Pseudo-Anosov flows in graph manifolds with periodic pieces

Russ Waller

Florida State University

Definition Let Φ be a flow on a closed 3-manifold M. We say that Φ is a pseudo-Anosov flow if the following conditions are satisfied:

- For each $x \in M$, the flow line $t \rightarrow \Phi(x, t)$ is C^{1}, it is not a single point, and the tangent vector bundle $D_{t} \Phi$ is C^{0} in M.
- There are two (possibly) singular transverse foliations Λ^{s}, Λ^{u} which are two dimensional, with leaves saturated by the flow and so that Λ^{s}, Λ^{u} intersect exactly along the flow lines of Φ.
- There are a finite number (possibly zero) of periodic orbits $\left\{\gamma_{i}\right\}$, called singular orbits. A stable/unstable leaf containing a singularity is homeomorphic to $P \times I / f$ where P is a p-prong in the plane and f is a homeomorphism from $P \times\{1\}$ to $P \times\{0\}$. In addition, p is at least 3.
- In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are backward asymptotic.

Definition A pseudo-Anosov flow without singular orbits is an Anosov flow.

Manifolds that admit pseudo-Anosov flows

- have \mathbb{R}^{3} as a universal cover
- have infinite fundamental group with exponential growth

Definition A graph manifold is an irreducible 3-manifold where all of the pieces of the torus decomposition are Seifert.

Definition In relation to a pseudo-Anosov flow, a Seifert fibered piece is periodic if the piece admits a Seifert fibration for which a regular fiber is freely homotopic to a closed orbit of the flow.

Definition A graph manifold in which all pieces of the torus decomposition are periodic is totally periodic.

Fundamental objective: Find new examples of totally periodic graph manifolds with pseudo-Anosov flow.

Method:

- Show that totally periodic graph manifolds with pseudoAnosov flow can be described using what are called fat graphs.
- Study fat graphs.

Definition A Birkhoff annulus is an immersed annulus so that each boundary component is a closed orbit of the flow and the interior of the annulus is transverse to the flow.

Let $I=[-\pi / 2, \pi / 2]$. Let $N=I \times \mathbb{S}^{1} \times I$ with coordinates (x, y, z), thinking of \mathbb{S}^{1} as $[0,1] / 0 \sim 1$. For every real number $\lambda>0$, define the C^{∞} vector field X_{λ} defined by
$\dot{x}=0$

$$
\begin{aligned}
& \dot{y}=\lambda \sin (x) \cos ^{2}(z) \\
& \dot{z}=\cos ^{2}(x)+\sin ^{2}(z) \sin ^{2}(x)
\end{aligned}
$$

The Birkhoff annulus associated to the block N is

$$
B=[-\pi / 2, \pi / 2] \times \mathbb{S}^{1} \times\{0\} .
$$

Definition Given a surface Σ with boundary that retracts onto a graph X, Σ is a fat graph for X and X is flow graph if:
(i) the valence of every vertex is an even number.
(ii) the set of boundary components of Σ can be partitioned into two subsets so that for every edge e of X, the two sides of e in Σ lie in different subsets of this partition.

Note We do not require Σ to be orientable.
Remark A vertex of valence $2 p$ corresponds to a p-prong.

Definition A flow graph is irreducible if each vertex has a valence of at least 4.

Definition An irreducible flow graph is a pseudo-Anosov graph if each of the boundary components of the corresponding surface retract onto an even number of edges when the surface is retracted onto the graph.

Definition An Anosov graph is a 4-regular pseudo-Anosov graph.

Theorem 1 (W) Spheres with 2,3, or 5 boundary components do not admit pseudo-Anosov graphs.

Theorem 2 (W) Orientable surfaces of genus g with b boundary components and $x \leq b-x$ incoming boundary components admit a pseudo-Anosov graph with v vertices if and only if

- $b \geq 2$,
- $v+b$ is even,
- $x \geq 1-g+(b-v) / 2$, and
$\bullet v \leq b-2+2 g$, with strict inequality if v is odd and $g=0$.

Theorem 3 (W) The connected sum of k real projective planes with b boundary components and $x \leq b-x$ incoming boundary components admits a pseudo-Anosov graph with v vertices if and only if

- $b \geq 2$,
- $v+b+k$ is even,
- $x \geq 1+(b-v-k) / 2$, and
- $v \leq b-2+k$.

Corollary 4 (W) Punctured spheres do not admit Anosov graphs with an odd number of vertices.

Corollary 5 (W) Orientable surfaces of positive genus admit an Anosov graph if and only if

- $b \geq 2$,
- $v+b$ is even,
- $x \geq 1-g+(b-v) / 2$, and
- $v=b-2+2 g$.

Corollary 6 (W) The connected sum of k real projective planes admits an Anosov graph if and only if - $b \geq 2$,

- $v+b+k$ is even,
- $x \geq 1+(b-v-k) / 2$, and
- $v=b-2+k$.

Theorem 7 (W) A b-punctured sphere that admits a pseudo-Anosov graph with v vertices admits a pseudoAnosov graph whose vertices have valence $\alpha_{1}, \ldots, \alpha_{v}$ if and only if

- $\alpha_{1}+\ldots+\alpha_{v}=2 v+2 b-4$, and
- some subset of $\left\{\alpha_{1}, \ldots, \alpha_{v}\right\}$ sums to $\left(\alpha_{1}+\ldots+\alpha_{v}\right) / 2$.

Theorem 8 (W) Any orientable surface of positive genus and any non-orientable surface that admits a pseudo-Anosov graph with v vertices admits a pseudoAnosov graph whose vertices have valence $\alpha_{1}, \ldots, \alpha_{v}$ if and only if

$$
\begin{aligned}
& \alpha_{1}+\ldots+\alpha_{v}=2 v+2 b+4 g-4 \text { or } \\
& \alpha_{1}+\ldots+\alpha_{v}=2 v+2 b+2 k-4, \text { respectively. }
\end{aligned}
$$

Thank you

