
1

Parallel Computing Strategy for Multi-Size-Mesh,
Multi-Time-Step DRP Scheme

Hongbin Ju
Department of Mathematics

Florida State University, Tallahassee, FL.32306
www.aeroacoustics.info

Please send comments to: hju@math.fsu.edu

The multi-size-mesh multi-time-step DRP scheme (Tam&Kurbatskii2003) is suited for
numerical simulations of multiple-scales aeroacoustics problems. In regions where there
are high flow gradients (jet or flow near walls), small grid sizes to resolve small scales
are needed. In regions where sound dominates, larger grid sizes for long sound wave
lengths may be used to save computation resources. Time steps are controlled by local
grid sizes for numerical stability and accuracy. It is very inefficient to use a single time
step for all the mesh points, as unnecessary computation has to be performed over mesh
points with large mesh sizes. One unique feature of the DRP scheme is its multi-time step
marching capability. The scheme synchronizes the size of the time step with the spatial
mesh size. Half of the computations are done over regions with the highest resolution
where time scale is the shortest.

Because of the multiple time steps, one must be careful when developing a parallel
computing strategy for the DRP scheme. In this section we first analyze the serial
computing of this scheme, and then propose parallel computing methods accordingly. To
illustrate the idea, we will use the slit resonator in a two dimensional impedance tube as
an example. The configuration is shown by Fig.1. Details of the simulation are in Tam
et.al.2005.

Serial Computing

Two properties need to be taken into account when implementing a scheme with multi-
size-mesh and multi-time-step. First, multi-size-mesh requires that the physics domain be
divided into subdomains (Fig.2). Grid size is uniform in each subdomain. The smallest
grid size,

†

D , is in subdomains around the slit mouth where viscous effect is the strongest.
Grid sizes are increased in subdomains away from the slit mouth by a factor of 2,
i.e.,

†

D 2 = 2D ,

†

D 4 = 4D ,

†

D 8 = 8D , etc. In the simulation of the slit-resonator impedance
tube in Tam et.al.2005, grid sizes up to D=D 128128 are used. In Fig.2 only grid sizes up
to 8D are shown for clarity. For each subdomain, information outside of its boundaries is
needed before spatial derivatives can be computed. Therefore data exchanges are
necessary between adjacent subdomains.

2

Fig.1, Slit resonator in two-dimensional
impedance tube.

Fig.2, Subdomains in the impedance tube.

Second, due to multiple time steps, the number of subdomains involved in computation is
different at different time level n. Subdomains in which computations are performed at
time

†

nDt are shown by Fig.3(a). (kkmmkmkm ⋅-==)/int(),mod(_ in Fig.3.) At time
level 0=n all the subdomains are involved in the computation. At 1=n computation is
done only in

†

D subdomains (subdomains with grid size

†

D). At 2=n ,

†

D and 2D
subdomains are involved. The relation between physics time and CPU time is shown in
Fig.4. It is clear that the number of subdomains involved in computation, and thus CPU
time, is different at each time level n.

At an interface between two subdomains with different grid sizes, flow variable update at
half time level is needed in the coarser subdomain. This updating must be done before
computing spatial derivatives in the finer subdomain. Therefore the computation order at
each time level is crucial. It should be from coarser subdomains to finer subdomains for
Fig.3(a). For example, at 0=n , 8D subdomains must be first computed, then 4D

subdomains, 2D subdomains, and finally D subdomains. In each subdomain Fig.5 shows
the computation sequence. Synchronization and data exchange need to be done twice,
which means two times of message passing (MPI) or thread creating/terminating
(OpenMP or Pthreads) are needed for parallel computing.

3

15
14 14

13
12 12

12

11
10 10

9
8 8

8

8

7
6 6

5
4 4

4

3Time
level n 2 2

1
0 0

0

0

domain D 2D 4D 8D

01 =-m 02 =-m 04 =-m 08 =-m

(a)

15
14 14

13
12 12

13

11
10 10

9
8 8

9

11

7
6 6

5
4 4

5

3Time
level n 2 2

1
0 0

1

3

domain D 2D 4D 8D

01 =-m 02 =-m 14 =-m 38 =-m

(b)

Fig.3, Subdomains involved in simulation at different time levels.

Fig.4, Relation between physics time and CPU time for Fig.3(a).

Fig.5, Computation sequence in each subdomain.

4

Parallel Partitioning

A single computation task can have multiple, concurrent execution processes. One
process handles part of subdomains (domain decomposition), or part of the functions
(function decomposition). Factors that affect parallel efficiency are workload balance
among processes, overhead of message passing in MPI or thread creation/termination in
multi-thread programming (OpenMP and Pthreads).

Only domain decomposition model will be considered for the impedance tube case. In a
serial code, different number of subdomains are computed at different time level
(Fig.3(a), Fig.4). A partition, say, of

†

D and

†

D 2subdomains for process 1, and

†

D 4 and

†

D 8

subdomains for process 2, will make unbalanced workloads among processes even there
are the same amounts of grid points in both processes. For most of the time only

†

D and

†

D 2 subdomains in process 1 are involved in computation, and process 2 is idle mostly.

Partition on Subdomains of the Same Grid Size

One may separate the computation domain into 2 or 4 parts by line AB in the slit and the
symmetric line CD, Fig.2. This partition distribute grid points of subdomains with the
same grid size evenly among 2 or 4 processes. Data exchange between the two slit
subdomains is only needed along AB. Structure of exchanging arrays along CD is
consistent with the column-bases array data structure in FORTRAN. Partition between
two processes along line AB is easy to program based on an existing serial code.

Partition across Subdomains with Different Grid Sizes

Shown in Fig.3(a) is not the only computation order in a serial code. Here we propose a
different computation order in Fig.3(b). At time level 0=n

†

D and

†

D 2subdomains are
computed. At 1=n computation is done in

†

D and 4D subdomains. At 2=n

†

D and 2D
subdomains are computed, et.al. The physics time ~ CPU time relation is shown in Fig.6.

Fig.6, Relation between physics time and CPU time for Fig.3(b).

At each time level the computation and data exchange order is totally different from those
in Fig.3(a). The computation must be performed from finer subdomains to coarser
subdomains. And in each subdomain it is not correct to obtain information from finer
subdomain. Instead one should transfer data from this subdomain to its coarser neighbors.
As an example, the correct orders for

†

D 2 subdomain are: (1) exchange pvu ,,,r between
4D subdomains; (2) exchange pvu ,,,r between

†

D 2 and 4D subdomains; (3)exchange
pvu ,,,r between

†

D 2 subdomains if necessary; (4) compute viscous terms yyxyxx ttt ,, in

5

†

D 2 subdomains and near the interfaces in 4D subdomains; (5) exchange yyxyxx ttt ,,

between

†

D 4 subdomains; (6) exchange yyxyxx ttt ,, between

†

D 2 and 4D subdomains; (7)
exchange yyxyxx ttt ,, between

†

D 2 subdomains is necessary; (8) update pvu ,,,r to the
next time level in

†

D 2 subdomains.

The advantage of this new order is, the number of subdomains involved at one time level
is 2 most of the time. One may designate

†

D subdomains to process 1 and all others to
process 2. If message passing model is used, the data exchange is needed along EFGH
and PQRS in Fig.2, which may need more message passing CPU time than the partition
method on each domain. But as we will see later, message passing time is very small
compared to computation time. The advantage of this partition is that it is easier to
program based on a serial code.

Combined Partition

The two partition methods, partition on subdomains with the same grid size and partition
across subdomains with different grid sizes, can be combined to support 8 or more
processes in this case.

Parallel Computation Implementation

Parallel Programming Models

The computation was performed on the IBM RS/6000 SP3 supercomputer at Florida
State University. IBM SP3 has a parallel architecture with hybrid shared and distributed
memory. It is composed of 42 nodes, 4 CPUs on each node. Each node is a shared
memory component, which can be viewed as a SMP (symmetric multiprocessor)
machine. Processors on a SMP node can address that machine's memory as global. On
the other hand, different nodes are separated machines between which communications
are undertaken by network.

There are two different parallel programming models. MPI (message passing interface)
treats all processors as single machines no matter if they are on the same node. Explicit
data communication is needed among distributed memories on different machines. A
MPI code is portable and scalable with large amount of processors. But it needs much
effort on reprogramming serial codes, and data communication overhead needs to be
taken into account.

Threads (multi-threaded programs) models are for shared memory machines. A thread is
an independent control flow within the same address space as other independent control
flows in a process. There are two threads models: OpenMP and Pthreads. In OpenMP a
serial program is augmented with directives specifying which loops (sections) are to be
parallelized. The compiler automatically creates threads for the loop (section) across
SMP processors. It needs less labor on reprogramming and facilitates "incremented

6

parallelism" for serial codes. On the other hand, in a Pthreads (POSIX) model, a process
has to be threaded by hand using library functions. It needs explicit parallelism, but may
have benefits when well done. No explicit data communication is needed for threads
models. However they may be less portable (especially Pthreads). In cases of time
dependent computational aeroacoustics (CAA), overhead of thread managing may be
quite significant since at each time level threads have to be created and terminated
dynamically.

IBM SP3 supports all the three parallel models (MPI, OpenMP, and Pthreads). When one
task is partitioned over multiple nodes, MPI is the only choice. For processes within one
node, OpenMP or Pthreads can also be used. For large application codes, experience
indicates that MPI often works better than threads models. OpenMP is mostly useful on
loop levels with iteration counts over 10000. If there are subroutine and function calls in
the loop, variable scoping, which is the critical part of programming in threads models,
becomes more difficult, and parallelization becomes less efficient or even worse than its
serial version.

OpenMP or Pthreads is not suitable for the 2-D impedance tube case. Implementation
shows that the code with OpenMP runs slower than the serial code. Therefore we will use
MPI as our parallel model.

The domain partition strategy for the case is shown in Table 1.

Table 1, Domain Partition.
Number of
Processes Separation Lines (Fig.2)

2 AB
4 AB&EFGH&PQRS
8 AB&EFGH&PQRS&CD

In the DRP scheme, there are roughly 388 operations to solve N.S. equations at one time
step. Each operation takes 8107.2 -¥ second of SP3 CPU. Therefore for a typical
computation domain with 100100¥ grid points, the computation time of one time step is:

8107.2388100100 -¥¥¥¥ ~ 0.1 Second.

Communication time is estimated by:

Bandwidth
Size Message

LatencyTimeion Communicat += .

Table 2 lists the latency and bandwidth of SP3. If the interface of two grid subdomains
has 100 grid points, the total grid points at which data exchange is needed are 8100¥ . At
each point there are 7 variables (yyxyxxpvu tttr ,,,,,,), 8 bytes each variable with double

7

precision. Data needs to be transferred twice (send and receive). Therefore the
communication time on different nodes is:

Sec.105.7~
133MB/Sec.

MB108781002
Sec.22 4

-6
-¥

¥¥¥¥¥
+m ,

which is much small compared with the computation time.

Table 2, Latency and Bandwidth of IBM SP3

Protocol Location of 2
Processes Latency Bandwidth

On different nodes 22 m Sec. 133 MB/Sec.User
Space On the same node 37 m Sec. 72 MB/Sec.

Suppose the fraction of running time for the part which is not parallelized is s in a code.
The fraction of the remaining part, sp -= 1 , is computed concurrently by N processes,
Fig.7. Then speed up of the parallelization is defined as:

p/Ns +

1 .

Fig.7, Even workload among processes. Fig.8, Uneven workload among processes.

Efficiency of the parallelization is defined as the speed up divided by the number of
processes N:

psN +
1 .

Table 3 shows p is extremely important for large number of processes. If p is small, the
more processes are used, the more processes are wasted.

8

Table 3, Speed Up and Efficiency of Parallelization
5.0=p 9.0=p 99.0=pN

Speed Up Efficiency Speed Up Efficiency Speed Up Efficiency
10 1.82 18.2% 5.26 50.26% 9.17 91.7%
100 1.98 1.98% 9.17 9.17% 50.25 50.25%

1000 1.99 0.199% 9.91 0.991% 90.99 9.099%
10000 1.99 0.0199% 9.91 0.0991% 99.02 0.99%

Uneven workload among processes has the same effect as low p. Fig.8 shows an example
of uneven workload. Speed up of this parallelization is:

p/NNNss/Nspss +-+
=

-++ /)1('
1

)'('
1 .

Uneven workload 's lowers the parallelization fraction dramatically and makes
parallelization less effective.

For the impedance tube case, speed up of the 2 processes run (Table 1) is 1.9663, parallel
efficiency 98.3%. For the 4 processes code, there are 10000 grid points for each of the
two processes, 15738 grid points for each of the other two processes. Speed up is 3.1919,
parallel efficiency: 79.8%. The 8 processes code in Table 1 wasn’t implemented.

The techniques described in this section were also used in simulations of three-
dimensional slit resonators in impedance tube. (Tam et.al.2009)

References

Tam, C.K.W., and Kurbatskii, K.A., Multi-size-mesh Multi-time-step Dispersion-
Relation-Preserving Scheme for Muliple-Scales Aeroacoustics Problems, International
Journal of Computational Fluid Dynamics, Vol.17, 2003, pp. 119-132.

Tam, C.K.W., Ju, H., Jones, M.G., Watson, W.R., and Parrott, T.L., A Computational
and Experimental Study of Slit Resonators, Journal of Sound and Vibration, Vol. 284,
2005, pp. 947-984.

Tam, C.K.W., Ju, H., Jones, M.G., Watson, W.R., and Parrott, T.L., A Computational
and Experimental Study of Resonators in Three Dimensions, AIAA-2009-3171.

RS/6000 SP: Practical MPI Programming, International Technical Support Organization,
www.redbooks,ibm.com.

9

Scientific Applications in RS/6000 SP Environments, International Technical Support
Organization, www.redbooks.ibm.com.

