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Minimum dilatation problem

Let S be a compact surface with x(S) <0, andlet ¢:S — S a
homeomorphism.

Loosely speaking, ¢ is pseudo-Anosov if ¢ is “well-mixing” .

The dilatation A(¢) is the “average distortion” of the map.
These notions only depend on the isotopy class of the map.

Problem 1: For fixed S what is the least dilatation of a
pseudo-Anosov map?

Problem 2: How does least dilatation depend on the complexity
of the surface S (e.g. genus, topological Euler characteristic)?

Problem 3: What do the minimizing pseudo-Anosov maps look
like?



Outline

In this talk, we consider two examples:

@ the simplest pseudo-Anosov braid monodromy and its
“deformations”

@ an example of Penner

Using these examples, we formulate some conjectural answers to
Problems 2 and 3.



Example 1: Simplest pseudo-Anosov braid monodromy
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» back to start



Action of the mapping class

Action of the mapping class on a simple closed curve.
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Action on a simple closed curve:
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Action on a simple closed curve (one application of map):
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Action on a simple closed curve (2 applications of map):
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Action on a simple closed curve (3 applications of map):

» back to start



Definitions

A homeomorphism ¢ : S — S is pseudo-Anosov if there is a pair of
¢-invariant transverse measured singular foliations (F*,v%) on S

and a A > 1 so that the action of ¢ on S acts on the measures by
ot = N\FLyE,

Equivalently:

¢ is pseudo-Anosov if for any Riemannian metric w on S and any
essential simple closed curve v C S, the growth rate of £,(¢"(7))
is A > 1, where A\ does not depend on 7y or w.

A(¢) = A is called the dilatation of ¢.



An associated train track map

A train track 7 is an embedded graph on S, with "smoothings” of
the edges along vertices.

It fills S if the complement components are either disks or
boundary parallel annuli.

An essential simple closed curve is carried on a train track if it can
be moved isotopically so that it lies smoothly on 7.

If ¢ is pseudo-Anosov, then there is a train track 7 on S such that
for any essential simple closed curve v on S, ¢"(7y) is carried on T
for large enough n.



Computing the dilatation of the simplest hyperbolic braid
monodromy

A train track 7 defines a vector space W of “virtual curves”
carried by the train track.

Any pseudo-Anosov map ¢ that is compatible with 7 induces a
linear mapon T : W — W.
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The dilatation A equals the spectral radius of T:
3 5
X —3x + 1| = V5 = (golden mean)?
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Minimization problem |

If (S, ¢) is pseudo-Anosov, then
@ \(¢) is an algebraic integer, in fact, a Perron number,

o the degree of A(¢) is bounded in terms of the topology of S,

It follows that for a fixed surface S the set of A(¢) forms a discrete
set of algebraic integers.

Problem 1: For fixed S what is the smallest dilatation?
For example, for S = S5p 4, the simplest pseudo-Anosov braid

monodromy has smallest dilatation.

The minimum is also known for Sq , for n =5,6,7,8, and 511,520
[Ko-Los-Song'02, Ham-Song'05, Cho-Ham'08, H_-Kin'06,
Aaber’'06, Lanneau-Thiffeault'11]



Minimization Problems [l, IlI

Let P be the set of all pseudo-Anosov mapping classes (S is
allowed to vary).

The normalized dilatation of (S, ¢) is defined to be
L(S, ) = (SN,
Problem 2: What is the smallest accumulation point of L?

Problem 3: What do mapping classes with bounded L look like?



Deformations of pseudo-Anosov mapping classes

By Thurston’s theory of fibered faces, P partitions into families
associated to fibered faces parametrized by rational points Fg on a
convex Euclidean polyhedron F. The mapping classes belonging to
a single Fq correspond to transversal (recurrent) surfaces to a
single pseudo-Anosov flow on a hyperbolic 3-manifold, and thus
have related dynamics.

This gives a decomposition of P:

P=JFo

as opposed to the more usual
P = U Ps.
S

In the former, one has a notion of deformation of a mapping class
on a stratum, while in the latter each stratum is discrete.



Deformations of pseudo-Anosov mapping classes

Theorem (Fried '82, Matsumoto '87, McMullen '00)

The normalized dilatation function
L(S,#) = A(S)X)
defined on Fg extends to a continuous convex function on F.

Corollary
For each F, L has a unique minimum on F.

Remark: (Hongbin Sun), the minimum is not necessarily attained
by an element of Fg.



Describing pseudo-Anosov maps with bounded L

Let P% C P be the set of pA maps with no interior singularities.
Theorem (Farb-Leininger-Margalit'08)

For any P > 1, there is a finite collection of fibered faces
Fi,...,Fk such that for any (S, $) € P° such that L(S,$) < P,
we have (S, ¢) € F; for some i.

Consequences and remarks:

@ To describe the small dilatation maps it suffices to describe
what the monodromy on single fibered faces look like.

@ For the moment, there is no good bound on the number k. It
would be nice to be able to relate geometric information
about the a fibered 3-manifold to the size of minimum
normalized dilatation.

@ Opposite approach: look at natural families of small dilatation
maps, and the fibered faces they determine.



Penner's Example

(Penner '91) First explicit example of a small dilatation family:

C —1
g = rgécgébg Oag

Penner: \(S;)8 is bounded.
More generally, for each % with m > 2 and kK > 1, we can consider
Gkm = 80,0,

This gives a family of pA maps parameterized by rational points on
an open interval.



Convergence of Penner’'s sequence

Theorem (H_'12)

Each Penner-type family is a one-dimensional linear section of a
fibered face.

Application: Penner's sequence is a convergent sequence on a
fibered face F

Og = rgle,0p 02,  — & =060, s




Deformations of the simplest pseudo-Anosov braid
monodromy
(Thurston'80s, McMullen'00, H_'09)
@ The fibered face associated to the simplest pA braid is

1-dimensional.

@ One can parameterize the fibered face by an open interval
(—=1,1) so that % € (—1,1) corresponds to a pseudo-Anosov
map (S, ¢), where

X(S)=—m
and
Ao) = \xzm — xMtk _m _ m—k 4 1].

@ The minimum normalized dilatation occurs at 0, and

2
L(So, $0) = (3 + ‘/§> ~ 6.8541. ..
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Train track automata (Ko-Los-Song '04)

Train track maps can be decomposed into a composition of folding
maps, where two edges meeting at a cusp get identified.

This changes the train track to a new one that is still compatible
with the same pseudo-Anosov map.

One can define an automaton, where the train tracks are the
vertices, and there is a directed edge from a train track to the
result of one folding.

(also studied by Ham-Song, Cho-Ham, Lanneau-Thiffeault)



Train track map for the deformation of the simplest pA
braid at k/m =1/2

G

c
a—>c
b—>c

b

0 b—>a
—_—
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Train track map for 1/m (where 3 fm)




Murasugi-sum of mapping classes

Observation: the maps (S1,¢1) can be obtained from (5%,¢>%) by

a sequence of Murasugi-sum with mapping classes that are
periodic relative to their boundary.

(H-) For deformations of the simplest pA braid monodromy, they
can be described using mixed-sign Coxeter graphs, and as twisted
maps.



Twisted maps

Let (S, ¢) be a pA map, where S is a surface with boundary, Let
Py C S be a 2k-gon, such that every other boundary edge lies in
05, and the rest of Py lies in the interior of S. Then we can define
a family of twisted maps (Sp, ¢) by

For k = 2:

For k = 3:
<.
N
SE

NN



Conjectural answers to Minimizations Problems Il and Il

Conjecture
The smallest accumulation point for L on P equals

2
3+V5
5 :
Conjecture

For P > 1 there is a constant C (depending on P), such that for
every (S, ¢) with L(S,¢) < P, we have

o a subsurface Y C S with |x(Y)| < C, and a mapping class ¢
supported on Y,

@ a subsurface ¥ C S, and a mapping class R supported on *
that is periodic relative to the boundary of L,

such that ¢ = R o $



Thank you.
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