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The discussion of different modes and their interactions provides important information 

on sound sources. Once the sound sources are determined, the next task is to obtain the 

sound fields by solving the acoustic wave equations. In this chapter we study how to 

solve the sound field in an open space. (Sound in ducts is to be discussed in a separate 

chapter.) The sound field from a pulsating sphere in a three-dimensional (3-D) space is 

first investigated. The concepts of monopole, dipole and quadrupole are introduced. 

Based on the monopole sound solution, one of the most important techniques to solve 

acoustic equations is introduced: the 3-D Green’s function and the formal integral 

solutions. Using the integral solutions, the sound field from moving sources, especially 

rotating sources, is studied. The two-dimensional (2-D) Green’s function is also briefly 

discussed. 

 

 

Acoustic Wave Equations 

 

For the acoustic mode in a uniform ideal flow: 
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These are the irrotational, isentropic, linear Euler equations. Variables with subscript ‘0’ 

are mean flow quantities, and  00 // utDtD


. All other variables are perturbation 

variables. 

 

Velocity Potential and Acoustic Wave Equations 

 

The most important consequence of Eq.(4) (



  u  0) is the introduction of the velocity 

potential. Shown in Fig. 1 is a control volume V bounded by inner surface 



Si  and outer 

surface 



So . C is a closed contour in V. C is reducible if it can shrink to a point without 

having to cross any boundaries. Its shrinking path forms a surface 



Sc . If in V any contour 

is reducible, the region is singly-connected. Otherwise, it is multiply-connected. If the 

volume in Fig.1 is three-dimensional and the dimensions of the inner body are finite, then 

V if singly-connected. On the other hand, if the volume is two-dimensional, the inner 
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body extends to infinity in the third direction. Any contour enclosing the body is not 

reducible; therefore V is multiply-connected. This argument shows the difference of the 

mathematical treatment when dealing with two-dimensional and three-dimensional 

problems.  

 

 

 
 

Fig. 1, Control volume V bounded by inner surface 



Si  and outer surface 



So . 

 

Suppose in a singly-connected region there are two points O and P, and two paths 



C1 and 



C2 joining the two points. 



C1  and 



C2 forms a closed contour 



C C1  (C2)  and there 

exists a surface 



Sc  with contour C as the boundary. By applying the Stokes’ theorem, we 

know that circulation 



  around the contour is zero since 



  u  0 . Therefore, 
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That means the line integration is only a function of the positions of O and P. It does not 

depend on the paths. Therefore, we can define a function of position )(x


 : 

 



(x P )  (x O ) u  dl 
C1

 .                                                (6) 

 

When P approaches  O, Op xxld


 , we have: 
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As 



dl 0, 



dl  (x O)  u  dl , then, 
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

.                                                          (7) 
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)(x


  is the velocity potential function. Acoustic velocity is the gradient of the velocity 

potential. 

 

In a multiply-connected region, contour 



C C1  (C2) may not be reducible. Under this 

circumstance, the Stokes’ Theorem doesn’t apply and circulation 



  around C may not be 

zero even for 



  u  0 . Then, 

 



u  dl 
C1

  u  dl 
C2

  n. 

 

The line integration depends on the path going from O to P. Velocity potential 



  defined 

by Eq.(6) has multiple values at a point depending on how many rounds the path goes. 



  

is no longer a function of position since it may have multiple values at the same position. 

In this case, an artificial barrier, such as 



Sb  in Fig. 2, must be inserted to make the region 

singly-connected. 

 

 
 

Fig.2, Artificial barrier in a multiply-connected control volume. 

 

The benefit of introducing the velocity potential is twofold: the number of variables is 

reduced, and the irrotational requirement is automatically satisfied since 



   0 . One 

disadvantage is that mathematically the velocity potential requires higher order 

smoothness than the velocity itself. 

 

It is the gradient of velocity potential, 



 , not the potential itself, that has physical 

meaning. Since 



  is defined by the spatial integral [Eq.(6)], any function of time 



*(t)  

added to 



  does not affect the equation and analysis. 

 

With the newly introduced velocity potential, Eqs.(1) and (2) can be written as: 
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Assume the acoustic medium is uniform. Then the derivatives on the left side of 

Momentum equation Eq.(9) can be interchanged. Eq.(9) can be reduced to: 
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where 



f (t) is any function of time. According to Eq.(7), any function of time added to 



  

doesn’t affect the acoustic velocity. Therefore, Eq.(10) can be written simply as: 
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Substituting it into continuity equation (9), we have: 
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where  
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These are the acoustic equations in a uniform mean flow. It is also satisfied by any other 

acoustic variables such as  . The nontrivial solution of (12) or (13) is the acoustic wave. 

The trivial solution, 



p  0 or 



  0, corresponds to vorticity waves or entropy waves. 

 

There are no sources in linear Euler equations (1) ~ (3). The corresponding acoustic 

equation (13) or (12) is a homogeneous partial differential equation. It describes the 

propagation of sound waves in a uniform flow. At any point in the medium, 
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sources are from external action such as flow injection, or from scattering of other modes 

due to nonuniformity in the flow, or from nonlinear interactions between different modes.  

 

Solution Uniqueness and Boundary Conditions 

 

In a singly connected region, Eq.(13) has a unique solution if the normal velocity on all 

the boundary surfaces (



Si  and 



So  in Fig.1) enclosing the area of interest is prescribed 

(cht7.doc). The uniqueness of the solution can be proved by the energy integral method 

(Pierce1989 p.171, Bachelor Chapter 2.7&2.8). If the outside surface 



So  is at infinity, the 

sound field vanishes according to the causality requirement. Causality means there is no 

sound before it reaches the observer.  

 

If the region is multiply connected, we first make it singly connected by inserting 

barrier(s) as in Fig. 2. Then the solution is unique when the normal velocity distribution 

is prescribed on all surfaces: 



Si, 



So  and barrier bS . Prescribing normal velocity on bS  is 

equivalent to set the flux across the artificial barrier, or circulation around the inner body. 

What is the correct circulation for a particular problem? The model we began with 

[Eqs.(1)~(4)] assumes inviscid medium. If the inner body surface is smooth, zero 

circulation is often assumed (Morse&Ingard1968, p.400). If there is a sharp edge on the 

inner surface, velocity at the sharp edge goes to infinity if the medium is inviscid. In this 

case viscosity can not be neglected near the sharp edge. Vortexes evolve and shed at the 

sharp edge due to the effect of viscosity; the circulation is induced around the inner 

boundary. Therefore enforcing the Kutta condition at the sharp edge is the way to set the 

exact circulation due to the viscous effect. But this condition can only be applied once at 

one sharp edge, such as the trailing edge of an airfoil. Discontinuity/infinity is allowed at 

other sharp edges such as the leading edge of the airfoil.   

 

Prescribing normal velocity is only a sufficient, not necessary, boundary condition. A 

unique solution can also be rendered if velocity potential, or pressure, is set on the 

surfaces. Actually, a linear combination of the normal velocity and pressure can be given 

at the boundary surfaces. This is the impedance boundary condition, which will be 

discussed in another chapter. 

 

In an open space, the outer surface  



So  is at infinity. In numerical analyses, it is 

impossible to set the computation domain to infinity. Usually the boundary is placed far 

away from the source region and approximate equations are used to ensure causality, 

such as the Sommerfeld Radiation Boundary equations: 
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or the 2D radiation boundary condition considering a mean flow by Tam: 
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It is noted that Eq.(16) is different from (14) when M=0. These boundary conditions 

formally make an open region finite. 

 

 

Sound Generated by Vibrating Spheres 

 

Sound Generated by Radially Vibrating Sphere  

in Stationary Medium (Mass Fluctuation) 

 

Here we will discuss the sound field in a stationary medium generated by an external 

source: a vibrating sphere. Consider a sphere with radius R. The sphere surface vibrates 

radially with uniform amplitude and phase. When the vibration amplitude is small, the 

boundary condition can be represented by a uniform velocity at the nominal surface: 

 

)(),( tvtru sr   at Rr  .                                                  (17) 

 

According to the uniqueness of solution discussed in the previous section, the sound field 

is uniquely determined with the boundary condition in (17). 

 

In the spherical coordinate system, the gradient and the Laplacian are respectively: 
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The boundary velocity in (17) and the sound field are spherically symmetric.  Therefore 

wave equation (12) and (11) can be simplified: 
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The general solution (the d’Alembert’s solution) of (18) is: 

 



(r,t)  r1 F(t  r /a0) E(t  r /a0) .                                  (20) 
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F and E are two arbitrary functions representing respectively the out-going and in-coming 

spherical waves. The requirement of causality excludes function E. Therefore the solution 

is: 
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(r,t)  r1F(t  r /a0) ,                                                (21) 
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The sound source is the mechanical vibration of the sphere. The volume of the sphere 

changes as its surface vibrates. It is equivalent to the injection of fluid into the medium. 

The rate of the injected volume is  

 



Q(t)  4R2vs(t) .                                                  (24) 

 

Substituting (22) into boundary condition (17), we have  
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The first order linear ordinary differential equation (ODE) (25) can be solved using the 

method of separation of variables and the method of variation of parameter (c.f. 

Appendix). Suppose there is no vibration at 



t , then the solution is: 
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Therefore the transient velocity potential is:  
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and the sound pressure: 
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r  R.  (28) 

 



t  (rR) /a0 is the retarded time at the surface point closest to the observer. (27) and (28) 

give the sound field generated by a vibrating sphere. They apply anywhere as long as 



r  R. There is no physical and mathematical meaning for 



r  R. The net force of the 

sphere acting on the fluid is zero since the pressure is spherically symmetric. 
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Monopole 

 

The source is compact when its dimension is small compared with sound wavelength  , 

i.e., 1/ R .  It is useful to investigate the sound field for a compact source. We 

assume the amplitude of volume injection rate )(tQ  is constant when the sphere shrinks 

into a point



R /  0 . Performing integration by parts we have, 
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Note  
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This approximation is very important and will be used repeatedly hereafter. 

 

Apply (29) in (27) and (28), then 
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where 



r  0. Eqs.(30)~(32) describe the sound field from a compact source, i.e., source 

pulsating at low frequencies. Actually they apply for any frequency, since the source 

region is reduced to a conceptual point. This source is called monopole. The directivity of 

the sound field from a monopole is omnidirectional. 

 

According to (31), the acoustic velocity has two different characteristics in two regions. 

In the far field ( 1r ) the dominant effect is from the second term on the right hand side 

of Eq.(31): the volume injection rate )(tQ , or the acceleration of the vibrating surface. 

The acceleration is balanced by acoustic pressure [Eq.(32)]. The far field is the sound 

field. In the near field ( 1r ), the dominant effect is from the volume injection )(tQ  in 
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the first term. Velocity in the near field is much larger than the acoustic pressure. 

Acoustic pressure is a higher order quantity. The reason for the stronger velocity around 

the source is that we kept )(tQ constant when shrinking the source to meet the boundary 

condition Eq.(24). We call this kind of source the velocity driver. Velocity cannot be 

balanced by sound pressure in the source region, where Eqs(1)&(3) reduce to 0 u


 

and 0 . The flow is nearly incompressible in this region. Note a vorticity wave in a 

uniform flow support no fluctuating pressure. Is it possible this term represents a vorticity 

wave?  It can be shown that the curl of velocity is also zero. Therefore the 1st term on the 

right hand side of Eq.(31) represents an solenoidal, irrotational velocity field. This region 

is often referred as the potential field of the body. The potential field decays fast away 

from the body. It has effect on another body only when they are in proximity. 

 

The Nonhomogeneous Acoustic Equation 

 

Acoustic equations such as (13) and solutions (30)~(32) are valid everywhere except at 

the source point. Now we are to write the wave equation that also formally applies at this 

source point. The wave equation should have this form: 
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

r 0 is the source position. The source function 
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S(r  r 0)is not a regular function. It can 

only be defined in the integral sense. The integration of 
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source point, from the Gauss’ Divergence Theorem we have:  
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1

1

atatart

r

d

Qd

a

R

d

dQ
rdr

d

Qd

a

ddipddrdr
t

p

a

dVp
t

p

a
S







 
























.           (35) 

 

Although the integrand in the volume integration is singular at the source point, it is 

integrable. 

 

As 



R0, 
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)(0 tQS  .                                                     (36) 

 

The inhomogeneous wave equation is: 

 

)()(
1

00

2

2

2

2

0

rrtQp
t

p

a

  



,                                  (37) 

 

The sound source is the time derivative of mass injection rate )(0 tQ  at 0r


. It is noted 

that in the inhomogeneous equation, the spatial coordinate is r


 (or x


), the field or 

observer coordinate. 0r


 is the source coordinate. It is a parameter, not the spatial variable. 

  operates with respect to r


, not 0r


.  

 

Superposition applies to linear equation (37). Assume the distribution of volume injection 

),( trQ


, then the inhomogeneous equation and its solution are: 

 

t

trQ
p

t

p

a 




),(1
0

2

2

2

2

0







,                                       (38) 
















 0

/||

0

0

0

00

),(1

4
),( rd

rQ

r
trp

arrt














.                            (39) 

 

Note it is the partial time derivations, not the whole time derivative, of the source in (38) 

and (39). Both the equation and the solution apply in the whole field. 

 

Sound Generated by Transversely Oscillating Sphere  

in Stationary Medium (Momentum Fluctuation) and Dipole  

 

Consider a rigid sphere transversely oscillating along the z-axis. The oscillation speed of 

the sphere center is 



vc(t) in z direction. The volume of the sphere doesn’t change. The 

total volume of the medium are constant at any time. So it is not a monopole. The sound 

is generated by the translation of the sphere. It is the thickness noise in turbomachinery. 

The problem can be treated as a moving source problem (the details in the following 

section of this chapter). However, if oscillation speed 



vc(t) is small, to first order, it is 

equivalent to a vibrating sphere with fixed center and the speed at the surface: 

 

 cos)(),,( tvtru c , at 



r  R.                                        (40) 

 

Note the 



cos  dependence of the surface speed as compared to the uniform surface speed 

in the monopole (17).  

 

Boundary condition (40) and the sound field are no longer spherically symmetric. Instead 

they are axisymmetric about the z-axis. The standard method to solve the sound field 
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from arbitrary vibration of a sphere is the separation of variables. (Morse&Ingard1968, 

p.332) For a linear problem like this, we can simply use the method of superposition. 

 

Suppose we have two radially vibrating spheres, one at 



z  h /2  with rate of volume 

injection 



Q(t), the other at 



z h /2 with rate of volume injection 



Q(t) . The total rate 

of the volume injection is zero. Their difference is 2



Q(t). According to (28), the sound 

pressure from the two sources is: 

 

 

 





































)/)(()(
4

)/)(()(
4

02

/)(
//)(0

2

00

01

/)(
//)(0

1

00

02
002

01
001

aRrtQdeQ
R

a

Rr

a

aRrtQdeQ
R

a

Rr

a
p

aRrt
RaaRrt

aRrt
RaaRrt















.      (41) 

 



r1 and 



r2 are respectively the distances from the observation point to the upper and lower 

sphere centers: 

 

  2/122

1 4/cos hhrrr   ,   2/122

2 4/cos hhrrr   .                (42) 

 

As 



h  0  we keep amplitude of 



Q(t)h  constant, then from Eqs.(41) and (29), 

 

 

 
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
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


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



)/)((
1

)()/)((
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4
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)/)((
1

)/)(()(
11

4

cos

0

0

/)(
//)(

02

0

00

0

0

0

/)(
//)(0

00

0
00

0
00

aRrtQh
ra

deQhaRrtQh
a

R

rR

r

a

aRrtQh
a

aRrthQdehQ
R

a

rR

Rr

a
p

aRrt
RaaRrt

aRrt
RaaRrt





















, 



r  R.        (43) 

 

The radial velocity can be obtained by: 

 



ur  
1

0

p

r
dt'



t

 .                                                  (44) 

 

From (43) and (44) we can see the 



cos  dependence of the sound field. The sound field 

has two lobes with strongest sound in the z direction. The two lobes have the same 

magnitude but 180
0
 out of phase. The force of the sphere acting on the medium is in z 

direction: 
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)(
3

1
sincos)( 0

2

0 0

2 tQhddpRtFz


 

   .                              (45) 

 

As 



R0, Eq.(43) becomes: 

 









 )/(
1

)/(
1

4

cos
020

0

0 artQ
r

artQ
ra

h
p 




, 



r  0.                 (46) 

 

Compared with the monopole solution (32), (46) shows the superposed sound field of two 

monopoles with opposite strengths. This is called a dipole. Its strength is 



Q(t)h . To 

examine the physical meaning of the dipole sound field (46), we expand the volume 

source at 



z  h /2 for small h: 

 

)(/)/)(()()/)((

)(/)/)((cos2/)/)(()/)((

2

010

2

00001

hOdraRrtQdrraRrtQ

hOaaRrtQhaRrtQaRrtQ







 
.  (47) 

 

(Note:  0/)(/))(( atQdrrtQd   .) The source at 



z  h /2 can be assumed to be at 0z  

plus a correction. The correction is due to the change of distance 2/cos1 hrr   and 

the change of the retarded time 0/cos2/ ah   when the source is repositioned.  Applies 

the similar expansion to the source at 2/hz  . If we ignore the difference of r/1 in 

amplitude ( rrr /1/1/1 21  ), the sum of the two sources gives the first term in (46). This 

term represents the sound source due to the difference of the retarded time of the two 

sources. 

 

On the other hand, if we ignore the difference of the retarded time and concentrate on the 

difference in r/1 , then we obtain the second term of solution (46). This term is small in 

the farfield. In the farfield the sound is mainly generated by the retarded time effect of the 

two monopoles.   

 

We can rewrite solution (46) in the form with the spatial derivative: 

 









 )/(

4
cos 0

0 artQ
rdr

d
hp 




 .                                     (48) 

 

The spatial derivative is on the field coordinate, not the source coordinate. Because of the 

retardation of the sound propagation from the source to the observer, the sound field at 

observation time t has a spatial distribution, rartQ /)/( 0 . The gradient of this spatial 

distribution at the observation point in the direction of the dipole determines the sound 

pressure at this point. The gradient includes two effects: the retarded time difference and 

the propagation distance in amplitude. In the far field, the retarded time effect is 

dominant; therefore one may take r/1  out of the spatial derivative in (48).  
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In terms of 



Fz , the wave solution for the dipole is: 

 









 )/(

1

4

cos3
0artF

rdr

d
p z




, 



r  0.                                 (49) 

 

Solution (46) can also be directly derived by performing the Taylor expansion on 

monopole solution (32). To generalize the solution, suppose the dipole is situated at 



r s 

with the separation vector 



h , then, 

 









 )/(

1
)/(

1

4
),( 02

2

01

1

0 artQ
r

artQ
r

trp 




,                            (50) 



r 1  r  r s 
1

2
h , 



r 2  r  r s 
1

2
h , 



r1  r 1 , 



r2  r 2 . 

 

To first order Taylor expansion, we have: 

 












 )/(

4
),( 0

0 arrtQ
rr

htrp s

s

r









.                             (51) 

 

In Cartesian coordinates, the solution has this form: 

 
























 )/(

4
),( 0

0 arrtQ
rrx

htrp s

sj

j











.                          (52) 

 

(51) and (52) are just generalized (48). The sound at the observation point is determined 

by the gradient of the monopole sound field in the direction of the dipole. 

 

To obtain the inhomogeneous wave equation for the dipole, one may attempt to integrate 



1

a0

2

2 p

t 2
2 p over a sphere centered at the source as in the monopole case. But the 

integration is zero since there is no net flow from the two monopoles. The correct way is 

to begin with the inhomogeneous wave equation for monopole (37): 

 

)()(

)
2

1
()()

2

1
()(

1

0

00

2

2

2

2

0

sr

ss

rrhtQ

hrrtQhrrtQp
t

p

a







 










.           (53) 

 

 

Quadrupole (Momentum Flux Fluctuation) 

 



 14 

Consider two dipoles with the same strength htQ


 )(  but in opposite directions. The 

distance between the two dipoles is 



q  centered at 



r s as in Fig.3. According to (51), the 

superposed sound pressure is: 

  

  







 )/(

1
)/(

1

4
),( 02

2

01

1

0 artQ
r

artQ
r

htrp 





,                    (54) 

qrrr s



2

1
1  , qrrr s



2

1
2  . 

 

 

 

 

 

 

 

 

Fig.3, A quadrupole. 

 

To first order, the Taylor expansion of (54) is: 

 

   







 )/(

4
),( 0

0 aRtQ
R

qhtrp 




, srrR


 .                 (55) 

 

In Cartesian coordinates, we can rewrite the solution as: 

 
























 )/(

4
),( 0

0

2

aRtQ
Rxx

qhtrp
ji

ji









.                                (56) 

 



h  and 



q  can be in any direction. There are two special cases. If 



h  and 



q  are parallel, the 

quadrupole is longitudinal. A longitudinal quadrupole has two lobes in sound field. 

Compared with a dipole, the two lobes from a longitudinal quadrupole are in phase 

instead of out of phase. If 



h  and 



q  are perpendicular, the quadrupole is lateral. There are 

four lobes in the sound field of a quadrupole.  

 

(55) can be rewrite to: 
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trp 
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












.   (57) 

 

Any quadrupole can be decomposed into two longitudinal quadrupoles. Longitudinal 

quadrupole is the basic type of all quadrupoles. 

 



q 
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The inhomogeneous equation for a quadrupole is: 

 

 
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



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
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






.        (58) 

 

In summary, any sound sources can be represented by superposition of monopoles. When 

monopoles are close to each other, models such as dipoles or quadrupoles are more 

appropriate. A quadrupole can always be separated into two longitudinal quadrupoles. 

Longitudinal quadrupole is the basic type of quadrupoles. 

 

 

Multipole Expansions 

 

Dipole is composed of two monopoles with equal strength but opposite signs, while a 

quadrupole is composed of four monopoles with equal strength but opposite signs. 

Monopole, dipole, quadrupole, etc., are the basic types of sound sources. If a source 

region is compact compared to the sound wavelengths, any source can be represented by 

the sum of these basic sources. 

 

Let’s begin with the sound field from two monopoles: one with strength )(10 tQ  at 

2/hz   and the other with )(20 tQ  at 2/hz  . According to (34), the total sound 

pressure is: 
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.     (59) 

 

To order of )( 2hO , the acoustic field is generated by a monopole with 

strength )]()([ 210 tQtQ    at their geometric center, and a dipole with strength 

2/)]()([ 210 tQtQh   . According to (37), the inhomogeneous equation is: 
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.  (60) 
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Suppose there are N monopoles with strength )(0 tQ j
  at 

jr


, 



j 1,2, ,N.  The total 

sound pressure is:  
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trp
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4
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 .                       (61) 

 

Assume the source region is small in all dimensions compared with the sound wave 

length, and 



r 0 is the geometric center of the source region. The sound pressure from the j-

th monopole can be expanded about 



r 0: 
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00 rrR


 . 

 

Therefore the total sound pressure from all the monopoles is: 
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To the zero-th order, the N monopoles can be represented by one monopole with the total 

strength of all the monopoles. The dipoles seem not having an equivalent dipole as in 

(60), where 



r 0 can be chosen in the middle of the two monopoles. If all the monopoles 

oscillate at the same frequency 



 ,   )ˆ(Real ti

jj eQtQ  , then, 
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Then the sound sources can be represented by one monopole, one dipole, and one 

quadrupole, etc. The equivalent monopole has the strength of the sum of all the 

monopoles. The dipole is in a direction of the vector sum of all the monopoles.  

 

 

Green’s Function in Three Dimensional Open Space with No Flow 

 

We have discussed the monopole and its high order derivatives. There are three types of 

sound sources in a flow: volume fluctuation, force, and viscous stress oscillation. They 

can be respectively modeled as monopoles, dipoles, and quadrupoles. Since high order 

poles can be constructed by monopoles, it is essential to solve the acoustic field of a 

monopole.  

 

The solution to the acoustic wave equation of a monopole with unit strength is called the 

Green’s function. Setting source strength per unit volume )()(0   ttQ , a pulse with 

unit strength emitting sound at  , in the inhomogeneous acoustics equation (37) and its 

solution (34), we have: 

 

)()(
1 2

2

2

2

0

yxtG
t

G

a
x


  




,                                    (65) 

 


 


 0/
4

1
),|,( ayxt

yx
ytxG





.                            (66) 

 

),|,( ytxG


is the Green’s function in a stationary medium in the open space. It 

represents the sound at the observation point 



x  and time t generated by a pulse at source 

point 



y  released at time 



 . The Green’s function in Eq.(66) is in Cartesian coordinates. 

Green’s functions in cylindrical coordinates and in spherical coordinates are also useful 

in applications and will be discussed later. Operator 



x 

2  has a subscript 



x  to explicitly 

indicate that the left side of the equation is operated on the observation coordinate 



x . The 

Green’s function is often written as 



G(x ,t | y ,)  to explicitly indicate the field (observer) 

coordinates and time and the source coordinates and emitting time. This is very important 

in the following context. 
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As 



a0  , one obtains the three-dimensional Laplacian equation and its Green’s 

function: 

 

)(2 yxG


  ,                                                   (67) 

yx
yxG 





4

1
)|( .                                                (68) 

 

If the medium moves at constant velocity 0u


, G satisfies the more general 

inhomogeneous wave equation: 

 



1

a0

2

D0

Dt

D0G

Dt









x 

2G (x  y )(t  ).                            (69)(70) 

 

Obviously the Green’s function satisfying (70) is different from (66). 

  

The Green’s function has three important properties (Rienstra2006 for proof): 

 

(1)Causality: there is no sound before the source energy is released: 

 



G(x ,t | y ,)  0, 



D0G(x ,t | y ,)

Dt
 0, when 



t  .                       (71) 

 

(2)Reciprocity: 

 



G(x ,t | y ,) G(y , | x ,t).                                         (72) 

 

In this particular case (uniform medium), the Green function and its adjoint are the same 

function. It is self-adjoint, or symmetric. In general, the adjoint Green function is 

different from its original: 

 

),|,(),|,(  ytxGtxyGa


 ,                                     (73) 

 

such as in the shear flow in Tam& Auriault1988. 

 

(3)



G(x ,t | y ,)  also satisfies: 

 



1

a0

2

D0

D

D0G

D









y 

2G  (x  y )(t  ) .                               (74) 

 

(4)



G(x ,t | y ,)  is singular with order )( 1rO  at the source point. 

 

 

Integral Representation of Acoustic Equation: Kirchhoff’s Formula 

 



 19 

In the previous sections we have discussed the simple sources and the Green’s functions. 

The sound field from continuously distributed monopoles was briefly mentioned in 

Eq.(38) and (39). Here we will study distributed sources in more details. 

 

Suppose we have a continuously distributed source field ),( txq


 in the moving medium. 

The inhomogeneous acoustic wave equation is [ref.(13)&(38)]: 

 

),(
1 200

2

0

txqp
Dt

pD

Dt

D

a
x


 








, or,                                        (75) 



1

a0

2

D0

D

D0 p

D









y 

2 p  q(y ,) .                                             (76) 

 

With the Green’s function, the partial differential acoustic wave equation can be 

transformed into an integral acoustic wave equation. The integration will be operated on 

source coordinate 



y  and time 



 . The Green’s function satisfying (74) instead of Eq.(70), 

will be used.  

 

As in Fig.1, control volume 



V(t) is bounded by surfaces )(tS , including inner surface 



Si(t)  and outer surface 



So(t) . The surfaces can be arbitrary, where no boundary 

conditions are enforced. Subtract Eq.(74) multiplied by p from Eq.(76) multiplied by G, 

and integrate this equation over volume V from time 



t0 to t+ (t+ means inclusive of t): 
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dy d
V ( )
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t0

t



 p(y ,)(x  y )(t )G(x ,t | y ,)q(y ,) dy d
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t0
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

.          (77) 

 

According to Green’s Second Identity: 

 

     




t

t S

yy

t

t V

yy dSdpGGpdydpGGp

00 )()(

22






 .               (78) 

 

Sound pressure p was chosen as the acoustic variable in Eqs.(75)&(76). p is a single-

valued function of position no matter if the region is singly-connected or multiply-

connected. If velocity potential 



  is chosen as the acoustic variable, one concern is that 



  

is single-valued only in a singly-connected region. If the region is multiply-connected, 

artificial barrier(s) 



Sb  should be inserted to make the region singly-connected as in 

Fig.(2), and the surface integration in (78) should include 



Sb . However, the normal 

direction on the two sides of the surface have opposite directions; the integration on the 

barrier is zero. Therefore equation (78) applies for 



  as well. 
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To integrate 
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p
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V ( )
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t0
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  in (77), we begin with the 

simplest case. 

 

Stationary Control Volume in Stationary Medium 

 

Consider a stationary control volume V (relative to the observer) without mean flow, i.e., 
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. Since V doesn’t vary with time, the integration order can be exchanged: 
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The integration at t  is zero, required by the causality of the Green’s function (71). 

Then we obtain the famous Kirchhoff’s formula in stationary volume V without mean 

flow: 
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                          (79) 

 

The Kirchhoff’s formula, also called the Kirchhoff-Helmholtz Integral Theorem, was first 

published in 1882. Although the formula is presented on sound pressure, it holds for any 

other acoustic variables. The first term on the left side is the sound field from the 

distributed sources in the volume as if there were no surfaces 



Si  and 



So . In this case 

Green’s function (66) applies, and the Kirchhoff’s formula reduces to (39) that was based 

on the principal of superposition. The second term on the left side of (79) represents the 

effect of the (physical boundary) surfaces on the sound field (refraction, reflection, etc.), 

or the contribution of the sources from outside of the surfaces. The last term on the left 

side is the effect of the initial condition, which is zero if no sound exists initially. If x


 is 

on the surface, the volume integral about the Delta function in (77) is undefined. A limit 

analysis on (79) will be performed to derive a formula applicable for x


 on the surface.  
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The partial differential equation (76) describes the relationship of a source and the sound 

near it. On the other hand, Kirchhoff’s formula (79) connects the source region to its far 

field sound field. It incorporates in a single equation the effects of the sources, the 

physical boundary or arbitrary permeable surfaces, and the initial conditions. Generally 

the Kirchhoff’s formula is not a solution. There are unknowns (p and  /p ) in the 

volume integral and in the surface integral in (77). According to the solution uniqueness 

theorem, p and  /p cannot be prescribed independently on the surfaces. One must be 

solved when the other is prescribed. 

 

Stationary Control Volume with Uniform Mean Flow 

 

There are two ways to include a uniform mean flow 



u 0 into the Kirchhoff’s formula. The 

first is to follow the same procedure as for (79) (Goldstein1976). Note 
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We have the Kirchhoff's formula for a stationary volume in a uniform mean flow: 
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.         (80) 

 

Note the extra terms in the surface integral compared to the no-flow Kirchhoff formula 

Eq.(79). 

 

The second method is to make use of the linear transformations of the coordinates. 

Without loss of generality, we establish a coordinate with the 



x1-axis parallel to the mean 

flow, then wave equation Eq.(75) is: 
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 2u01
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 u01

2 2

x1

2









p

2 p  q x ,t .                         (81) 

 

The simplest linear transformation is the Galilean transformation: 
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

˜ t  t , 



˜ x 1  x1  u0t , 



˜ x 2  x2
, 



˜ x 3  x3
.                               (82) 

 

With (82), (81) can be transformed to an equation in a stationary flow. All the analyses 

for the stationary medium apply. However, the property of the source/observer changes 

after the transformation. A stationary source in the coordinate system moves in the other 

coordinate system. The Lorentz-type transformation can be used to avoid it: 
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˜ x 2  x2 , 
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˜ x 3  x3 , and 2
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axutt   ,                           (83) 

 

where 



 1/ 1 M2 , 



M  u0 /a0. In this system, the dimension in 



˜ x 1 direction is dilated 

in a subsonic flow, while the time is compressed and shifted. The amount of the time shift 

varies with 



x1
. With this transformation, acoustic equation (75) and the Green’s function 

equation become: 
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[Note: 



( ˜ x /) ( ˜ x ) .] Acoustic equation (84) has the same form as in a stationary 

medium, and the property of the source/observer doesn’t change. Eq.(84)  is now widely 

used in applications. (Morino) 

 

Transformation (83) is also called the Prandtl-Glauert Transformation, since the acoustic 

equation is reduced to the Prandtl-Glauert equation for compressible steady flows: 
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Sometimes it is referred to as the Karman-Tsian Transformation. 

 

Moving Control Volume with Uniform Mean Flow 

 

Suppose control surfaces )(tS  moves with time. According to the Leibniz’s Rule, 
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where 



V s  is the moving velocity of the surface. Then we have 
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The Kirchhoff's formula for moving surfaces in a mean flow is 
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      (86) 

This formula reduces to (79) or (80) without mean flow/moving surfaces. It is for general 

sources. To apply it for sources from flow in aeroacoustics, modifications/derivations are 

needed, such as Goldstein’s version, and the FW-H equation. 

 

Applications of Kirchhoff’s Formulas 

 

As we have mentioned, the Kirchhoff's formulas are the integral representations of the 

differential acoustic equations.  Generally they are not the solutions. There is unknown 

variable in the surface integral of (79), (80) and (86): the surface integration is coupled 

with the sound field. The volume integration may also include the unknown variable if 

there is strong interaction between the source and the sound. 

 

If there is no object in a stationary medium and the sound has no back effect on its source 



q(y ,) , (79) reduces to: 
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.                                   (87) 
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In this case the Kirchhoff's formula is the solution. The sound field can be calculated by 

this formula using the open-space Green’s function (66) in the Cartesian coordinates in 

the open space. An example is the jet noise prediction. Noise from turbulence is modeled 

by the Lighthill Acoustic Analogy. The Lighthill stress is assumed known and the sound 

it generates assumes no back effect.  

 

In some situations, the coupling of the source and its generated sound on the surfaces can 

be eliminated. If the surface is rigid, the non-penetration boundary condition ( 0/  np ) 

must be satisfied. Then 

 

0

0
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t

t S

y dSdpG 


 . 

 

If the Green’s function also satisfies the non-penetration boundary condition at the 

surface ( 0/  nG ), then 
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Eq. (79) reduces to Eq.(87): the surface coupling is eliminated and Eq.(87) is the solution. 

But the Green’s function in Eq.(87) must satisfy the boundary condition at the surface. 

Check out Morse&Ingard1968, p. 500 for how to develop the Green’s function in a duct 

using the normal modes. Check out Howe1998: p.61, p.65 for the compact Green’s 

function which gives the leading order terms for the sound produced by sources near a 

solid body. 

 

In general, it is difficult to find a Green’s function satisfying the boundary condition at 

the surfaces. If there is no volume source in a stationary medium, Eq.(79) reduces to: 
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t

t S

yy dSdGppGtxp
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),( 
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The surface has two possible effects on the sound field. One is the diffraction: the sound 

propagates towards the surface and is diffracted. The other is the object surface acts as a 

sound source. No matter which type of effects, given p, 



p/n  (and 



p /t  when there is 

mean flow) on the body surface, the sound field can be calculated from Eq.(88). However, 

according to the solution uniqueness theorem, to render a unique solution, only one of p 

and 



p/n , or a linear combination of the two, can be prescribed on any part of the 

surface. They cannot be prescribed simultaneously. When one is prescribed, the other has 

to be solved. Therefore either p or 



p/n  on the surface is an unknown and needs to be 

solved. 
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To solve the integral equation (88), let's put the observation point 



x  on the surface as in 

Fig.4a. When the source point approaches the observation point 



x , the Green’s function 

is singular. We will show the integral remains finite and is the sum of the principal value 

of the integration and 



p(x ,t) /2.  

 

 
a                                    b 

Fig.4, Observer on the surface. 

 

First we deform the surface near the observer as in Fig.4b. The surface near the observer 

is pushed into the object to form two new surfaces: S’and g.( Ang2007) S’ is the original 

surface S excluding a small round surface with radius  . g is a half sphere surface with 

radius  . The observer is in the new volume V’ so Eq.(88) applies: 

 

      

t

t g

yy

t

t S

yy dSdGppGdSdGppGtxp

00 '

),( 


 .       (89) 

 

Applying the free-space Green’s function (66), the second integral in (89) is:  
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Suppose the observer lies on a smooth part of S where np  /  is smooth. As 0 , 
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Plugging it into (89), we have,  
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The integral is over the original surface S excluding the singular point (the observer). It is 

called the principal integral. This shows the integral over S is the sum of its principal 

value and 



p(x ,t) /2. Eq.(90) is then simply: 
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yy dSdGppGtxp
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This is the boundary surface integral equation on sound pressure. (Crighton, et.al.1992, 

pp287-291, Pierce1989, p.182) After it is solved, the sound field can be computed from 

(88). The surface can be discretized so Eq.(91) is solved numerically. This is the 

boundary element method (BEM ). (Long-BEM.pdf, BEM2005.pdf) 

 

If the inner surface is smooth, a model without circulation applies. In this model, the lift 

on the body is zero. If the surface has sharp edges, such as in an airfoil, the model 

without circulation will give singularity at sharp edges. In this case, the Kutta condition 

must be enforced to remove the singularity, which is equivalent to add circulation and lift 

to the medium and the body. 

 

Other methods include CFD or CAA methods. One example is the sound from a jet. An 

artificial surface can be put around the jet, far enough so that the linear acoustic equation 

holds outside the surface. The flow field within the surface is known from other methods, 

such as experiment or numerical solutions. 

 

 

Sound Field from Moving Sources 

 

In this section we will use Kirchhoff’s formula (87) to investigate the effect of moving 

sources in an open space.  The Green’s function for a stationary source in a stationary 

medium in the Cartesian system, (66), is used in the analysis. A stationary source 

oscillates but its time averaged position y


doesn’t move.  

 

Sound Field from Moving Sources with Constant Velocity 
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The simplest case is all the sources move with constant velocity 



U 0 . Establish a frame 



 

moving with the sources. The moving frame is chosen to coincide with the fixed frame 



y  

at 



  0: 



y . At time 



  the coordinate of the source position in the fixed frame is  

 

 0Uy


 .                                                      (92) 

 

Suppose the strength of the source observed in the moving frame is 



A(,). To facilitate 

the explanation, we assume all the sources oscillate at the same angular frequency s  

(constant-frequency assumption), while their strengths vary with position, i.e.,  

 

})(ˆ{Real),(
 si

eAA


 .                                        (93) 

 

To apply Green’s function (66), the source must be defined in the fixed frame: 

 
 si

eUyAUyAyq )(ˆ),(),( 00


 .                            (94) 

 

 
Fig.5, Effect of a moving source. 

 

Examining the source in Eq.(94) at 



y  in the fixed frame, one may find it not only 

oscillates at s  as in 
si

e , but its amplitude also varies as in )(ˆ
0UyA


 . Expression (94) 

formally separates the two effects of the source: the oscillation and the convection. The 

physical meaning can be explained by Fig.5. At time   the source is in the elliptic region 

shown in the figure. Let’s observe the point marked by  . Its coordinates in the fixed and 

moving frames are y


 and 


 respectively. Short time d  later, the source region and the 

marked point move by distance dU 0


 to a new position. But the fixed observation point 

at y


 in the moving frame moves by distance dU0


 . At y


 the amplitude of the source 

is  )(ˆ
0UyA


 . It varies only when )(ˆ 


A  is not uniform.  The sound source in the fixed 

frame is time dependent even it is steady ( 0s ) in the moving frame when it is 

nonuniform. 

 

To generate the sound, the source strength in the fixed frame must vary with time. It is 

useful to investigate the time variation rate of the source at a fixed point. The source 
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strength observed at y


 not only varies with   as the source oscillates, but also varies due 

to the source motion as shown by the first argument ( 0Uy


 ) of A  in Eq.(94), therefore, 
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The time changing rates of a quantity in the two frames are different: 

 tt y 







. 

Conventionally we denote the time rate 
y



 observed in the fixed frame as 

t


, and the 

time rate 
 


observed in the moving frame  as 




. Then,  
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


 represents the source oscillation. 

j

jU



 0  is the source motion effect. The 

difference between 
t


 and 




 is the source motion effect. It can be neglected only when 

all of the three conditions are satisfied: (1)source oscillation (



) is not small; (2)the 

source moves slowly ( 10 U


); and (3)the source strength is fairly uniform 

( 1/  jA  ). If a source is steady in the moving frame, such as the steady force on a 

rotating blade, the first condition is not met. Since the source is on the blade surfaces, its 

spatial distribution is highly nonuniform, therefore neither the 3
rd

 condition is satisfied. A 

steady force generates no sound if it doesn’t move.  The moving effect is the only sound 

generation mechanism in this case. It shouldn’t be ignored under any circumstances in 

turbomachinery noise analyses. 

 

The effect of the moving source is now examined. Substituting source strength (94) and 

Green function (66) into the Kirchhoff’s formula (87), we have: 
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Volume V includes all the sources in the fixed frame. It occupies the whole space and is 

not a function of time. The first argument in the source strength ( 0Uy


 ) reflects the 
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effect of source motion. To express this effect explicitly, we may convert the spatial 

integral from the fixed frame y


to the moving frame 


: 
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The integration order can be changed in the last step since the whole space V is not a 

function of time. 

 

For the two functions 



f () 
1

x U 0
A(,)  and 



g()  t  x U 0 /a0  , we 

have 
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

n  is the nth root of 0)( g , i.e.,  
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

n  is the source emitting time for the sound reaching the observer at time t. If the source 

moving speed is subsonic, there is only one root (n=1). If the speed is supersonic, there 

are two roots (n=2). It is not straightforward to solve 



n  from (100) even for the simple 

case of uniformly moving source. When the source doesn’t move, 



n  is the same retarded 

time as before. 

 

Note 
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nr MM cos0 . 
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

n
 is the angle between the source moving direction and the source-observer vector at the 

emission time. 
000 / aUM


  is the acoustic Mach number, or source Mach number. It is 

not the actual Mach number since the source moving velocity 0U


 is not the flow velocity. 

rM  is the Mach number towards the observer. 

 

Substituting Eq.(99) and Eq.(101) into Eq.(98), the final expression for sound pressure 

from moving sources in time domain is: 
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For a harmonic source, 
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nn UxR  0)(


  is the distance between the observer and the source at emission 

time n .  Formally, the sound field from a moving source is the sound field as if the 

source is stationary divided by rM1 . The motion has two major effects. The first is the 

amplitude factor 1/ rM1 . It is solely due to the source motion, and generated when the 

spatial integration over y


 in the fixed frame is converted to that over 


in the moving 

frame. The complexity of the spatial integration over y


in Eq.(97) due to ),( 0 UyA


  is 

relieved in (102) since the first argument in ),( nA 


 is no longer a function of time. 

However, the complexity doesn’t disappear. It is just moved to the amplitude factor 

1/ rM1 .  

 

The other major effect of motion is on the emission time n , which affects amplitude 

factors 1/R and 1/ rM1 , and mostly importantly affects the phase and the frequency. 

 

For a steady source, )(),( 


AtA  , )(),|,( 


 xRtxR , 0rM . There is no sound 

since )(),( xptxp


  does not vary with time. On the other hand, if the source moves, 

then R  and rM  are time dependent and the sound is generated. 

 

For the harmonic source in the moving frame as in (93), if the source doesn’t move, the 

sound amplitude at the observation point is )4/(|)(ˆ| RdA 


. The frequency in the sound 

field is the same as in the source: sdtd  /  ( ns  ). The effects of the source 

motion on the sound amplitude and the phase are seemly separated in (102). The sound 

amplitude is changed through nM cos1 0  and )( nR  . The sound received by an 
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observer in front of the source ( 0cos n ) is stronger than that received by an observer 

behind the source ( 0cos n ). On the other hand, the source motion effect on frequency 

is through ),( nA 


. To show it, let’s assume the source motion speed is subsonic and in 

the far field: 
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 .                           (103) 

 

The retarded time is: 
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.                              (*5-1)(104) 

 

According to Eq.(102) the sound pressure has time factor 
)cos1/( 0  Mti se


. The sound 

frequency measured in the fixed frame is )cos1/( 0  Ms  . Time in the fixed frame, t, is 

compressed therefore its frequency increases when the source moves towards the 

observer. This is the Doppler effect through phase, and )1/(1 rM  is the Doppler factor. 

(When 



Mr 1  the Doppler factor and the sound field become singular and special 

treatment is needed.) 

 

The observation time is compressed in (104) which can be explained further from (100). 

Assume  0))(,( UxyxR


 , then, 
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Then, 
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Because of the source motion, 




t
 and 






 are no longer equal, which has also been 

shown by (96). Changing rates of any quantity in reception time and emission time are 

different.  

 

Exactly speaking, frequency is the recurrence of an oscillation returns to the same state. 

That requires the oscillation has constant amplitude. Mathematically the Fourier 

transform of a signal gives Fourier components with constant amplitudes. Therefore the 

variation of amplitude due to )( nR   and nM cos1 0  in (102) also changes the 
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frequency and gives the Doppler effect. We may consider this as the Doppler effect 

through amplitude. The variation of amplitude corresponds to Fourier components at 

different frequencies. Therefore the effects of the source motion on sound amplitude and 

phase are not exactly separated in (102).   

 

The sound field in (102) is the sum over the possible emission times 



n  from (100). From 

now on we will omit this summation for convenience. 

 

 

Sound Field from Arbitrarily Moving Sources 

 

 

All analyses for the sound field from uniformly moving sources are valid for arbitrarily 

moving sources except that  

 






0

0 ')',( dttUy


.                                            (106) 

 

Approximations 

 

Solution (102) is concise and has clear physical meaning. It is the basis for developing 

numerical methods in time domain. Ref. to cht22.doc for details. It can hardly be directly 

used in frequency domain without any approximations.  

 

Two types of approximations are usually made. The first is on amplitude factor  

rM1/1 . 1~1/1 rM when 0U


 is small, such as in Eq.(12-43) in Blake. However, this 

approximation can only be made when the other two of the three conditions as discussed 

previously are met: (1) the source oscillation is not small, and (2) the source strength is 

fairly uniform. Obviously this is not the case in turbomachinery since sources on blade 

surfaces are strongly discontinuous in space. rM1/1  appears when the integration in 

the fixed frame is converted to the integration in the moving frame. In time-domain 

methods integrations are implemented in the physical domain. It is convenient to use the 

moving frame. Therefore rM1/1  appears a lot in these methods. In frequency domain 

methods, solutions are expressed in modes. Sources are coupled with mode shapes, which 

can easily convert between the fixed and the moving frames. Therefore a fixed frame is 

usually adopted in frequency domain methods and handling of rM1/1  is avoided. 

 

The second type of approximation is on the emission time and the distance. Most of the 

complexity of moving source noise prediction comes from finding the emission time   in 

(100) from the reception time t. This is not easy even for a source moving at constant 

velocity. One way to get around it is to compute the sound field in source time   instead 

of reception time t. t can be directly computed from  by (100). This strategy is 

applicable in time-domain numerical simulations. (Ref. cht22.doc for time domain 
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method) In analyses the reception time is preferred. It is not avoidable to find the 

emission time. 

 

 
Fig.6, Approximation of ))(,( yxR


 by ))(,(' tyxR


 for finding the retarded time. 

 

Depending on the conditions, there are two approximations for R and  . In the far field, 

R can be approximated by Eq.(103) and the emission time by (104). It is often used for 

high-speed rotors. For a slowly moving source. the retarded time in )( nR   in the phase is 

ignore and ))(,( yxR


 in Eq.(100) is replaced by ))(,(' tyxR


shown in Fig.6: 

 

  ))(,('0 tyxRat
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 , 

 

from which the retarded time can be obtained readily: 
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 .                                                 (107) 

 

Note  
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If 10 M , the error of the approximation is: 

 

cos)'(
1

0MRR
R

 . 

 

It is justified for slowly moving sources. This approximation is widely used in low speed 

turbomachinery noise analyses. 

 

Another approximation is often made on amplitude factor 1/ )( nR  . In the far field the 

moving effect on )( nR   is often ignored. A constant R between the observer and the 

geometric center of the source region can be used.  
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Sound Field from Rotating Sources 

 

In this section we will apply (102) in the investigation of sound field generated by 

rotating sources. It is convenient to use the cylindrical coordinates shown by Fig.7 in the 

frame moving with the sources: 

 

),,( sss zr  


,                                                      (108) 

 

and in the fixed frame: 

 

),,( sss zry 


.                                                     (109) 

 

 
Fig.7, Cylindrical coordinates. 

 

The source rotates at angular speed 



 on the 0z  plane. The cylindrical coordinate 

relation between the two frames is: 

 

tss  .                                                   (109) 

 

At 0t , s  and s  are the same. 

 

Ignoring the moving effect in amplitude 

 

Since the moving effect is ignored in the amplitude, this analysis only applies for source 

oscillating at high frequency in the moving frame. 

 

The sound pressure at observation point x


 with cylindrical coordinates ),,( ooo zr   can be 

evaluated by Eq.(102). The first approximation we make is in the far field to approximate 

|| R


 in the amplitude by x


. When the rotating speed is small ( 1rM ), it seems natural 

to neglect the moving effect in the amplitude, i.e.,  1~)(1 nrM  , as in Blake sec.12.2.2. 

Then in the far field, 
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With 1rM  assumed, ))(,( yxR


 in the source phase may be approximated by 

))(,(' tyxR


 as shown in Fig.6 so that the retarded time can be obtained from Eq.(107) in 

which 
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  is the angle between x


 and the z-axis, xro


/sin  . 

 

For a harmonic source in the moving frame: 
 si

s eA ),(ˆ 
(change to (93)?), (110) 

becomes: 
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where 0/ ak ss  . 

 

The Jacobi–Anger expansion: 
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is often used to expand a plane wave as a sum of cylindrical waves. (cf. 

Morse&Ingard1968, Eq.(1.2.9) at p.13). With this expansion, variables about sr  and s  in 

the sound pressure expression can be separated and the sound pressure in cylindrical 

coordinates is: 
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For the single frequency s  observed in the moving frame, there exist multiple 

frequencies in the fixed frame due to the Doppler effect through phase:  ns , integer 

http://en.wikipedia.org/wiki/Jacobi%E2%80%93Anger_expansion
http://en.wikipedia.org/wiki/Plane_wave
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 ,n . At each frequency  ns , there is a spinning mode pattern in the 

circumferential direction with spinning mode number n. 

 

Once the frequency and the amplitude of the source in the moving frame are known, 

sound pressure can be computed from (112). If the source is steady in the moving frame 

( 0s ), such as a steady force, no sound is computed from this formula. This is due to 

the assumption of 1~)(1 nrM  . Solution (112) only applies for sources with high 

frequency oscillations. For steady sources in the moving frame, effect of )(1 nrM   

must be retained. 

 

 

 

 
Fig.8, Airfoil subjected to incident flow. 

 

Suppose a rotor with B blades rotates in the wake of a stator with V vanes. To investigate 

the source characteristics, let’s concentrate on one rotating blade as in Fig.8. The 

aerodynamics of the flow over the blade depends primarily on the incident velocity W


: 

 




UW .                                                       (113) 

 

U


 is the upstream velocity in the fixed frame, 


 is the blade rotating velocity. The 

source strength depends on W


 and its direction (angle of attack), therefore is a function 

of U


, the wake flow of the upstream stator. In the fixed frame, the wake flow is periodic 

in   with period V/2 . It can be represented by this Fourier series: 
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In the rotating frame the wake becomes: 
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Observed at position ),,( zr s  in the moving frame, the incident velocity oscillates with 

amplitude simV

m ezrU


),(


at frequency  

 mVs                                                   (115-1) 
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when the blade moves through the wake. The rotation of the rotor blade transforms the 

flow spatial nonuniformity in the stator wake into time nonuniformity. Frequency s  of 

the source observed in the moving frame is the stator blade passing frequency (BPF) and 

its harmonics, depending on the rotation speed of the stator relative to the rotor and the 

number of stator vanes, instead of the number of the rotor blades.  

 

The blade at 0  responds to the incident wake with the source strength in a form similar 

to (115): 
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The Dirac delta function is to indicate that the sound source only exists when the blade 

occupies the space. The B rotor blades are separated by B/2 . The sound source at the 

jth blade is: 
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If we concentrate on the mth Fourier component of the wake in (115), the source is: 
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Bj ,...,1 . 

 

The corresponding sound pressure is 
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Since 
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(cf. Formulae.doc) then, 
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This result is similar to Eq.(12-14) of Blake. The sound frequencies observed in the fixed 

frame are kB , the rotor blade-passing frequency (BPF) and its harmonics. They 

depend on the rotation speed of the rotor relative to the stator, and the number of rotor 

blades. They are totally different from the source frequency  mVs , which is the 

stator blade-passing frequency and its harmonics. Corresponding to each frequency kB , 

there is a spinning mode in the circumferential direction:  mVkB . (Spinning mode is 

defined positive if it propagates in positive o  direction.) It can be showed that the 

frequency at observer kB  is the difference between the source frequency  mVs  

and the spinning mode kBmV   rotating frequency  )( kBmV . This is consistent with 

the fact that the time rate in the fixed frame is the difference of the time rate in the 

moving frame and the changing rate due to the source gradient: jjUt   /// 0 . It 

is called the frequency scattering. The radiation coefficient, )/sin( 0armVJ smVkB  , is 

determined by the spinning mode and the source frequency  mVs . 

 

For a steady source in the rotating frame, 0m , ),( txpm


 is constant according to (119), 

i.e., no sound. The Doppler effect through amplitude, or rM1/1 , was ignored when 

deriving (119). As we have mentioned, the source distribution on the rotating blade 

surfaces is highly nonuniform in space. Effect of rM1/1  cannot be neglected even rM  

is small. 

 

Keeping the moving effect in amplitude 

 

To keep the Doppler effect through amplitude, it is better to model the source directly in 

the fixed frame (Morse&Ingard1968, p.738). Then the source is stationary in the 

Kirchhoff integration. 

 

In the fixed coordinate the wake is Eq.(114).Suppose at time  , a rotator blade occupies 

the space at fixed point ),,( sss zr  . The source at the blade is proportional to ),,( sss zrU 


. 

Since the rotor is rotating at speed  , the occurrence frequency of a blade at this location 

is B  (rotor BPF). The time factor is then 
inBe . n is the harmonic of the BPF. The 

same argument applies at another location except that there is time lag /s . Therefore 

the correct time factor is 
)/(  sinB

e


, and the model of the source strength is: 
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n begins with 1 since n=0 corresponds to a steady source which generates no sound. This 

expression reflects the source motion effect we discussed previously. (It is produced by 

the source motion and the source strength gradient?). The difference of the source models 

in the fixed frame (120) and in the moving frame (117) is that in the fixed frame, the 

source is continuously distributed with s , while in the moving frame it is discrete with 
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  as it exists only when the blades occupy that position. In the fixed frame the source 

exists at any point in the source region as the rotor rotates. 

 

Substituting source model (120) into the Kirchhoff formula (102), we obtain the sound 

pressure from the mth component of the wake: 
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With the approximation (111) for slowly moving sources and the Jacobi-Anger expansion, 

the sound pressure is 
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i.e., 
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This is a rather different result from (119). It is the rotor blade passing frequencies in 

)/sin( 0arnBJ smVnB   instead of the stator BPFs as in (119). 

 

The sound frequencies are the rotor blade passing frequency and its harmonics: nB . 

The spinning (circumferential) mode of the sound field is nBmV  , the difference of the 

stator (wake) harmonic and the rotor harmonic, also called the Sofrin-Tyler mode. For 

each frequency, i.e., fixed n, there are multiple spinning modes for different m. For each 

spinning mode, the sound pressure is: 
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The circumferential period of the spinning mode is )/(2 nBmV  . The rotation speed 

(phase speed) of the spinning mode is )/( nBmVnB  . 

 

Although the source (120) was modeled in the fixed frame to develop the solution, 

sometimes it is more convenient to determine the source in the rotating frame either 
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numerically or theoretically. Substituting (109) into (120), the source in the rotating 

frame is: 
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(123 vs.117?) 

If we solve the gust/blade interaction problem in frequency domain in the rotating frame, 

we obtain the source strength ),,(ˆ
sssm zrq   with time factor 

imVe . It can be decomposed 

into ),(
~

ssmn zrA  according to this relationship: 
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Once ),(
~

ssmn zrA  is determined, the sound pressure of this spinning mode can be 

determined by the integration in the source region of this source strength multiplied by 

weighting function 
ssmVnB

mVnBaxinBmVnBi
rarnBJiee

x
o )/sin(

2

1
0

/)( 0 





 . sr  and 

)/sin( 0arnBJ smVnB   in the weighting function reflect the importance of the source 

location to the sound field. The source at larger radius generates stronger sound. There is 

no sound along the axis ( 0 ) except when mVnB . This actually is the result of 

source motion effect. When mVnB  the sound arriving at the axis cancels each other 

when the source rotates. On the other hand, when mVnB , sound waves enforce each 

other, which should be avoided to control the rotor noise. At some radial locations, 

)/sin( 0arnBJ smVnB  =0. This is also the effect of source motion. When the source at 

one of these locations rotates, the sound is cancelled as long as the observation point has 

angle  .  

 

Sound generated by two rotors 

 

The similar analysis also applies for a wake generated by a front rotor instead of a stator. 

In the frame moving with the front rotor, the wake is: 
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w  is the circumferential angle in the frame rotating with the front rotor. Suppose the 

front rotor rotates at speed w , then in the fixed frame the wake is: 
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In the fixed frame, suppose at time  an aft rotor blade occupies the space at 

),,( sss zry 


. Since a blade passes this point at the aft rotor Blade Passing Frequency 

B , the source has time factor: 

 
)/(  sinB

e


. 

 

/s  is the time lag at a different circumferential location. n is the harmonic of the aft 

rotor BPF. The source strength is modeled as: 
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Frequency in the fixed frame is wmn mVnB  . Different from the stator/rotor 

model (123), here n begins with 0. 

 

Substituting source model (127) into the Kirchhoff formula (102), making use of the 

approximation (111) and the Jacobi-Anger expansion, the sound pressure in the far-field 

is: 
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i.e., 
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This solution reduces to (121) as 0w . It reduces to the solution of a front rotor 

interacting with a aft stator as 0 . 

 

In the stator/rotor case (121), there may be multiple spinning modes at one frequency. 

Here for the rotor/rotor case, one spinning mode (m,n) corresponds to only one frequency, 

vice versa. The sound field have modes other than (m,n) at one specific frequency only 

when it is scattered by nonuniformity such as splices in a duct during propagating process. 

The frequency at observer wmn mVnB   is the difference between the source 
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frequency )( wmV   and the spinning mode nBmV   rotating frequency 

 )( nBmV . This is consistent with the fact that the time rate in the fixed frame is the 

difference of the time rate in the moving frame and the changing rate due to the source 

gradient: jjUt   /// 0 . It is called the frequency scattering. 

 

Based on solution (128), sound intensity of mode (m,n) depends on two factors: (1) 

source strength ),(
~

ssmn zrA , and (2) source location as in radiation coefficient 

)/sin( 0arJ smnmVnB  . Usually the lower the spinning mode number || mVnB  , the 

higher the radiation coefficient |)/sin(| 0arJ smnmVnB  . If || mVnB   is large, 

0~mVnBJ   even 0/sin arsmn   is large. This mode is called 'cut-off'. mVnBJ   becomes 

important only when the frequency increases to some level. Then the mode is 'cut-on'. 

(Blake1986, Vol.2, p.882) This is how the 'cut-on' and 'cut-off' phenomenon is explained 

when the Green's function in the Cartesian coordinates (66) is used. The Green's function 

expressed in cylindrical coordinates will be given later. The 'cut-on' phenomena will be 

explained in a slightly different way. 

 

The response of the aft rotor is roughly periodic in the circumferential direction, i.e., 

),(
~

ssmn zrA  is stronger when || mVnB   is close to B and its harmonics. Therefore, based 

on B and V, we can estimate that, the mode whose || mVnB   is small and close to B and 

its harmonics has stronger sound intensity. To control noise, B and V must be selected 

carefully. 

 

As an example, let’s assume 12V  and 10B . For 1m , the spinning mode numbers 

are 12,2,-8,-18,…, when n=0,1,2,3,… The spinning mode number (absolute value) 

closest to B is –8, therefore the strong sound can be expected at mode (m,n)=(1,2). For 

2m , the spinning mode numbers are 24,14,4,-6,,… as n=0,1,2,3,… The spinning mode 

numbers (absolute value) closer to B=10 are 4 and –6, therefore the strong sound can be 

expected at mode (m,n)=(2,2) and (2,3). In this example, none of any combination of m 

and n produces a spinning number equal to 10. V and B are designed to avoid this 

happening. 

 

Examining (121), we find no cutoff mechanism of the sound propagation in the free 

space. This is different from a rotor generating sound in a duct. In a duct only a limited 

number of modes can propagate. Other modes are evanescent. For the rotor-alone steady 

pressure generated sound, it propagates only when the tip speed reaches or exceeds 

supersonic. (Hubbard1995, p.167) 

 

The source in the frame rotating with the aft rotor is: 
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If we solve the gust/blade interaction problem in frequency domain in the rotating frame, 

we obtain the source strength ),,(ˆ
sssm zrq   with time factor 

)( wimV
e


. It can be 

decomposed into ),(
~

ssmn zrA  according to this relationship: 
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Once ),(
~

ssmn zrA  is determined, the sound pressure of this spinning mode can be 

determined by Eq.(128). 

 

 

Green’s Functions in Cylindrical Coordinates in Open Space 

 

When we say the Green's function in cylindrical coordinates, we mean )()( grfG  . 

 

Green's function in cylindrical coordinates: Morse&Ingard, Eq.(7.3.15). It is derived from 

the Cartesian Green’s function using the Jacobi-Anger expansion. 

 

General solution in cylindrical coordinates: Morse&Ingard, p.360 

 

In application, the Green’s function in Cartesian coordinates is often used, and the 

Jacobi–Anger expansion is used to transfer it to the cylindrical coordinates when needed. 

It should give the same result as using the Green’s function in cylindrical coordinates 

directly.  

 

J, Y: good for standing waves, therefore in ducts 

H: good for propagating waves in open space 

 

Spherical coordinate system: appropriate when the source region is concentrated in a 

small region of space (in all three dimensions) 

Cylindrical coordinate system: appropriate when the source region is extended in one 

direction and concentrated in the other two. 

Cartesian coordinate system: appropriate when the region extended in 2 dimensions. 

Appropriate coordinate systems are also chosen based on the source integration when the 

source region is not compact. In this case the source integration is needed. Then 

appropriate coordinate system is chosen for the convenience of numerical integration 

 

Green's function in spherical coordinates: Morse&Ingard, Eq.(7.2.31) 

 

 

Green’s Functions in Two Dimensions 

 

The Green’s functions in a three-dimensional stationary medium in open space are given 

by Eq.(66) in Cartesian coordinates and by ** in cylindrical coordinates. A point source 

in two dimensions can be modeled as a line source in three dimensions. Therefore the 2D 

http://en.wikipedia.org/wiki/Jacobi%E2%80%93Anger_expansion
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Green’s function can be obtained by integrating along the line source. The 2D Green’s 

function can also be obtained by directly solving the 2D acoustic equation. The second 

approach is used in this section. 

 

The non-homogeneous two-dimensional equation for the Green’s function is:  
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Dt

GD

a

  )(
1 2

2

2

2

0


,                                    (131) 

 

The point source at sx


 oscillates at circular frequency  . The solution has the same 

frequency so we can define: 
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.                                      (132) 

 

2D Green’s Function in Stationary Medium 

 

We first discuss the case 00 u . The solution is axially symmetric. Polar coordinate 

( ,r ) is adopted: 

 

|| sxxr
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The axisymmetric equation in the polar coordinate system is: 
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The corresponding homogeneous equation of (133) (replacing the right hand side by 0) is 

the Bessel equation. Its general solution can be constructed by the two linearly 

independent Bessel functions: 
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)/( 00 arJ   and )/( 00 arY   are the zeroth order first and second kind of Bessel function 

respectively. A and B are determined by boundary conditions at two radial locations. 

Solution (134) represents standing waves such as in an annular duct (cht16.doc). For 

open space we are discussing, (134) is not an appropriate choice. Instead, we use the third 

kind of Bessel functions: 
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)/( 0

)1(

0 arH   and )/( 0

)2(

0 arH   are Hankel functions. In the far field ( r ), 
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Considering the time factor in (132), one can see that )/( 0

)1(

0 arH   represents a wave 

propagating towards r , and )/( 0

)2(

0 arH   represents a wave propagating towards 

0r .  

 

B is determined by the boundary at r .  In the current case there is only outward 

propagating wave, therefore, B=0. A is determined by the boundary at 0r . The 

integration of both sides of Eq.(133) on any circular area that doesn’t include the source 

point is zero. If the circular area with radius   is centered at the source point, then, 
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From the Gauss’ Divergence Theorem we have:  
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Therefore, 
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This is the two-dimensional Green’s function in a stationary medium in Cartesian 

coordinates in frequency domain. It has the logarithmic singularity at the origin. The 2D 

Green’s function in cylindrical coordinates is referred to Eq.(7.3.18) in 

Morse&Ingard1968. 
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In the limit of incompressible medium, 0a . The non-homogeneous equation is: 
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One may find its Green’s function by performing the limiting analysis of (136) as 

0a . But the correct way is to use the similar procedure from (133) to (136), which 

leads to this Green’s function in two-dimensional stationary incompressible medium: 
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2D Green’s Function in Subsonic Mean Flow 

 

(Cf.Howe1998, p.38) 

When 00 u  and 00 au  , we can use the Prandtl-Glauert transformation (83) to 

transform Eq.(131) into:  
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According to (136), the solution to (137) in two dimensions is: 
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In the original coordinates it is: 
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Eq.(138) is the Green’s function in a subsonic mean flow for Eq.(131). 

 

 

Green’s Function in Three Dimensional Open Space with Mean Flow 

 

Eq.(69) is the non-homogeneous equation for the Green's function in a three-dimensional 

flow: 
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 Applying the Prandtl-Glauert transformation (83) in Eq.(69), one obtains 
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The Green's function in a stationary medium is provided by Eq.(66). Therefore, the 

solution to Eq.(139) in three dimensions is 
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Reverting it to the original coordinates, one obtains the Green's function for uniform 

mean flows: 
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 : amplification of mean flow. 

  

C.f. Michalke&Michel1979, Eq.(3.2), Ikeda et al 2016, Eq.(8), Najafi-Yazdi et al 2011, 

Eq. (2.24), Howe1998, Eq.(1.7.17) for frequency domain. 

 


