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Abstract

This paper presents a construction of �bered links (K;�) out of chord diagrams L.

Let � be the incidence graph of L. Under certain conditions on L the symmetrized

Seifert matrix of (K;�) equals the bilinear form of the simply-laced Coxeter system

(W;S) associated to �; and the monodromy of (K;�) equals minus the Coxeter element

of (W;S). Lehmer's problem is solved for the monodromy of these Coxeter links. 1

1 Introduction

A chord diagram L is a collection of straight arcs, or chords, on the unit disk D � R
2

connecting mutually disjoint pairs of points on the boundary of D. A chord system is a

chord diagram such that the chords are ordered and oriented. Given two distinct oriented

chords `1 and `2 de�ne their linking number link(`1; `2) to be the linking number of their

endpoints considered as oriented 0-spheres on S1.

To any chord system L = f`1; : : : ; `ng one can associate an n-dimensional vector space

R
L together with a skew-symmetric link form F de�ned by

F (`i; `j) =

�
0 if i = j

link(`i; `j) if i 6= j

The �rst result of this paper is a construction of a �bered link whose Seifert form is equiv-

alent to the link form of a given chord system.

A �bered link (K;�) is a pair consisting of a link K � S3 and an oriented surface � so

that the complement S3 nK �bers locally trivially over S1 with �ber �. If (K;�) is �bered,

then S3 nK can be obtained by gluing �� [0; 1] to itself by the identi�cation

(x; 0) = (h(x); 1) x 2 �;

where h : � ! � is an orientation preserving homeomorphism, called the monodromy of

the �bered link. A �bered link has an associated skew-symmetric Seifert form T de�ned on

H1(�;R) (see, for example, [B-Z], Chapter 13, or section 3 of this paper).

12000 Mathematics Subject Classi�cation: 57M27, 51F15
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Theorem 1.1 Given a chord system L there is a �bered link (K;�) together with an iso-

morphism

� : (RL ; F )! (H1(�;R); T );

which preserves forms.

Given a matrix A let A+ be the upper-triangular part of A. That is, if A = [ai;j ], then

A+ = [a0i;j ] where

a0i;j =

�
ai;j if i � j

0 if i > j

De�ne

Asymm = A+ + (A+)t

to be the symmetric matrix associated to A.

We will say a chord system L is of Coxeter-type if the o�-diagonal entries of F+ are non-

positive, that is, they are either 0 or -1. A pair (K;�) is a Coxeter link if it is a �bered link

associated, in the manner described in Theorem 1.1, to a chord system L of Coxeter-type.

Our next theorem shows that if L is of Coxeter-type, and � is the incidence matrix of

L, then the simply-laced Coxeter system associated to � is naturally related to any Coxeter

link (K;�) for L.

Let (W;S) be the simply-laced Coxeter system associated to the incidence graph � of

L. Then W is generated by S = fs1; : : : ; sng, where each si is the re
ection on RL de�ned

by

si(sj) = sj �B(si; sj)si;

where B is a symmetric form de�ned by � (see Section 2). The Coxeter element associated

to (W;S) is the product c = s1 � � � sn 2 GL(RL).

Theorem 1.2 Let L be a chord system of Coxeter-type, and let (K;�) be an associated

Coxeter link. Let (W;S) be the simply-laced Coxeter system associated to the incidence

graph of L. Then B = F symm and the restriction homomorphism

h
�
: H1(�;R) ! H1(�;R)

of the monodromy of (K;�) satis�es

� Æ h
�
= �c Æ �:

For the convenience of the reader, we review de�nitions and properties of Coxeter sys-

tems in Section 2 and properties of the monodromy of �bered links in Section 3. We give

some examples and obstructions for graphs to be incidence graphs of chord diagrams in

Section 4. In Section 5 we prove Theorem 1.1 and Theorem 1.2. Our construction gener-

alizes arborescent links [Con] and slalom links [A'C2] which apply to the case when � is a

tree. In Section 6 we give some examples of Coxeter links. Finally, in Section 7, we settle

Lehmer's problem for Coxeter links.

This paper was partly written while the author was supported by the Max-Planck-

Institut of Mathematics during the summer of 2001.
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2 Coxeter Systems

In this section we recall some properties of simply-laced Coxeter systems. See also [Bour]

or [Hum] for more complete expositions.

Let � be a �nite graph with no self-loops or multiple edges. Let S = fs1; : : : ; sng be an

ordering on the set of vertices. The adjacency matrix A of � is the matrix A = [ai;j], where

ai;j =

�
1 if there is an edge between si and sj
0 otherwise

Given a graph �, and an ordering on the edges S = fs1; : : : ; sng, there is an associated

group W with distinguished set of generators S given by

W = h S : (sisj)
mi;j i; j = 1; : : : ; n i;

where

mi;j =

�
1 if i = j

ai;j + 2 if i 6= j

The pair (W ,S) is called the simply-laced Coxeter system associated to �, and S is the

set of Coxeter generators. More general Coxeter groups are obtained by letting mi;j vary

among integers greater than 3 or 1 whenever si and sj are connected by an edge in �. In

the general setting, the graph � together with edges labeled mi;j determines the Coxeter

system.

Coxeter systems have naturally associated representations as groups acting on a vector

space V preserving a particular bilinear form B. Here V = R
S be the n-dimensional vector

space over R with basis e1; : : : ; en and B is the bilinear form de�ned by

B(ei; ej) = �2 cos

�
�

mi;j

�
:

The Coxeter representation of W in GL(V ) is de�ned by

si(ej) = ej �B(ei; ej)ei:

If (W;S) is simply-laced, then we have

si(ej) =

8<
:

�ei if i = j

ej if i 6= j and ai;j = 0

ei + ej if ai;j = 1

We will use the following two Lemmas in our proofs of the main theorems.

Lemma 2.1 The simply-laced Coxeter system associated to a graph � has associated bilin-

ear form B = 2I �A, where I is the n� n identity matrix.
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Lemma 2.2 If L is a chord diagram with incidence graph �, and F is its link form, then

the bilinear form B associated to the simply-laced Coxeter system associated to � satis�es

B = 2I + F symm if and only if L is of Coxeter-type.

A Coxeter system is called spherical if its Coxeter group is a �nite re
ection group on

Euclidean space. It is called aÆne if its Coxeter group is isomorphic to a group of aÆne

re
ections. The Coxeter group W is �nite, and therefore (W;S) is spherical, if and only if

B is positive de�nite; and (W;S) is aÆne if and only if B is positive semi-de�nite (see, for

example, [Hum] Section 4.7, and Theorem 6.4).

The Coxeter element c of (W;S) is given by

c = s1 � � � sn:

Thus c depends on the choice of ordering on S. If � is a tree, then c is determined up

to conjugacy ([Bour] Chapter 5, Lemma 1) and hence its spectrum is determined by the

Coxeter system. This is not the case if � contains circuits.

The geometry of the Coxeter system is visible in the spectrum of the Coxeter element

(cf. [A'C1].)

Theorem 2.3 ([How] Theorem 4.1) Let c be a Coxeter element for a Coxeter system

(W;S).

(1) (W;S) is spherical if and only if all the eigenvalues of c are roots of unity other than

1.

(2) (W;S) is aÆne if and only if c has an eigenvalue equal to 1 and all eigenvalues c have

modulus one.

For any matrix M = [ai;j ], let M
u be the strictly upper triangular part of M , that is,

Mu = [Mi;j ], where

Mi;j =

�
ai;j if i < j

0 if i � j

Theorem 2.4 ([How] Theorem 2.1) Let (W;S) be a Coxeter system with bilinear form

B. Then c = �U�1U t, where U = I +Bu.

Corollary 2.5 If (W;S) is a simply-laced Coxeter system associated to the graph �, and

A is its adjacency matrix, then c = �U�1U t, where U = I �A+.

3 Monodromy of �bered links

Let K be a �bered link, with �bering surface �. Then we have the following.

(1) � � S3 is an oriented surface with boundary equal to K; and
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(2) there is an associated homeomorphism

� : S3 n �! �� I;

where I is the open interval (0; 1).

Let �+ = �� f0g and �� = ��f1g. Then S3 nK is homeomorphic to �� I with ��

glued to �+ by a homeomorphism

h : �! �

called the monodromy of the �bration. Here �� and �+ are identi�ed with � in the obvious

way. The induced map

h
�
: H1(�;Z)! H1(�;Z)

is called the monodromy of K, and doesn't depend on the choice of trivialization � .

For any loop 
 on �, the inclusion of � in �� I induces a map

� : H1(�;R) ! H1(�
+;R)

which we will denote by �(
) = 
+.

Alexander duality gives a non-degenerate pairing

H1(�;R) �H1(S
3 n �;R) ! R

by linking number in S3: �

; 
0

�
7! link(
; 
0):

Let 
1; : : : ; 
n be a basis for H1(�;R). The Seifert matrix M of K with respect to � is

given by M = [link(
+i ; 
j)], and T =M �M t is called the Seifert form of (K;�).

The following theorem is well-known in knot theory (see, for example, [Rolf].)

Theorem 3.1 The restriction of the monodromy of a �bered link K

h
�
: H1(�;R) ! H(�;R)

written with respect to the basis 
1; : : : ; 
n equals

M�1M t:

By Theorem 3.1 and Corollary 2.5 to �nd a Coxeter link associated to a simply-laced

Coxeter graph � with adjacency matrix A it suÆces to �nd a �bered link whose Seifert

matrix M is I �A+.
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Figure 1. Realization of a graph.

4 Admissible Graphs

A chord diagram L is a collection of straight paths on the unit 2-disk D joining pairs of

points on the boundary of D. The incidence graph � of a chord diagram L is the graph

with vertices corresponding to chords and an edge between two vertices if and only if the

chords meet in the interior of the disk. We will call L a realization of �. Figure 1 gives an

example. (For ease of illustration, we will draw the chords as circular arcs.)

A �nite graph � is realizable if it is the incidence graph of a chord diagram. An ordered

graph � is admissible if there is a chord system of Coxeter-type for which � is the incidence

graph with induced ordering. We will call two chord diagrams equivalent if they are the

same up to isotopy of the pair (D;L).

Lemma 4.1 Given any realizable graphs �1 and �2, the join �1 _ �2 of the graphs at one

vertex is realizable.

Proof. A realization of any graph � is equivalent to an embedding of a union of S0's in

S1 one for each line in L. Let L1 and L2 be realizations of �1 and �2, respectively. We

can assume that �1 and �2 correspond to a common line ` in L1 and L2 passing through

the center of D, say horizontally as in Figure 2. Furthermore, we can assume the endpoints

of the arcs other than ` in L1 lie to the left of the vertical line through the center of D,

and similarly the endpoints of the arcs in L2 other than ` lie to the right of the vertical

line through the center of D. The union of the arcs in L1 and L2 form a 2-embedding for

�1 _ �2.

Corollary 4.2 All �nite trees are realizable.

It is not hard to see that cyclic graphs, complete graphs, and complete bipartite graphs

are realizable. A cyclic graph has a realization as shown in Figure 3.

Realizations of cyclic graphs have the following property.

Lemma 4.3 Up to isotopy of (D;L) realizations of cyclic graphs are uniquely determined.
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Figure 2. Join of two realizations.

Figure 3. 5-Cycle.

Let � be a graph with vertices S. A subgraph �0 � � is an induced subgraph if for some

S0 � S, �0 is the subgraph containing all edges in � whose endpoints are in S0.

If S0 � S is such that the induced subgraph has no edges then we say that S0 is an

independent set of vertices in �. In order for there to exist a line in D intersecting all arcs

in an independent set S0, the lines in S0 must be parallel. Thus, we have the following.

Lemma 4.4 A graph � is not realizable if there is a subset S0 � S such that

(1) S0 contains three vertices;

(2) S0 is independent;

(3) there is an s 2 S so that for every s0 2 S0 there is an edge in � joining s and s0; and

(4) there is an induced cyclic subgraph in � containing S0.

Figure 4 gives an example of a non-realizable graph.

Figure 4. Non-realizable graph.
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`i`j

Figure 5. Orientation on a chord diagram (i < j).

A chord system L = f`1; : : : ; `ng is of Coxeter-type if whenever `i and `j intersect in D,

for i < j, the intersection looks locally as in Figure 5.

Not all orderings on a realizable graph are admissible. For example, given an n-cyclic

graph, the cyclic ordering has no Coxeter-type embedding for n > 3. Given a realizable

graph, however, one can choose an ordering which is admissible, as shown in the following

Lemma pointed out to the author by R. Vogeler.

Lemma 4.5 Any chord diagram admits an orientation and ordering of Coxeter-type.

Proof. Let L be any realization of a chord diagram on the unit disk D in R2 . We may

assume that none of the chords are vertical. Orient the chords so that the x-coordinate is

increasing. Then order the chords from smallest to largest slope.

5 Construction

Given an oriented chord diagram, we will construct an associated �bered link. Let L =

f`1; : : : ; `ng be the realization of an oriented chord diagram in the unit disk D � R
2�f0g �

R
3 . In R3 attach twice positively twisted bands b1; : : : ; bn to D as in Figure 6, in the order

given by the ordering of the arcs, i.e., so that bi lies over bj if i > j. Let � be the resulting

surface, with orientation determined by the one on D � R
3 . Let K� be the oriented

boundary link.
`1

`3

`2

`4

`5

Figure 6. Murasugi sum.
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Then � is obtained from the oriented disk D by a sequence of Murasugi sums of Hopf links.

Hence K� is a �bered link with �ber � ([Sta], cf. [Gab].)

Extend each oriented arc `i to an oriented closed loop 
i going once around the corre-

sponding attached band bi. This gives a basis !1; : : : ; !n for H1(�;R). Let F be the link

form for L. By the construction we have

link(!+

i ; !j) =

8<
:

0 if i > j

1 if i = j

F+(`i; `j)

Thus, the Seifert form T for (K;�) is given by

T (!i; !j) = link(!+

i ; !j)� link(!+

j ; !i)

= F (`i; `j)

This proves Theorem 1.1.

Suppose L is of Coxeter-type. Let A be its adjacency matrix. Then the Seifert matrix

for (K;�) is given by M = I � A+. By Theorem 3.1 the monodromy of the �bration is

given by

h
�
=M�1M t

The simply-laced Coxeter system (W;S) associated to � has bilinear form

B = 2I �A:

By Corollary 2.5, the Coxeter element of the simply-laced Coxeter system associated to �

is given by

c = �U�1UT

where U = I �A+ =M . Therefore h
�
= �c, which proves Theorem 1.2.

Before concluding this section, we remark that the construction described above depends

on less information than on the ordering of the chord diagram. The associated link is

determined by the relative ordering of pairs of intersecting arcs in the chord diagram. We

will call a chord diagram together with this information a directed chord diagram. Instead

of an ordered incidence graph, we obtain a directed incidence graph.

As was pointed out in [Shi], the Coxeter element of a Coxeter system only depends up

to conjugacy on the directed graph determined by ordered Coxeter graph. Similarly, we can

see the following from the construction.

Proposition 5.1 The �bered link associated to a chord system only depends on the directed

chord diagram.

A vertex v on a directed graph is called a source (resp. sink) if all edges with one

endpoint equal to v point away from (resp. toward) v. It is not hard to see that the

Coxeter element of a Coxeter system does not change its conjugacy class if a source node

is changed to a sink. We have the following similar statement for links constructed from

chord diagrams.
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Proposition 5.2 The link obtained from a directed chord diagram is equivalent to that

obtained by reordering the chord diagram so that a source is replaced by a sink.

Proof. Replacing a source by a sink amounts to the same as passing one of the twisted

bands through the disk D from the negative to the positive side. Although this may change

the isotopy type of the embedding of � in S3 nK it does not change the link.

6 Examples of Coxeter links.

This section contains some examples of Coxeter links.

Example 1. Trees

=

Figure 7. Coxeter links and plumbing.

When � is a tree, our construction gives arborescent links [Con]. This is easily seen by

isotoping the disk to a neighborhood of the chord diagram as in Figure 7.

As stated earlier in Chapter 2, the Coxeter element of a simply laced Coxeter system

(W;S) doesn't depend, up to conjugacy, on the ordering of S. Visualizing the Coxeter link

of a tree as a plumbing link, one can see that the relative ordering of any two overlapping

chords on a tree chord diagram can be switched by passing one of the bands through itself.

Proposition 6.1 If L is a chord system whose incidence graph is a tree then the associated

Coxeter link doesn't depend on the ordering on the chord diagram.

On the other hand, there can be more than one embedding of a tree as a positive chord

system giving rise to distinct links as shown in Figure 8. One sees that the link on the

left has two knotted components, while the one on the right has a component which is the

unknot.

Example 2. An

The An Coxeter graph where vertices are numbered consecutively gives rise to the

(n+ 1; 2) torus knot.

This can be seen inductively as follows. A cross shaped portion of the chord diagram, where

the vertical chord has higher index in the ordering than the horizontal one, gives rise to the

portion of a link shown in Figure 10.
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Figure 8. Two embeddings of the same tree and their associated links.

4

3

2

1

4 2 13

Figure 9. An gives rise to the (n+ 1; 2) torus knot.

==

Figure 10. Basic transformation.

==

Figure 11. Induction step.
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Thus, our claim follows by induction using the induction step illustrated in Figure 11.

Example 3. Star graphs

Let p1; : : : ; pk be positive integers. Consider the graph Star(p1; : : : ; pk) obtained by

taking the union of Ap1 ; : : : ; Apk attached at an end vertex as in Figure 12.

p1

p2

p3

pk

Figure 12. Star graph and its realization.

Directing the graph so that all edges point to the multiple vertex and using intermediate

steps shown in Figure 10 and Figure 11 the reader can verify that the corresponding Coxeter

link Lp1;:::;pk is a (p1; : : : ; pk;�1; : : : ;�1)-pretzel link, where there are k � 2 twists of order

�1 (see Figure 13).

Figure 13. Coxeter link for a star graph.

Since Dn is a star graph, we see that an associated Coxeter link is the iterated torus

link given by taking a Hopf link and replacing one component by the (n� 1; 2) torus link.

The groups E6, E7 and E8 give rise to the (�2; 3; 3)-pretzel, the (�2; 3; 4)-pretzel and

the (�2; 3; 5)-pretzel knots, respectively. The aÆne Coxeter system E9 gives rise to the

(�2; 3; 6)-pretzel knot, and the hyperbolic Coxeter system E10 gives rise to the (�2; 3; 7)-

pretzel knot.

Example 4. ~An

Cyclic graphs correspond to the aÆne Coxeter systems ~An, hence any Coxeter element

has eigenvalue one (see Theorem 2.3), and the rest of the eigenvalues lie on the unit circle.

For cyclic graphs, subtleties are already exhibited for small n.

For n = 3, there is only one possible ordering on the 3-cycle, but there are two possible

embeddings in the disk. One of these embeddings (Figure 14 a)) is of Coxeter-type and has

characteristic polynomial

�(t) = 1 + t� t2 � t3 = (1 + t)2(1� t):
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b)

1

32

=

a)

2 1

3

Figure 14. Triangle systems.

As can be seen in the �gure, this is an iterated torus link. The other is not of Coxeter-type

(Figure 14 b)) and gives rise to the (4; 2) torus link T4;2 with characteristic polynomial

�(t) = 1� t+ t2 � t3 = (1� t)(1 + t2):

Note that the link in Figure 14 b) is the Coxeter link for the A3 diagram, once we choose

a di�erent basis for H1(�;R).

For n = 4, there are two ordered embeddings of the cycle which are of Coxeter-type (see

Figure 15 a) and b)). Since the two orderings in a) and b) di�er by changing a sink (vertex 4

in a)) to a source (vertex 1 in b)) the corresponding links are equivalent by Proposition 5.2.

They equal the (83
1
0 links in Rolfsen's table [Rolf]). The characteristic polynomial for both

�bered links is given by:

�(t) = 1� 2t2 + t4 = (t+ 1)2(t� 1)2:

The clockwise and counter-clockwise embeddings of the 4-cycle with cyclic ordering are not

of Coxeter-type. The corresponding knots are shown in Figure 15 c). Both have Alexander

polynomial

�(t) = 1� t� t3 + t4 = (1� t)2(1 + t+ t2)

with respect to the �bration.

For n = 5, there are two ordered embeddings of the cycle of Coxeter-type as shown in

Figure 16. The distinct orderings give rise to the characteristic polynomials

�1(�t) = 1� t� t4 + t5; and

�2(�t) = 1� t2 � t3 + t5:
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b)

42

1 3

c)

1 2

34

a)

1

3 2

4

Figure 15. Square systems.

a)

1

25

3

2

1

34

5

b)
1

42

5

1

2

3

4

4 3

5

Figure 16. Two Coxeter-type orderings for the 5-cycle

a) b)

Figure 17. Two Coxeter links for the 5-cycle
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The orderings give rise to the distinct links shown in Figure 17.

5. Smallest hyperbolic Coxeter link.

The simply-laced minimal hyperbolic Coxeter system of smallest dimension is a triangle

with a tail, which has only one realization as a chord diagram . There are three positive

chord systems obtained by adding a chord to the positive triangle chord diagram in Exam-

ple 6 in three di�erent ways. By exchanging sinks and sources, however, it is possible to go

from any one of these chord systems to any other (see Proposition 5.2.) Thus, the Coxeter

link is uniquely determined and equals the knot shown in Figure 18, which is the mirror of

the 10145-knot in Rolfsen's table [Rolf]. The Alexander polynomial of this knot is

Figure 18. Smallest hyperbolic Coxeter link.

�(t) = 1 + t� 3t2 + t3 + t4

and its Mahler measure is: 2:36921 : : : .

7 Application to Lehmer's problem

Given a polynomial p(x) 2 Z[x], the Mahler measure kpkM of p(x) is the product of the

roots of p(x) outside the unit circle. Lehmer's problem [Leh] asks: For any Æ > 0 does there

exist a monic integer polynomial p(x) whose Mahler measure satis�es 1 < kpkM < 1 + Æ?

For degrees up to 40 (see [Boyd],[Mos]), the polynomial with smallest Mahler measure is

Lehmer's polynomial [Leh]

pL(x) = x10 + x9 � x7 � x6 � x5 � x4 � x3 + x+ 1:

Lehmer's problem reduces to a study of monic reciprocal polynomials [Smy]. The char-

acteristic polynomial �(x) of the monodromy of a �bered link is necessarily monic, integer,

and reciprocal. Conversely, if �(x) is monic, integer, reciprocal and �(1) = �1 then it is

the characteristic (Alexander) polynomial of a �bered knot [Bur]. For general �bered links,

the restriction on �(1) does not hold. Thus, �bered links are a natural source of examples

to study Lehmer's problem. Kirby's Problem 5.12 in [Kir] mentions the connection between

Alexander polynomials of knots and Lehmer's problem. Lehmer's problem translates to

a question about multi-variable Alexander polynomials which is studied, for example, in

[S-W].
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Lehmer's polynomial appears as the Alexander polynomial of the (2; 3; 7;�1)-pretzel

knot [Reid]. The (-2,3,7)-pretzel knot is equivalent to the (2; 3; 7;�1)-pretzel knot which is

one of the family of pretzel links Kp1;:::;pk (see Example 6). The characteristic polynomials

of the monodromy �p1;:::;pk(x) have Mahler measure greater than or equal to that of pL(x)

[Hir].

The pretzel linkK2;3;7 comes from the 2; 3; 7 star graph, which is also known as E10, one

of the minimal hyperbolic Coxeter systems. McMullen proved the following result [McM].

Theorem 7.1 Let c be the Coxeter element of a Coxeter system, and let

�(c) = maxfj�j : � is an eigenvalue of cg:

Then either �(c) = 1 or �(c) � �(c0) where c0 is the Coxeter element for E10 Thus, if qc is

the characteristic polynomial of c, then

kqckM � kqc0kM = kpLkM

for all Coxeter elements c.

Thus, we have the following Corollary.

Corollary 7.2 If p(x) is the characteristic polynomial for the monodromy of a Coxeter

link, then kpkM � kpLkM .
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