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In this section we discuss sound propagation in ducts. This is a typical case of acoustic 

waves in a confined environment. In the wall bounded directions, acoustic waves bounce 

back and forth to form standing wave patterns. In the axial direction acoustic waves 

propagate freely. We will show how to solve acoustic equations for these boundary 

conditions. The theory developed is very useful in applications such as the prediction and 

control of aircraft engine noise. 

 

 

Sound Propagation in Rectangular Duct 

 

Assume a uniform subsonic mean flow in a rectangular duct with width d and height h. 

The mean flow density is 



, pressure 



p , and velocity 



u  in +x-axis direction. 

 

The scales used are: length L, velocity: sound speed 



a0, time 0/ aL , density: ambient 

density 



0 , pressure: 



0a0

2
, impedance: 



0a0 . The linear Euler equations for the 

fluctuation quantities are: 
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Variables without bars are perturbation quantities. Isentropic process is assumed; 

therefore density can be calculated from pressure: 



  p /a 2 , 



a  p /. 

 

We use the trial solution and the method of separation of variables to solve the equations. 

In the y- and z- directions there are wall boundaries. In the x- direction the duct extends to 

infinity. Assume the next form of solutions: 
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Substituting (1) into the linear Euler equations, one obtains the following acoustic 

equations: 

 

0ˆ
ˆˆ 2

2

2

2

2

 p
dz

pd

dy

pd
 , 



2  /a  
2
 kx

2,                                  (2) 



ˆ u x 
kx


ˆ p , 



ˆ u y 
1

i

dˆ p 

dy
, 



ˆ u z 
1

i

dˆ p 

dz
,                                   (3) 

 

when 0)/(  xxx kukku  . The linear Euler equations with the isentropic 

process have two normal modes: acoustic mode (



 0, phase speed not equal to flow 

velocity), and vortical mode ( 0 , phase speed equal to flow velocity). We are only 

interested in the acoustic modes; therefore 



 0 and the acoustic equations in Eqs.(2&3) 

are chosen according to cht1.doc. 

 

Rigid Wall Duct with Mean Flow 

 

If the duct walls are rigid, the boundary conditions are 

 

0ˆ yu , at 0y  and hy  ;                                             (4) 

0ˆ zu , at 0z  and dz  .                                             (5) 

 

In the flow direction the wave amplitude must remain finite as x . 

 

We try the separation of variable: 

 



ˆ p (y,z) R(y)T(z). 

 

Substituting it into (2) leads to: 

 



1

R

d2R

dy2


1

T

d2T

dz2
  2  0. 

 

The first term on the left depends on y only. The second term depends on z only. 



  is 

constant with respect to y and z. Therefore the following equations must be true: 

 



1

R

d2R

dy2
 ky

2
, 



1

T

d2T

dz2
 kz

2, 



ky

2  kz

2   2
.                             (5-1) 
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yk  and zk  are constants. One can use the trial solution method to solve the two ODEs in 

(5-1). The general solution is: 

 

))((),(ˆ zikzikyikyik
zzyy DeCeBeAezyp


 .                                 (6) 

 

To satisfy boundary conditions (4) and (5), we must have 

 

BA  , hmk y / ;                                                   (7) 

DC  , dnkz / .                                                   (8) 

 

m and n can be any integers. Usually we use non-negative integers: ,1,0m , 

,1,0n . Due to the wall confinements, wave numbers yk  and zk  can no longer be any 

real numbers. They must be multiples of h/  and d/ respectively. For this reason, yk  

and zk  are called eigenvalues.  With (7) and (8), solution (6) is: 

 

)/cos()/cos(),(ˆ dznhymAzyp mnmn  .                                    (9) 

 

It represents the standing waves in both the y and z directions. (Compared with the plane 

wave solutions discussed in cht1.doc.) Amplitude ACAmn 4  is to be determined by 

acoustic sources in the duct and the boundary conditions in the x direction. )/cos( hym  

and )/cos( dzn  are called the eigenfunctions. Each pair of (m,n) represents one acoustic 

mode with the solution (9) to Eq.(2). It is called a normal mode of the acoustic field. 

 

According to Eq.(5-1),  (7), and (8), eigenvalue 



mn  is determined by the duct geometry: 

 

22 )/()/( dnhmmn   .                                      (10) 

 

Eq.(2) implies only 2

mn  matters; therefore only the positive square root is chosen. 



mn  is 

real and positive for the rigid wall duct. For each eigenvalue 



mn , there are two solutions 

of  
xmnk  from Eq.(2):  

 

2
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xmn



 

, 



M  u /a .                    (11) 

 

They represent waves propagating in opposite directions in x. The direction of a wave is 

determined by group velocity. If 21/)/( Mamn   , 



kxmn


 is real and the mode is  

cut-on. Taking the derivative with respect to 



kxmn


 in Eq.(11), we obtain the group velocity 
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Since 0

gxmnv , the wave with 



kxmn


 propagates in the -x direction. Noting  

 

aMa

a

mn

1

)1(/

/

2222

2


 


,  

0

gxmnv , 

 

the wave with 



kxmn


 propagates in the +x direction.  

 

If 



mn  ( /a ) / 1M2 , we have 

 

2222 )1(/  Ma  21 Mi 
2/1)(   2/1)(   , 

2

2/12/12

1

)()(1/

M

MiaM
kxmn




  

,                    (11-0) 

21/)/( Ma   . 

 

i, not –i, is chosen for the square root so 
irxmn ikkk   has positive imaginary part and 

irxmn ikkk   has negative imaginary part. The imaginary part of 



kxmn


 provides 

exponential attenuation factor 
xkie


 in 

)()( txkixktxki rix eee
 


 

 in Eq.(1), with which the 

wave amplitude remains finite as x . 0ik  represents an evanescent or cut-off 

mode.  

 

The mode becomes cut-on if the frequency increases so that: 

 



 mn  a mn 1M2 .                                           (11-1) 

 



mn  is the cut-off frequency of mode (m,n). The cutoff ratio is defined as (Hubbard1995, 

p.159): 

 

21 Ma mnmn

mn











 .                                         (11-2) 

 

1mn  represents propagating, or cut-on, modes. The number of cut-on modes is limited 

at any frequency. A mean flow makes a mode easier to cut on. A plane wave is always 

cut-on: 0m , 0n , 000  , 00 .  
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It is noted that the eigenvalues and eigenfunctions in the y or z direction are solely 

determined by the boundary conditions. They are independent of wave propagating 

directions. This is not true when there is mean flow and the walls are not rigid, as will be 

discussed later. 

 

Substituting (9) into (1) and summing up all possible modes, we obtain the general 

solution of acoustic pressure: 

 

 tiezyxptzyxp  ),,(~Real),,,( , 














0 0

))(/cos()/cos(),,(~

j l

xik

jl

xik

jl
xjlxjl eAeAdzlhyjzyxp  .            (12) 

 

Acoustic velocities can be calculated from Eq.(3). This solution represents a general 

sound field in a rectangular rigid-wall duct. Any specific pressure field can be expanded 

to the sum of normal modes of the rectangular duct. The amplitude of each mode 

mnA  is 

determined by the sound sources and the boundary conditions in the x direction. Mode 

(m,n) is present in the sound field, or excited by the source, if 0|| 

mnA .  

 

Given the total pressure field ),,(~ zyxp , how to calculate amplitude 

mnA  of each 

individual mode? It is noted that eigenfunctions )/cos( hym  are orthogonal: 
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




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.          ,0

;0      ,2/

;0          ,

)/cos()/cos(
0 jm

jmh

jmh

dyhyjhym

h

                       (12-1) 

 

The same is true for )/cos( dzn .  One can calculate the jth component of pressure using 

the orthogonality.  Applying (12-1) on (12) and integrate the equation on the duct section 

at x, we have: 

 

 





d h

mn

xik

mn

xik

mn dydzdznhymzyxpeAeA xmnxmn

0 0

)/cos()/cos(),,(~1
 ,   (12-2) 

















.0,0        ,4/

);0 and 0(or  )0 and 0(       ,2/

;0            ,

nmhd

nmnmhd

nmhd

mn  

 

Modes (m,n) are obtained by filtering out all other modes through the integration. 

Depending on locations of sound sources and duct terminations, one can further separate 

amplitudes 

mnA  and 

mnA . For example, if sound sources are at the left side of the section 

and at the right hand side the duct extends to infinity (no reflection from this end), then 
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.)/cos()/cos(),,(~1
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If waves propagate towards this section from both sides, the integration (12-2) at two 

axial locations 1x  and 2x  are needed and 

mnA  and 

mnA  can be solved from the linear 

equations: 

 

 





d h

mn

xik

mn

xik

mn dydzdznhymzyxpeAeA xmnxmn

0 0

1 )/cos()/cos(),,(~1
11  , 

 





d h

mn

xik

mn

xik

mn dydzdznhymzyxpeAeA xmnxmn

0 0

2 )/cos()/cos(),,(~1
22  . 

 

For a rigid-wall duct, 



mn  is real so 



kx  can be calculated by (11) for cut-on modes and 

(11-0) for cut-off modes. In many practical problems such as in lined ducts, 



mn  is 

complex. Then branch cuts must be inserted for 2/1)(    and  2/1)(    in (11-0) to 

make them single-valued. The branch cuts must be chosen so that the imaginary part of  
2/1)(   2/1)(    is not negative so the magnitude of the wave is finite as x . 

 

We choose the branch cuts as shown in Fig.1, with which the phase range of 
2/1)(   2/1)(    is ]2/,2/[  . The phase range for 

xmnk in (11-0) is ],0[   so the 

amplitude of the right-propagating wave with factor 1xikxmne


 remains finite as x .  

The phase range for 

xmnk  is ]0,[   and amplitude of the left-propagating wave remains 

finite as x . 

 

 
 

Fig.1, Branch cuts for 
2/1)(    and 

2/1)(    on the 



 -plane. 
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Sometimes we need to calculate eigenvalue   from wave number 



kx
: 

 
2/122/12/122 )1()()()/( Mkkkkika uxdxx   ,                      (13-1) 



ku ( /a ) /(1M), 



kd  ( /a )/(1 M) . 

 

Branch cuts for 



(kx  kd )1/ 2
 and 



(kx  ku)1/ 2
 are chosen as in Fig.2. The phase range of 

2/12/1 )()( uxdx kkkk   is ],0[  . The phase range of   is ]2/,2/[   so the real part of 

  is always positive. 

 

 
 

Fig.2, Branch cuts for 



(kx  kd )1/ 2
 and 



(kx  ku)1/ 2
 on the 



kx-plane. 

 

Soft Wall Duct without Mean Flow 

 

To simplify the problem, we assume no mean flow in the duct and the same impedance in 

the opposite walls. The boundary conditions are: 

 



ˆ p 

y
 iy

ˆ p  at 0y , 



ˆ p 

y
 i y

ˆ p  at hy  ;                                      (13) 



ˆ p 

z
 iz

ˆ p  at 



z  0, 



ˆ p 

z
 iz

ˆ p  at 



z  d.                                       (14) 

 



 y  and 



 z  are admittance of the soft walls. 

 

We can still use the trial solution Eq.(6). To facilitate the derivation, we rewrite Eq.(6) as: 

 

)cos()cos(''),(ˆ
zzyy zkykCAzyp                               (15) 

 

by defining 



A A'e
iy , 



B A'e
iy , 



C C'e
iz , and 



DC'e
iz . 

 

To satisfy boundary conditions (13) in the y direction, we must have 

 

  



kytg(kyh  y )  iy ;                                              (16) 

yyy ik  tg .                                                    (17) 
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From which we have, 

y

y

y

y

y

k
hk

k

 i
2)(tg1

i
2






























.                                   (18) 

 

Eigenvalue 



ky  can be solved from this equation using the grid search/Newton iteration 

method.  

 

Another way to solve equations (16) and (17) is to note: 

 

  



tg(kyh  y )  tg(y ) .                                              (19) 

 

One possible solution is 



kyh  y  y , then: 

 



y  
1

2
kyh , 

  



kytg(
1

2
kyh)  iy ,                                                 (20) 

 

which corresponds to the even symmetric solution in Morse&Ingard1968, p.504.  

 

The other possible solution to Eq.(19) is 



kyh  y  y   /2 , i.e., 

 



y  
1

2
kyh 



2
, 

  



kyctg(
1

2
kyh)  iy .                                                 (21) 

 

which corresponds to the odd symmetric solution in Morse&Ingard1968, p.504. 

 

Similarly 



kz  can be solved. Eigenvalue 



ky  or 



kz  is the same for the wave propagating in 

+x or -x direction. However, eigenfunctions 



cos(ky y  y ) or 



cos(kzz  z)  are no longer 

orthogonal as in the hard wall case. 

 

If there is a mean flow in the soft wall duct, eigenvalues 



ky  and 



kz  are no longer 

independent of the wave propagation direction in x. They are different for the different 

propagation directions. This will be further discussed in the following section about the 

soft wall circular duct. 
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Sound Propagation in Circular Duct 

 

Scales used here are: length: duct diameter D, velocity: sound speed 



a0, time: 0/ aD , 

density: density 



0, pressure: 



0a0

2
, impedance: 



0a0. 

 

The mean flow: 



 and 



p  are constant; mean velocity 



u  is in +x-axis direction and 

constant. 

 

The Euler equations for the fluctuation quantities are: 

 



ux

t
 u 

ux

x
 

1



p

x
,                                        (21-1) 



ur

t
 u 

ur

x
 

1



p

r
,                                        (21-2) 



u

t
 u 

u

x
 

1



p

r
,                                       (21-3) 



p

t
 u 

p

x
 p 

ux

x

ur

r


ur

r

u

r









 0 .                       (21-4) 

 

(Density can be calculated directly from pressure: 



  p /a 2 , 



a  p /.) 

 

In the radial direction there is a wall boundary and in the circumferential direction there 

is a periodic boundary. In the x direction the duct extends to infinity. We assume the form 

of solutions: 

 

  



ux

ur

u

p



















Real

ˆ u x (r,)

ˆ u r (r,)

ˆ u  (r,)

ˆ p (r,)



















e i(kxxt )

























.                                           (22) 

 

Substituting it into the Euler equations, we have: 

 

0ˆ
ˆˆˆ 22

2

2

2

2
2  pr

d

pd

dr

pd
r

dr

pd
r 


,                                         (23) 



ˆ u x 
kx


ˆ p , 

dr

pd

i
ur

ˆ1
ˆ


 , 




rd

pd

i
u

ˆ1
ˆ  .                                  (24) 

 

where xku . 



2  /a  
2
 kx

2  is the dispersion relationship for circular/annular 

ducts. 

 

To solve ),(ˆ rp  from Eq.(23), assume the separation of variables:  
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)()(),(ˆ   rRrp .                                                   (25) 

 

Substitute it into Eq.(23), 

 



r2

R

d2R

dr2


r

R

dR

dr
 r2 2  

1



d2

d 2
. 

 

The left hand side of the equation depends on r only. The right hand side is only a 

function of  . Then they must be equal to the same constant: 

 

2

2

21










d

d
,                                                    (26) 



r2

R

d2R

dr2


r

R

dR

dr
 r2 2  2

.                                        (27) 

 

The general solution to Eq.(26) is: 

 



()  Aei  Be i
.                                                (28) 

 

A, B and 



  are to be determined by two boundary conditions in the   direction. 

 

Solutions to Eq.(27) are Bessel functions. It is either Bessel function of the first kind 

)(rJ  representing standing waves in the radial direction in a circular duct, or the second 

kind )(rY for standing waves in annular ducts, or Hankel functions )()1( rH  and )()2( rH  

(the third kind of Bessel functions) representing propagating waves (outward/inward, no 

ducts). The general solution in the duct is: 

 



R(r) CJ (r)DY (r).                                             (29) 

 



J (r), 



Y (r) are respectively the 



 th order first and second kinds of Bessel functions. 

They are two independent solutions to Bessel equation (27). C, D and 



  are determined 

by two boundary conditions in the radial direction.  

 

For a circular duct, the periodic boundary condition applies in   direction. The general 

solution to Eq.(26) is: 

 
 imBe )( ,                                                       (30) 

 

where 



  m is an integer. In the radial direction, the boundary condition at 0r  is that 

p̂  must be finite. 



Ym(r) is eliminated since it is infinitive at 0r . Therefore the general 

solution of )(rR  is 
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

R(r) CJm(r).                                                     (31) 

 

The general solution of ),(ˆ rp  for a circular duct is: 

 
 im

m erAJrp )(),(ˆ  .                                               (32) 

 



  is to be determined by the boundary condition at oRr  . ( 2/1oR  is the radius of the 

duct.) All other variables can be computed from 



ˆ p (r,) by Eq.(24). 

 

As |m| increases, )(rJm  is small for small r and large for large r. Sound energy 

concentrates near the cylindrical duct wall for high |m| mode. 

 

Rigid Wall Circular Duct 

 

For a rigid wall duct, the boundary condition at oRr   is 

 



ˆ u r  0.                                                           (33) 

 

To satisfy (33), one has the eigenvalue: 

 

0/' Rj mnmn  ,                                                   (34) 

 

where 



j'mn  is the nth root of 



J'm (x)0 . (See Appendix for how to find 



j'mn .) Since 

)()1()( xJxJ m

m

m 
, eigenvalues  are the same for m : mnmn   . And 

eigenfunctions satisfy: )()1()( rJrJ mnm

m

mnm   . 

 

The time domain solution of p is: 

 









  











m n

mnm

xik

mn

xik

mn

tmi rJeAeAep xmnxmn

0

)( )()(Real  .                  (35) 

 



mn  and 



Jm(rmn) are the same for both directions in x. 



Jm(rmn) is orthogonal. (This is 

not true when there is mean flow and the duct wall is not rigid.) Wave number 



kxmn


 can 

be computed from Eq.(11) and the cut-on frequency from Eq.(11-1). For larger azimuthal 

mode (larger |m|), 



j'mn  is larger, so is the cut-on frequency. Therefore there is less 

number of cut-on radial modes for larger |m|. 

 

Soft Wall Circular Duct 

 

Assume a plug flow in the duct. The tangential discontinuity at the disturbed surface 

leads to the continuity of displacement at the wall (cht21.doc) and the Myer’s impedance 

boundary condition (cht24.doc): 
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r
x uZp

ku
ˆˆ1 











 at oRr  .                                       (35-1) 

 

Plugging p̂  in Eq.(32) and rû  in Eq.(24) into the Myer’s boundary condition, we have: 

 

  )(')(
2

ommommx RJZRJkui   .                                    (35-2) 

 

It is not trivial to solve eigenvalue m  from this equation. The grid search/Newton’s 

iteration method can be used. With mean flow, m  is coupled with xk . Therefore, it is no 

longer independent of the wave propagation direction as in the no flow soft wall case or 

as in the solid wall with mean flow case. m  is different for waves propagating in +x and 

–x direction for soft wall duct with mean flow.  

 

 

Sound Propagation in Annular Duct 

 

An annular duct has an inner circular wall with radius iR  and an outer circular wall with 

radius oR . The equations are (21-1)~(21-4), with scales: length: outer duct diameter 

oRD 2 , velocity: sound speed 



a0 , time: 0/ aD , density: density 



0 , pressure: 



0a0

2
, 

impedance: 



0a0. And the solution form is (22). 

 

The analysis of the periodic boundary condition and the general solution (30) for the 

circular duct still apply in the annular duct. In the radial direction, 0r  is not in the 

physical domain as in the circular duct. Therefore )( rY mm   in Eq.(29) should be kept in 

the general solution: 

 

)()()( rDYrCJrR mm   .                                             (36) 

 

C, D and 



  are to be determined by two boundary conditions at iRr   and oRr  . With 

)( rYm  , sound energy doesn’t concentrate near the outer duct wall for high mode m as in 

a cylindrical duct. 

 

Rigid Wall Annular Duct 

 

For a rigid wall annular duct, the boundary conditions are 

 



ˆ u r  0, at 



r  Ri and oRr  .                                       (37) 

 

First of all, one should check if 



  0 is the eigenvalue. Since 



Ym(0r) , 



D must be 

zero and 



R(r) CJm(0r) . Since 



Jm(0r) 1 for 



m  0 , 



Jm(0r)  0  for 



m  0 , the only 

nontrivial solution to Eq.(36) is: 
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

R(r)CJ0(00r)C , 



00  0.                                     (38) 

 

This represents a plane wave. The plane wave in a circular or annular duct only 

propagates in the axial direction. 

 

For all the cases other than 



m  0 and 0n , we have 



  0. From boundary condition 

(37), the dispersion relation is obtained from (36): 

 



J'm (Ri)Y 'm (Ro)  J'm (Ro)Y'm (Ri).                                  (39) 

 

The prime denotes the derivative with respect to the whole argument. It is not trivial to 

solve eigenvalue 



  from Eq.(39). When the gap of annular duct oi RR   is much smaller 

than oR , we can obtain an approximate solution of 



 . We begin with the Bessel equation 

(27). By replacing 



r  by the medium radius 



Rc  (Ri R0) /2 , the Bessel equation 

becomes a second order ODE with constant coefficients: 

 

0)( 222

2

2
2  RmR

dr

dR
R

dr

Rd
R ccc  .                                 (39-1) 

 

Its general solution is: 

 



R(r) Cer  Der , 
c

c

R

mR

2

)(411 222 



 . 

 

  and   are both real, or a conjugate pair. 

 

To satisfy boundary conditions (37), 

 

1
)(41

))((

222







 

mR
R

RR

RR
c

c

io

io ee



, 

i.e., 

 



Ro  Ri

Rc

4(Rc

2 2 m2)1  2n , n=0,1,2,.... 

 

Therefore the eigenvalue for an annular duct with small gap is 

 

)
4

1
(

1

)(

2

22

22




 m
RRR

n

cio

mn


 , n=0, 1, 2, .....                           (40) 

 

According to Eq.(11-2), for a cut-on mode in a narrow annular duct, n must be zero. 

Therefore  
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1
4

1
2

2


m

R

m

R ccmn
. 

For large m, 

1/ mRcmn . 

 

As cR , does the narrow annular approaches a rectangular duct? Compare Eq.(40) 

with Eq.(10). The radial wavenumber in the annular duct )/( io RRn   approaches the 

height mode, hRR io ~ . The spinning mode wavenumber cRm /  approaches the depth 

mode. However, there is an extra wavenumber )2/(1 cR  in the annular duct. It comes from 

term 
dr

dR
Rc  in Eq.(39-1), which does not exist in the rectangular duct Eq.(5-1). If m is 

kept constant as cR , then 
2

22

)( io

mn
RR

n





 . It is equivalent to regular duct with 

uniform mode shape in the depth direction. On the other hand, if cRm / remains constant 

as cR , then m  and 
2

2

2

22

)( cio

mn
R

m

RR

n






 . The annular duct approaches a 

rectangular duct. For the mode shape, as cR , || rmn , Eq.(36) 









 




4

1

2

1
cos

2
)( mr

r
rJ mn

mn

mnm , 









 




4

1

2

1
sin

2
)( mr

r
rY mn

mn

mnm . 

Compare it with Eq.(12),  it approaches rectangular duct height mode shape. 

 

Another asymptotic formula for the eigenvalues based on the WKB method was 

developed by Envia. (Envia1998, Eq.9) 

 

One may solve Eq.(39) numerically using the Newton iteration method. Define function: 

 

)(')(')(')(')( imomomimm RYRJRYRJf   . 

 

For initial eigenvalue 



 (0)
, the improved eigenvalue is  



 (1)   (0)   ,   

)('/)( )0()0(  mm ff . This process is repeated until 



  is small. A successful Newton 

method depends on a good initial eigenvalue 



 (0)
. The next figure shows a typical 

)(mf . Separate 



 -axis into intervals, ..., 
)(n ,

)1( n ,.... If 0)()( )1()( n

m

n

m ff  , 
)(n  

is a good choice of 



 (0)
. A FORTRAN90 code, modenumber_annularduct.f, using this 

method to compute eigenvalues in a solid wall annular duct is attached.  
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m=18, 



Ro 1, 



Ri 11/15. 

 

One can show that )()(  mm ff  . Therefore eigenvalues for m are also the eigenvalues 

for –m: nmmn )(  . Eigenfunction for (-m,n) is the same as for (m,n). 

 

A general solution of ),(ˆ rp  is then: 

 

0000 ),(ˆ Arp  , m=n=0; 





 im

mnm

imnm

imnm
mnmmnmn erY

RY

RJ
rJArp 








 )(

)('

)('
)(),(ˆ , other.      (40-1) 

 

Velocities are computed by Eq.(24). Wave number 



kxmn


 can be computed from Eq.(11) & 

(11-0). 

 

The time domain solution of p is: 

 

 





























-=
0 if 1
0 if 0

)(

0000

)(
)('

)('
)()(Real

)(Real 0000

m
mn
mn

mnm

imnm

imnm
mnm

xik

mn

xik

mn

tmi

tixikxik

rY
RY

RJ
rJeAeAe

eeAeAp

xmnxmn

xx









. (41) 

 

Orthogonality: 

 

According to Abramowitz&Stegun1964, Eq.(11.4.2), p.485, 

 
 im

mnmmn err )(),(   














otherrY

RY

RJ
rJ

nm

r
mnm

imnm

imnm
mnm

mnm ),(
)('

)('
)(

0,1

)(







  
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






  ),(or,,,0

,,
),(),(

2

0

*

lnmjmj

nlmj
drrdrr

mn

R

R

jlmn

o

i



  

 

 



































otherR

m
RR

m
R

nmRR

imnm

mn

iomnm

mn

o

io

mn
),()(

0,

2

2

2
22

2

2
2

22











 

 

Cut-on ratio 

 

For annular ducts the cut-on ratio in Eq.(11-2) can be rewritten as 

 

2*

2

2

1

1)/(

/

1

MM

M

MmR

maR

Ma

m

m

omn

o

mnmn

mn























, 

ma

R
M c

m


 , 

m

R
M cmn

m


*

. 

mM  is the phase speed in the circumferential direction. *

mM  is called the cut-off Mach 

number. It is roughly the ratio of radial wavenumber and the circumferential 

wavenumber. For narrow ducts, 1* mM . This is true for any ducts. For narrow ducts and 

large m, 1* mM . For arbitrary annular ducts, *

mM  depends on the hub/tip ratio and m: 

 
 

If for large m in narrow ducts without axial mean flow, the phase speed of the mode in 

the circumferential direction must be supersonic to be cut-on.  
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Sound Propagation C-Duct 

 

In the outlet of jet engines, the annular duct is often separated by installations, as 

illustrated by Fig.3. The duct has a C-shape. It is here called C-duct. The C-duct has an 

inner duct with radius iR  and an outer duct with radius oR . The separation plates are at 



s  

and 



e .  

 
Fig.3, C-duct. 

 

The first major difference of C-duct from the annular duct is the periodic boundary 

condition is no longer applicable in the   direction. Because of the presence of the 

bifurcations, spinning duct modes are not possible. Reflections at the bifurcations lead to 

the formation of a standing wave pattern in the cross-section of the duct. Similar to the 

argument for Eq.(9) in rectangular duct, the general solution of )(  is: 

 



()  Bcos[m( s)],                                           (42) 

 

where 

 

 



m m /(e s), 



m  0,1,2, .                                   (43) 

 

m is any nonnegative integer. 



m  may not be an integer as in the circular or annular duct 

unless when 



e s  . (When 



e s  , the solution in a C duct is the same as that in 

an annular duct.) 

 

In the radial direction the general solution is: 

  



R(r)  CJ m
(r)  DY m

(r).                                     (44) 
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The second major difference of the C-duct from annular duct is the Bessel functions here 

may have non-integer orders. 

 

Rigid Wall C-Duct 

 

For the rigid wall C-duct, the boundary conditions in radial direction are 

 



ˆ u r  0, at 



r  Ri and oRr  .                                      (45) 

 

The similar argument as for Eq.(38) leads to the plane wave solution: 

 

 



R(r)  J0(00r) , 



00  0.                                               (46) 

 

If 



  0, the next dispersion relation can be derived from (44) and (45): 

 



J' m
(Ri)Y ' m

(Ro)  J ' m
(Ro)Y ' m

(Ri).                              (47) 

 

Eigenvalue 



  is to be determined by this equation. The difficulty involved here is the 

Bessel functions with non-integer order.  

 

From the similar procedures for Eq.(40), when the gap of annular duct, 



(Ri Ro)/Ro , is 

small, the eigenvalue is approximated by:  

 



mn 
 2n2

(Ro  Ri)
2


1

Rc

2
(m

2 
1

4
) , n=0,1,2,.....                        (48) 

 

If the gap of the annular duct is not small, we can use (48) as an initial value in a Newton 

iteration method. The final results need to be reorganized. 

 

The time domain solution of p is: 

  



p Real (A00

 e ikx 00
 x  A00

 e ikx 00
 x )e it 









cos[m ( s)] J m
(mnr)

J' m
(mnRo)

Y ' m
(mnRo)

Y m
(mnr)












(Amn

 e ikxmn
 x  Amn

 e ikxmn
 x )e it

n 0 if m0
n1 if m 0




m 0













.   (49) 

 

With solution of p̂ , all other variables can be computed from Eq.(24). 
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Sound Propagation in Circular Duct with Nonuniform Mean Flow (Boundary Layer) 

 

Scales used will be: length: duct radius R, velocity: sound speed 



a0, density: ambient 

density 



0
, pressure: 



0a0

2
, impedance: 



0a0
. 

 

The mean flow: 



0 1 and 



p0 1/  (



 1.401) are constant; Shear mean velocity 



u0(r)  

is in +x-axis direction. 

 

Assume the next form of solutions: 

 



ux

ur

u

p



















Real

ˆ u x (r)

ˆ u r (r)

ˆ u  (r)

ˆ p (r)



















e i(xmt )

























.                                      (50) 

 

(Density can be computed directly from pressure: 



  p .) 

 

From Euler equations, one can obtain the next equations for shear flow: 

 



d ˆ u r

dr
 i 

1


 2 

m2

r2



















̂  p 





du0

dr


1

r









̂  u r  0 ,                       (51) 



dˆ p 

dr
 i̂  u r  0,                                                (52) 

 

where 



u0 . For a wall with impedance Z, the boundary condition is 

 



ˆ p  Zˆ u r , at 



r 1.                                              (53) 

 

Equations (51) and (52) and boundary condition (53) form an eigenvalue problem. Only 

some special values of 



  can satisfy these equations. These 



  are eigenvalues, and the 

respective functions 



ˆ p  and 



ˆ u r  are eigenfunctions.  

 

An important property of eigenvalues of Eqs.(51)&(52) is given here. Suppose 



 , 



ˆ p , 



ˆ u r  

are a set of eigenvalue and eigenfunctions of this problem, then 



 *
, 



ˆ p *, 



ˆ u r
*
 form a set of 

eigenvalue and eigenfunctions for Eqs.(51)&(52) satisfying the next B.C.: 

 



ˆ p *  Z* ˆ u r
*
, at 



r 1.                                                (54) 

 

Here superscript * represents conjugate. Under some circumstances B.C.(53) is exactly 

the same as B.C.(54), such as for hard wall, 



ˆ u r  ˆ u r
*  0 , or the impedance with only 

resistance, 



Z  Z*
. Then 



 *
, 



ˆ p *, 



ˆ u r
*
 are also the set of eigenvalue and eigenfunctions for 

the original problem [Eqs.(51)&(52) with B.C.(53)]. 
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Newton iteration method can be used to solve the eigenvalues and eigenfunctions. For an 

initial guess of the eigenvalue 



0, integrate Eqs.(51)&(52) numerically from the outside 

of the boundary layer to 



r 1 to get 



ˆ u r  and 



ˆ p  at 



r 1. 



ˆ u r  and 



ˆ p  are functions of  



0 : 



ˆ u r(0), 



ˆ p (0), which may not satisfy B.C. (53) at 



r 1. Similarly we can have another 

solution 



ˆ u r(1)  and 



ˆ p (1)  for initial eigenvalue 



1  near 



0 . Suppose the exact 

eigenvalue is 



0  , i.e., 

 



ˆ p (0 )  Zˆ u r(0 ) . 

 

To the first order of Taylor expansion, we have: 

 



 
ˆ p (0)  Zˆ u r (0)

Z
d ˆ u r (0)

d


dˆ p (0)

d

. 

 

 If we use 



dˆ u r(0)

d


ˆ u r (1) ˆ u r(0)

1 0

, 



dˆ p (0)

d


ˆ p (1) ˆ p (0)

1 0

, we can get 



  to have a 

better approximation to the accurate eigenvalue. The process can be repeated until certain 

accuracy is achieved. This is the Newton’s iteration method. 

 

Choosing appropriate initial value 



0  is critical for a successful Newton’s iteration 

method. Eigenvalues of plug flow without boundary layer, Eq.(34) and Eq.(11), are good 

choice of the initial eigenvalues. In most of the time these choices work well. But in some 

cases Newton’s method fail when using these initial eigenvalues.  

 

Another way for choosing initial eigenvalues is the grid search. Compute function: 

 



f ()  ˆ p ()/Z  ˆ u r()                                           (55) 

 

for a matrix in 



 -plane, draw the contours of real(f)=0 and imag(f)=0 in the 



 -plane 

using a commercial software. The intersection points in the 



 -plane should be the 

solution of the eigenvalues. Read in these data and use them as the initial eigenvalues in 

the Newton iteration. 

 

As an example, let's find eigenvalues for mean flow with turbulent boundary layer in a 

circular rigid wall duct with radius: 62.33”. The velocity profile of the turbulent boundary 

layer is shown in Fig.4. Mach number: 0.452, boundary layer thickness: 1”,  
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Fig.4, Velocity profile of turbulent boundary layer, Mach number: 0.452, boundary layer 

thickness: 1”. 

 

The grid search method is used to get the initial guess of eigenvalues. Since the wall is 

rigid, both 



  and 



 *
 are the eigenvalues according to the property discussed above. 

Therefore in Fig.5 only the up half of the 



 -plane is needed. Read in the data of the 

intersection points of solid and dashed lines as the initial values in the Newton’s method. 

 

 
 

Fig.5, Contours of real(f)=0 (solid lines) and imag(f)=0 (dashed lines) in the 



 -plane 

 

The next figures show the results. Fig.6 shows the eigenvalues when frequency is just 

above the cut-on frequency. Fig.7 is for frequency is well above the cut-on frequency. 

Fig.8 is for frequency well below the cut-on frequency. In most of the cases, the effect of 

shear flow is to move real parts of plug flow eigenvalues to right while the imaginary 

parts keep nearly the same. This change is very small. Using plug flow eigenvalues as 

initial values in Newton method works well. The only exception is when the frequency is 

just above the cut-on frequency (Fig6). There are two cut-on modes in the plug flow. The 

boundary layer makes these propagating modes into cut-off modes. This explains why a 

cut-on mode wave was damped in experiments. In this case the plug flow eigenvalues as 

the initial value fails.  
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Fig.6, Eigenvalues at 741Hz for plug flow (square) and shear flow with turbulent 

boundary layer (triangle). Mach number: 0.452, boundary layer thickness: 1”, duct 

radius: 62.33”, azimuthal mode number m=22, cut-on frequency for the 1
st
 radial mode of 

the plug flow: 740.6Hz. [Real(



 ) in the right figure is rescaled to show the difference.] 

 

 
Fig.7, Eigenvalues at 800Hz for plug flow (square) and shear flow with turbulent 

boundary layer (triangle). Mach number: 0.452, boundary layer thickness: 1”, duct 

radius: 62.33”, azimuthal mode number m=22, cut-on frequency for the 1
st
 radial mode of 

the plug flow: 740.6Hz. 
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Fig.8, Eigenvalues at 730Hz for plug flow (square) and shear flow with turbulent 

boundary layer (triangle). Mach number: 0.452, boundary layer thickness: 1”, duct 

radius: 62.33”, azimuthal mode number m=22, cut-on frequency for the 1
st
 radial mode of 

the plug flow: 740.6Hz. [Real(



 ) in the right figure is rescaled to show the difference.] 

 

A numerical integration method can also be used.  

 


