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When two parallel flows meet, a free shear layer with velocity adjustment is formed
(Fig.1). If shear layer thickness d is small, the flow may be unstable subject to even very
small disturbances. This is the Kelvin-Helmholtz Instability. It has been discussed in
many books (Landau and Lifshitz1959, Batchelor1973, etc). Here we will give the details
of the solution and explain the physical meaning of the instability. It will be shown that
under the disturbance, the initial uniform vorticity will redistribute itself and concentrated
vortexes will be formed. During this process, pressure fluctuation occurs and sound wave
is produced as the by-product.

Fig.1, Shear layer between two flows.

Vortex Sheet Model

To simplify the problem, we assume d is very small compared to wavelengths of
disturbances. The flow can then be modeled as two uniform flow regions (regions I and
II) joined at an interface of discontinuity, shown in Fig.2. The flow directions are parallel
to the interface. It is assumed there is no flow across the interface. According to
cht21.doc (Wave Interactions at Surface of Discontinuity), this interface is a surface with
tangential discontinuity. Across the interface, velocity and density can be discontinuous,
but pressure must be continuous:

† 

u01 ≠ u02, 

† 

r01 ≠ r02, 

† 

p01 = p02.                                          (1)
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Fig.2, Vortex sheet model.

The two regions are vorticity free. Vorticity is uniformly distributed on the interface
because of the velocity jump. The interface is therefore called vortex sheet. To quantify
the vortex sheet, define circulation 

† 

G  per unit length  as (refer to Fig.3):

† 

G =
Circulation around ABCD

Length AB
.

According to Stokes’ Theorem, circulation around ABCD is the total vorticity in
rectangular area ABCD. Therefore 

† 

G  represents the vortex strength of the vortex sheet.

Fig.3, Circulation of the vortex sheet.

Let's use subscripts 1 and 2 denote the variables in region I and II respectively. One can
show that:

† 

G = u2 - u1.                                                        (2)

The vortex strength equals to the velocity jump across the vortex sheet. For the mean
flow:

† 

G0 = u02 - u01.                                                     (3)

Acoustic Solution and Dispersion Equation

The normal modes of linear Euler equations in a uniform flow region (I or II) have been
given in cht1.doc (Waves in Uniform Flow on Half Plane). Entropy and vorticity waves
can be uniquely determined from Eqs. (37)~(40), and Eqs. (45)~(48) in cht1.doc when
two boundary conditions at upstream boundary are set. Acoustic waves can be computed
from Eqs.(22)~(25) when boundary conditions are set at 

† 

y = 0  and 

† 

y = • in region I, and



3

† 

y = 0  and 

† 

y = -• in region II. For the problem in this section, there are no vorticity and
heat waves from the upstream boundary, and there are no sound waves propagating
towards the interface from 

† 

y = ±•. The disturbance only comes from the interface.
Therefore there are only acoustic waves in regions I and II. According to Ch1t.doc, by
assuming this form of solution:

  

† 

p
r u 

È 

Î 
Í 

˘ 

˚ 
˙ =

ˆ p (a,w,y)
ˆ 
r 
u (a,w,y)

È 

Î 
Í 

˘ 

˚ 
˙ ei(ax-wt ),                                            (4)

the acoustic solutions in region I and II are:

yieAp 1),(ˆ 11
bwa= ,                                                    (5)

† 

ˆ u 1 =
A1a

r01(w -au01)
eib1y,                                            (6)

† 

ˆ v 1 =
A1b1

r01(w -au01)
eib1y ,                                            (7)

and,

yieAp 2),(ˆ 22
bwa -= ,                                                  (8)

† 

ˆ u 2 =
A2a

r02(w -au02)
e-ib 2y ,                                           (9)

† 

ˆ v 2 =
-A2b2

r02(w -au02)
e-ib 2y .                                         (10)

The mean flows are assumed to be subsonic. 

† 

a  and 

† 

w  are assumed totally independent if
there is no boundary. However, to meet the boundary conditions at the interface, these
parameters must satisfy some relations. It becomes an eigenvalue problem due to the
boundary conditions. b  (

† 

b1 or 

† 

b2) is determined by Eq.(26) in Ch1t.doc when 

† 

w  is real.
It will become clear that 

† 

w  is complex for real 

† 

a  for the vortex sheet problem. Therefore
the branch cuts for  b  in Cht1.doc (Eq.26 and Fig.1) are no longer applicable. We will
discuss how to compute b  later.

When disturbed, the interface is at 

† 

y = x(x, t) . The amplitude of the disturbance is
assumed small, and the disturbed interface is still a surface of tangential discontinuity.
According to cht21.doc (Wave Interactions at Surface of Discontinuity), two boundary
conditions must be satisfied at the interface 

† 

y = 0 . The first is the kinematic boundary
condition, i.e, the continuity of displacement 

† 

y = x(x, t)  of the vortex sheet on both sides.
Then,

† 

∂x
∂t

+ u01
∂x
∂x

= v1, 

† 

∂x
∂t

+ u02
∂x
∂x

= v2 ,                                      (11)
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or,

† 

ˆ v 1 = -i(w -au01) ˆ x , 

† 

ˆ v 2 = -i(w -au02) ˆ x .                               (12)

From Eqs.(7), (10) and (12), we have:

† 

A1 = -ir01(w -au01)
2 ˆ x /b1 and 

† 

A2 = ir02(w -au02)2 ˆ x /b2 .                (13)

With Eq.(13), one can express solutions in Eqs.(5)~(10) in terms of 

† 

ˆ x .

The second boundary condition at the interface is the dynamic boundary condition:

† 

ˆ p 1 = ˆ p 2.                                                          (14)

From (5), (8) and (14), we have

AAA == 21 .                                                        (15)

From Eq.(13) and Eq.(15), we obtain:

† 

w - u01a
w - u02a

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= -
b1r02

b2r01
.                                                (16)

Due to the interface boundary conditions, wave number 

† 

a  and frequency w  are no
longer independent variables. For each wave number 

† 

a , there are specific frequencies w .
Eq. (16) is called the dispersion equation.

Now we need to discuss the computation of b  (

† 

b1 or 

† 

b2) for complex w . b  is
determined by (Eq.19 in cht1.doc):

† 

b 2 =
w
a0

-aM0

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

-a 2 = -(1- M0
2)(a -a+)(a -a-).                      (17)

† 

a+ =
w

a0 + u0

, 

† 

a- = -
w

a0 - u0

, 

† 

M0 = u0 /a0 .

We will choose appropriate branch cuts of 

† 

(a -a+)1/ 2(a -a-)1/ 2  on 

† 

a -plane to ensure

† 

(q1 + q2) Œ [-p ,p ] . Then

† 

b = i 1- M0
2 g+g-e

iq + +q -

2                                                 (18)

will always have nonnegative imaginary part: 

† 

0 £ arg(b) £ p  (Fig.4). The branch cuts
satisfy: 

† 

q1 + q2 = ±p , or,
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† 

a i -a+i

a r -a+r

+
a i -a- i

a r -a-r

= 0.                                                (19)

The two branch cuts are shown by solid wiggle lines in Fig.4. They approach
asymptotically to the vertical line 

† 

a r = (a+r + a-r ) /2 = -wru0 /(a0
2 - u0

2). On the branch
cuts 

† 

b  is real and the wave is a purely propagating wave. In Fig.4 extended from the
branch cuts are dashed lines at which 

† 

q1 + q2 = 0 .  Eq.(19) is also satisfied along these
dashed lines, and they approach asymptotically to horizontal line

† 

a i = (a+ i + a-i) /2 = -w iu0 /(a0
2 - u0

2). On these dashed lines 

† 

b  is purely imaginary,
representing purely spatially damped waves in y direction. All other waves with 

† 

a  not on
the branch cuts and the dashed lines are spatially damped propagating waves.

Fig.4, Branch cuts for 

† 

b .

Unstable Waves/Instability

For a simple wave of the form 

† 

ei(ax-wt ), a dispersion equation such as Eq.(16) relates
wave number and frequency:

† 

D(a,w) = 0.                                                    (20)

From this dispersion equation, w  can be solved in terms of 

† 

a :

)(awwww =+= ir i .                                         (21)
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There may be multiple solutions of w . If one or more of w  for real 

† 

a  are complex and
have positive imaginary parts (

† 

w i > 0), then the simple wave is unstable for this 

† 

a .
Instability occurs if there are unstable waves in the system. The unstable simple wave has
spatially periodic structure of infinite extent. Its amplitude grows to infinity as 

† 

t Æ •  at
every fixed point in space.

Fig.5, Contour of complex w  for real 

† 

a .

In actual situations, it is very rare there exists a disturbance with a periodic structure
extent infinitively in space. A disturbance is more likely to be a pulse in space with finite
spatial extent. The pulse can be represented by superposition of simple waves with real
wave numbers. If in a range of a , w  has positive imaginary part as in Fig.5, simple
waves in this range are unstable and thus excited. Amplitudes of these waves will grow in
time at every point in space. However, the composed disturbance (the pulse) has two
distinct scenarios. One is that the pulse may grow at every fixed spatial point. This is
called absolute instability. The other is that the amplitude of the pulse at any fixed point
eventually decreases as 

† 

t Æ • . The reason is that the instability is convected away. This
is called convective instability or spatial amplifying waves.

To investigate the instability evolvement of a pulse, the Laplace Transform on t must be
employed. (Fourier Transform or normal mode method will not work.) Laplace transform
is powerful in investigating the initial stage of unstable waves. The asymptotic response
as •Æt  can also be obtain from this method.

For the vortex sheet instability, the inverse Fourier-Laplace transform gives the pressure
in region I:

† 

p1(x, y,t) =
1

(2p )2 A1(a,w)ei[ax +b1y-wt ]dwda
G

Ú
-•

•

Ú .                         (22)

There are two ways for this Inverse Transform. One is to integrate 

† 

w  first. If the
disturbance at the interface is:

† 

A(a,w) = A1(a,w) = A2(a,w) = B(a)d(w -w(a)),                      (23)

then the sound pressure in region I is:
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† 

p1(x, y,t) =
1

2p
B(a)ei[ax+b1y-w(a )t ]da

-•

•

Ú .                              (24)

(If there are multiple solution of w  from the dispersion equation (16), 

† 

p1(x, y,t) in the
above equation should be the sum of integrals for all the w .) 

† 

B(a) is an entire function
of 

† 

a . The limiting value of the integral as 

† 

t Æ •  is determined by:

† 

e-iw(a )tda
-•

•

Ú =
e- iw(a )t

dw(a) /da
dw

W

Ú .                                (25)

The integral path 

† 

W is the contour of 

† 

w = w(a)  when 

† 

a  is real as in Fig.5. If there is a
saddle point where

† 

dw(a) /da = 0                                                     (26)

in the area enclosed by 

† 

W and the real 

† 

w -axis, the integration will diverge as 

† 

t Æ • . This
is the absolute instability. aaw dd /)(  is the group velocity of a pulse. Eq.(26) means
absolute instability happens when the group velocity is zero. The energy of instability
waves do not propagate away. If 0/)( ≠aaw dd , the instability waves will propagate
away. At each spatial point the wave will decay eventually. This is convective instability.
(Briggs1964, Tam class note)

Integration in Eq.(22) can also be carried first on a :

Ú Ú
G

•

•-

-+= wawa
p

wba ddeAtyxp tyxi ][
21

1),(
)2(

1
),,(' .                        (27)

By pushing 

† 

G  towards a little below the real 

† 

w -axis, one can investigate the sinusoidal
steady-state response of the waves. During this process if a pole on the complex a -plane
move across the real a -axis, the wave is a amplifying wave. Therefore it is the
characteristics of )(awwww =+= ir i  (Eq.(21)) that determines if this wave is
amplifying wave or evanescent wave, or absolute instability. Amplifying waves are also
called spatial instabilities. Solution  

† 

a  in terms of real 

† 

w  from dispersion relation
Eq.(20) gives the instability growth rate ia :

)(waaaa =+= ir i .                                             (28)

The two inverse transform ways should have the same results. An amplifying wave in
spatial instability in the second method is basically the same type as the convective
instability of temporal instability in the first method.
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No matter which method is used, the most critical thing is the dispersion equation in the
form of )(awwww =+= ir i  for real a , Eq.(21), and group velocity, Eq.(26) . If )(aw
has positive imaginary part, the pulse will be unstable. If the group velocity is zero, then
it is absolute instability. Otherwise, it is a convective instability/amplifying wave.
Dispersion equations can be found using the normal mode method.

Vortex Sheet Instability

The characteristics of the vortex sheet instability hinges on 

† 

w  in terms of real 

† 

a  from
dispersion relation Eq.(16). It is rather complicated to deal with Eq.(16) for compressible
flows. Here we first consider incompressible flows. According to Cht1.doc (Waves in
Uniform Flow on Half Plane) Eq.(28), for incompressible flows on both regions, 

† 

b2 and

† 

b1 are pure imaginary number:

abbb i=== 21 .                                                  (29)

The effect of the disturbance is only local to the interface. Eq.(16) can be simplified to:

† 

w - u01a
w - u02a

= ±i Q , where density ratio 

† 

Q =
r02

r01

.                      (30)

Temporal Instability

On solving 

† 

w  in terms of real 

† 

a  from Eq.(30), one has:

† 

w = wr + iw i, Q+

Q+
=

1
0201 uu

r aw , ( )
Q+

Q
-±=

10102 uui aw .                  (31)

Without loss of generality, from now on we will assume 

† 

a ≥ 0  and 

† 

u02 > u01. Then the
solution represents a right-going wave with phase speed:

 

† 

cr = wr /a =
u01 + Qu02

1+ Q
,                                            (32)

which is density weighted average velocity of the two mean flows. When positive 

† 

w i  is

taken in (31), 

† 

w i = a u02 - u01( ) Q
(1+ Q) , the amplitude of the wave grows exponentially

at the rate of 

† 

w i . The vortex sheet is unstable subject to disturbance with any wave
number

† 

a ≠ 0 . Since

( ) 0
11

/)( 0102
0201 ≠

Q+
Q

-±
Q+

Q+
= uu

uu
dd aaw ,                      (33)



9

The instability is convective instability.

The physical meaning of the vortex sheet instability can be explained by examining the
disturbance circulation per unit length Eq.(2) (Batchelor1973):

† 

ˆ G = ˆ u 2 - ˆ u 1 = i a
b

2w -a u01 + u02( )[ ] ˆ x 

= aG0
1

1+ Q
Q -1( ) + 2i Q[ ] ˆ x 

.                                   (34)

Vorticity varies sinusoidally with a phase difference to displacement 

† 

x . The total
disturbance vorticity at the interface is zero. The pressure at the interface is:

† 

ˆ p 1 = ˆ p 2 = -ar01G0
2 Q + i Q

1+ Q

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

ˆ x .                                     (35)

If we simply assume the same density on both sides, 

† 

Q =1, then,

† 

ˆ G = iaG0
ˆ x .                                                        (36)

The phase of circulation is 

† 

p /2  greater than that of displacement 

† 

x  as in Fig.6. The
disturbance redistributes vorticity instead of generating new vorticity. There are two
types of points for 

† 

x(x) = 0. One, denoted by A, is the type of points where 

† 

x(xA ) = 0 and

† 

∂x(xA ) /∂x > 0. Near these points, the vortex rotates anticlockwise and is swept by
convection toward these points and accumulated. The other type, denoted by B, is the
type of points where 

† 

x(xB ) = 0 and 

† 

∂x(xB ) /∂x < 0. Near these points, the vortex rotates
in clockwise direction and is swept away from these points. Thus the result of the
disturbance is the concentration of vorticity and formation of discrete vortexes near type
A points. The vortexes will further enhance the convection and make the vorticity more
concentrated, leading to exponential growth of the disturbance in time.

Fig.6, Displacement and circulation at the interface for the unstable wave.

Pressure at the interface Eq.(35) is when 

† 

Q =1:

† 

ˆ p 1 = ˆ p 2 = -
1
2

iar0G0
2 ˆ x .                                             (37)

It is exactly out of phase with vorticity. The lowest pressure is at the vortex center.
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The Kelvin-Helmholtz instability sometimes is explained by the wavy wall analogy
(Ackeret’s explanation, c.f. Tam&Hu1989). Look at the flow in the frame moving with
the phase velocity 2/)( 0201 uucr Q+=  (Eq.(32)) of the instability wave as in Fig.7. The

vortex sheet can be seen as a wavy wall. First we assume the wavy wall is steady (doesn’t
change the shape). The pressure at both sides are indicated by + and – on these troughs
and crests to show high or low pressure. Since one crest on one side is a trough on the
other side, there is net pressure imbalance across the interface. The interface is not
exactly the same as a wavy wall in that the interface self can deform under this pressure
imbalance. The deformation makes the pressure imbalance more appreciable. This causes
the instability.

Fig.7, Wavy wall model of vortex sheet instability.

Another possible solution in Eq.(31) is 

† 

w i = -a u02 - u01( ) /2. The circulation per unit
length:

† 

ˆ G = -i |a | G0
ˆ x .                                               (38)

The vorticity variation has 

† 

p /2  phase lag to displacement 

† 

x . Points B in Fig.6 are now
the center of accumulation. The subsequent motion would be to rotate around B in anti-
clockwise and the vorticity is swept away from B  instead of towards it. Then the
disturbance would diminish exponentially. That means this solution is unlikely to
manifest itself naturally.

Fig.8, Displacement and circulation at the interface for the stable wave.

If 

† 

Q ≠1, circulation 

† 

G produced by baroclinic vorticity production mechanism is:

  

† 

dG (t)
dt

= -
1
r

—p ⋅ dr r Ú = - — 1/r( ) ¥ —p( ) ⋅ d
r 
S ÚÚ .                         (39)
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Obviously there is density gradient in y-direction, so if 

† 

a ≠ 0  there will be vorticity
production:

† 

dG(t)
dt

=
dG (t)
Dxdt

=
1

r01

-
1

r02

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

∂p
∂x

= ia 2G0
2 1- Q( ) Q + i

1+ Q

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

ˆ x 

.                                     (40)

From which we know that the vorticity is no longer just redistributed itself as in the 

† 

Q =1
case, although the total vorticity produced baroclinically is zero. The minimum pressure
is no longer exactly at the vortex centers.

Spatial Instability

Kelvin-Helmholtz instability is convective instability. If the disturbance is generated in a
local region, such as the jet from a nozzle exhaust, the convective instability will reveal
itself as a spatially amplifying wave. From Eq.(30), the wave number in terms of
frequency is:

† 

a = w
u01 + Qu02 ± i Q u02 - u01( )

u01
2 + Qu02

2 .                                      (41)

There are two poles on complex 

† 

a -plane. The characteristics of the two poles should be
investigated using Briggs’ method by assuming w  with a very large imaginary part.
When w  has very large imaginary part, both the poles are on the up half of the 

† 

a -plane.
As the imaginary part of  w  approaches zero, the pole with negative sign before i in
Eq.(41) moves across the interface to the lower half of the 

† 

a -plane. This pole
corresponds to an amplifying wave (spatial instability). The spatial growth rate is
determined from the imaginary part of 

† 

a :

† 

w u02 - u01( ) Q
u01

2 + Qu02
2 .                                          (42)

Suppose 

† 

w > 0, 

† 

u01 = 0  and 

† 

u02 = u0 (as in a jet),

† 

a =
w
u0

1± i / Q( ) .                                                   (43)

Then the spatial growth rate is (Anand):

 

† 

w
u0 Q

.                                                     (44)
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We assumed incompressible flows on both sides of the interface. In this situation the
disturbance only propagates along the interface. It decays exponentially in normal
direction of the interface. Therefore the disturbance can not propagate to the far field. For
compressible flows, it is rather complicated to solve w  in terms of a  from dispersion
equation (16). From Fig.4, except at one point where the dashed line intersects with the
real 

† 

a -axis, all real 

† 

a  corresponds to a damped propagating wave, although waves with

† 

a  of large absolute values are highly damped. That means for compressible flows the
disturbances from vortex sheet instability propagate away to the far field.

In the vortex sheet model viscosity is ignored. The instability is believed to be due to the
inflexion point in the velocity profile. Kelvin-Helmholtz Instability is inflexion
instability. Vortex sheet model can provide good estimate of phase speed of the
instability wave, Eq.(32). But for purpose of calculating the growth rate of the wave,
Eq.(44), a finite thickness model is necessary. In some cases, the wave is neutral (zero
growth rate) in the vortex sheet model, but in finite thickness model the growth rate is
finite. In the vortex sheet model, Kelvin-Helmholtz Instability is a convective instability,
however, if finite thickness model is used, it is possible the K-H instability is an absolute
instability.


