @ > < E > < E > E のQ@

 Using monotonicity and additivity properties of the length index we show that

$$l_n(Z_f) \ge l_n(S(V)) - l_n(S(W)).$$

▶ By assumption, $A_{S(V)} \subset A_{m,n}$ and from Theorem A

$$l_n(Z_f) \ge 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

Consequently, from Theorem B,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W)$$

 Using monotonicity and additivity properties of the length index we show that

$$l_n(Z_f) \ge l_n(S(V)) - l_n(S(W)).$$

▶ By assumption, $A_{S(V)} \subset A_{m,n}$ and from Theorem A

$$l_n(Z_f) \ge 1 + \left[\frac{(d(V)-1)m}{n}\right] - d(W).$$

► Consequently, from Theorem B,

$$\dim(Z_f) \geq 2\left(\left[\frac{(d(V)-1)m}{n}\right] - d(W)\right) := \phi(V,W).$$
Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$\dim(Z_f) \geq \left[\frac{(d(V)-1)m}{n}\right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

(日)、

500

Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$\dim(Z_f) \geq \left[\frac{(d(V)-1)m}{n}\right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$\dim(Z_f) \geq \left[\frac{(d(V)-1)m}{n}\right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no G-equivariant map from S(V) into S(W).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let V, W be two real orthogonal representations of $G = \mathbb{Z}_{2^k}$, with $V^G = W^G = \{0\}$. Consider $f : S(V) \xrightarrow{G} W$ an equivariant map. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$\dim(Z_f) \geq \left[\frac{(d(V)-1)m}{n}\right] - d(W) = \phi(V, W).$$

In particular, if $d(W) < d(V)/2^{k-1}$, then $\phi(V, W) \ge 0$, which means that there is no *G*-equivariant map from S(V) into S(W).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Atiyah, M. F. ; Segal, G. B. *Equivariant K-theory and completion*. J. Differential Geometry 3 (1969), 1-18.
- Bartsch, T. *On the genus of representation spheres*. Comment. Math. Helv. 65 (1990), n° 1, 85-95.
- Bartsch, T. *Topological Methods for Variational Problems with Symmetries*. Lecture Notes in Mathematics 1560, Springer-Verlag, Berlin (1993).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Bourgin, D. G. *On some separation and mapping theorems*. Comment. Math. Helv. 29 (1955), 199-214.

- Izydorek, M. ; Rybicki, S. On parametrized Borsuk-Ulam theorem for free ℤ_p-action. Algebraic topology (San Feliu de Guixols 1990) 227-234, Lecture Notes in Math., 1509, Springer, Berlin, (1992).
- de Mattos, D. ; dos Santos, E. L. *A parametrized Borsuk-Ulam theorem for a product of spheres with free* \mathbb{Z}_p *-action and free S*¹*-action*. Algebraic and Geometric Topology 7 (2007) 1791-1804.
- Munkholm, H. J. Borsuk-Ulam theorem for proper \mathbb{Z}_p -actions on (mod *p* homology) *n*-spheres. Math. Scan. 24 (1969) 167-185.

Munkholm, H. J. On the Borsuk-Ulam theorem for Z_{p^a} -actions on S^{2n-1} and maps $S^{2n-1} \to \mathbb{R}^m$. Osaka J. Math. 7 (1970) 451-456.

- Segal, G. Equivariant K-theory. Publ. Math. IHES 34 (1968) 129-151.
- Segal, G. *Categories and cohomology theories*. Topology 13 (1974), 293-312.
- Serre, J. P. *Linear representations of finite groups*. Translated from the second French edition by Leonard L. Scott., Graduate Texts in Mathematics 42, Springer-Verlag, New York-Heidelberg, (1977).
- Yang, C. T. On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujob and Dyson. I., Ann. of Math. (2) 60, (1954), 262-282.
- Yang, C. T. On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujob and Dyson. II. Ann. of Math. (2) 62 (1955), 271-283.