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In a uniform flow, linear waves of vorticity, sound and heat are independent. They
interact with each other only at boundaries. When the flow is not uniform, or disturbances
in the flow are not small, different waves will interact by scattering and/or nonlinearity:
one type of wave can grow, be generated or dampened by other types of waves.

It is difficult to analyze wave interactions in a nonlinear nonuniform flow. In this chapter
we will discuss a simple case of nonlinear interaction: the sound generation by a compact
vortical flow with low Mach number M, shown by Fig.1. The flow moves at typical speed

† 

u0 which is much smaller than sound speed a. During one cycle of the typical oscillation
with period T, the ratio of distance l traveled by the flow to sound wavelength 

† 

l  is

† 

l /l = u0T /(aT) = M . Because Mach number M is small, the two lengths are disparate:

† 

l << l . On flow length scale l, the flow in its low order M expansion is vortical and
incompressible. On sound wavelength scale 

† 

l , the flow is irrotational in its low order M
expansion. That means the short and very long lengths are only weakly coupled in the
flow and sound regions. The physical explanation of this weak coupling is, during one
cycle of the flow parameter, the sound wave oscillates many cycles so its net effect is
almost cancelled; on the other hand, the slowly varying flow is almost constant over one
cycle of the sound oscillation. (Crighton, et.al.1992, p.209) Therefore, one may only need
to solve an incompressible flow in the flow region and solve the sound wave equation in
the sound wave region. The two solutions are then coupled in an overlap region. This
coupling is fulfilled only mathematically. There is no physical solution in the overlap
region. In the final solution the incompressible flow acts as a quadrupole source to the far
sound field, which is the same as in the Lighthill’s Analogy Theory.

The mathematic tool for this analysis is the perturbation method. We first assume the
flow is incompressible ( 0=M ). An incompressible flow is localized. Then a small
compressibility is admitted. Admission of compressibility has two effects. First, the flow
energy can propagate away in the form of compressible waves (sound) from the local
flow region. Second, there is time lag between the flow and its generated sound. Mach
number M is the expansion parameter. It is the ratio of two lengths. The disparity of the
two length scales implies that the low Mach number flow sound is a multiple scale
problem, and the perturbation will be singular instead of regular (Dyke1975, p.80: a
perturbation solution is uniformly valid in the space and time coordinates unless the
perturbation quantity is the ratio of two lengths or two times).
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Fig.1, Sound generation by low Mach number compact flow.

There are two different singular perturbation methods. Landau and Lifshitz first used the
Matched Asymptotic Expansion (MAE) to compute sound from a small pulsating and
oscillating body. Crow1970, Obermeier1985 extended this MAE method to low Mach
number flow sound problem. Different length scales are used in the near field flow region
and the far field sound region. Regular expansions are developed based on their local
length scales in different regions. The two expansions are then matched in the overlap
region to form a composite solution.

The other method is Multiple Scale Method. One may choose one time scale and two
length scales (l and 

† 

l ) in the analysis as in Fortenbach&Munz2003. Since for the same
distance, the time spent by the sound wave is much shorter than that by the flow, one may
also use one length scale and two time scales in the Multiple Scale method as in
Müller1999.

MAE method similar to Crow1970 will be employed here. The following are the
equations for inviscid, non-heat-conducting flow used in this chapter:

† 

∂r
∂t

+
∂(ru j )

∂x j

= 0,                                                     (1)

† 

∂(rui)
∂t

+
∂(ruiu j )

∂x j

= -
∂p
∂xi

,                                             (2)

† 

p
p•

=
r
r•

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

g

.                                                        (3)
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Inner Expansion

Success of MAE depends on choosing right scales in the region analyzed. Different
choice of scales gives different results. In the flow region, the flow is fully characterized
by typical eddy speed 

† 

u0 (velocity scale), typical eddy size l (length scale), and time scale

† 

l /u0 . From continuity equation (1), density scale has no significance. Generally we use
density in the far field 

† 

r• as the density scale. From momentum equation (2), the relative
scale of pressure to that of density is critical for the analysis. However, the appropriate
pressure scale can't be found from the momentum equation. It can be found from
isentropic equation (3). It is straightforward to choose pressure in the far field 

† 

p• as the
scale. Just for convenience, we usually choose 

† 

gp• = r•a•
2   (sound speed 

† 

a• = gp• /r• )
as the pressure scale. Then the dimensionless equations are:

† 

∂r
∂t

+
∂(ru j )

∂x j

= 0,                                                    (4)

† 

∂(rui)
∂t

+
∂(ruiu j )

∂x j

= -
1

M 2
∂p
∂xi

, 

† 

M = u0 /a•,                          (5)

† 

p = rg /g .                                                        (6)

All variables in (4)~(6) and hereafter are dimensionless quantities unless specified.

Let's try the regular expansion series:

  

† 

r = r0 + Mr1 + M 2r2 +L,                                             (7)
  

† 

p = p0 + Mp1 + M 2 p2 +L,                                             (8)
  

† 

ui = u0i + Mu1i + M 2u2i +L.                                            (9)

Substituting them into (4)~(6) and equating the terms of like powers of M, we have:

† 

O(1)  equations:

† 

∂r0

∂t
+

∂(r0u0 j )
∂x j

= 0, 

† 

∂p0

∂xi

= 0 , 

† 

p0 = r0
g /g .                           (10)

The general solution of 

† 

p0 is 

† 

p0(t) , which should be determined by matching it to the
outer expansion in the overlap region. From physics intuition, it should be the
atmospheric pressure in the far field 

† 

p• =1/g . Therefore,

 

† 

p0 =1/g , 

† 

r0 =1, and   

† 

— ⋅
r u 0 = 0.                                    (11)

† 

O(M)  equations:
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† 

∂r1

∂t
+

∂(r0u1 j + r1u0 j )
∂x j

= 0 , 

† 

∂p1

∂xi

= 0, 

† 

p1 = r1.                        (12)

The same argument as in 

† 

O(1)  equations indicates:

† 

p1 = 0, 

† 

r1 = 0,   

† 

— ⋅
r u 1 = 0 .                                         (13)

(11) and (13) have similar properties. There is no advantage to separate these two orders
of equations (Crow1970, Müller1999, Eldredge2002). Therefore, 

† 

O(1)  and 

† 

O(M)  order
variables can be combined. The proper expansion series should be:

  

† 

r = r0 + M 2r2 +L,                                                 (14)
  

† 

p = p0 + M 2 p2 +L,                                                 (15)
  

† 

ui = u0i + M 2u2i +L.                                                (16)

Now 0p , 0r , and 0u
r  are variables of 

† 

O(1)  and 

† 

O(M)  orders, instead of variables only of

† 

O(1)  order as in (7)~(8).

Substituting (14)~(16) into (4)~(6), we have:

† 

O(1)+

† 

O(M)  equations:

† 

∂r0

∂t
+

∂(r0u0 j )
∂x j

= 0, 

† 

∂p0

∂xi

= 0 , 

† 

p0 = r0
g /g .                            (17)

The same argument as for (11) brings to:

† 

p0 =1/g , 

† 

r0 =1,   

† 

— ⋅
r u 0 = 0.                                         (18)

In this order the flow is solenoidal (dilation free).

† 

O(M 2)  equations:

† 

∂r2

∂t
+ u0 j

∂r2

∂x j

+ r0
∂u2 j

∂x j

= 0 ,                                       (19)

† 

∂u0i

∂t
+ u0 j

∂u0i

∂x j

= -
1
r0

∂p2

∂xi

,                                        (20)

† 

p2 = r0
g -1r2 = r2.                                               (21)

From (18) we know in the limit of low compressibility, pressure converges to a constant
thermodynamic background pressure. When small compressibility is admitted, from
equations (18) and (20), we can form the following complete system of equations:
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† 

— ⋅
r u 0 = 0,                                                       (22)

† 

∂u0i

∂t
+ u0 j

∂u0i

∂x j

= -
∂p2

r0∂xi

.                                          (23)

These are the well known incompressible flow equations. They are actually the low Mach
number flow equations. Velocity field is solenoidal. We will use   

† 

r v 0  instead of   

† 

r u 0 in the
equations. Taking divergence on both sides of (23), we have the Poisson equation about
pressure:

† 

—2 p2 = -r0
∂ 2(v0iv0 j )

∂xi∂x j

.                                              (24)

Its solution in three dimensions if   

† 

r v 0  is known is:

  

† 

p2( r x ,t) =
r0

4p
1
R

d 2(v0iv0 j )
dyidy j

dr y 
V
ÚÚÚ ,                                   (25)

where  

† 

R =
r x - r y  , 

† 

d /dyi with 

† 

R fixed. Any harmonic solution J (solution of 

† 

—2J = 0) can
be added to ),(2 txp

r  to form another solution. But J is analytical and will grow
algebraically in the far field (Crighton, et.al.1992). Thus J should not be included in the
solution.

From (18) and (25), to second order 

† 

O(M 2) , the formal solution of pressure in the flow
region is:

  

† 

p( r x ,t) =
1
g

+ M 2 r0

4p
1
R

d 2(v0iv0 j )
dyidy j

dr y 
V
ÚÚÚ + O(M 3).                     (26)

Solutions (25) and (26) are only formal since   

† 

r v 0  has to be solved together with 

† 

p2 from
incompressible equations (22) and (23). 

† 

p2 is called hydrodynamic pressure.
Hydrodynamic pressure appears in incompressible equation (23) to establish the
divergence-free velocity   

† 

r v 0 . Associated with 

† 

p2 is hydrodynamic density 

† 

r2 [Eq.(21)]
and second order velocity   

† 

r u 2 [Eq.(19)].   

† 

r u 2 is not necessarily dilation free. That means 

† 

p2

may compress the fluid element, although in this low order [

† 

O(M 2) ] there is no sound,
Eq.(24).

An acoustic/viscous splitting numerical scheme can be established based on this
asymptotic analysis. One may use the next asymptotic series:

† 

r = r0 + M 2r2 + r' ,                                                 (27)

† 

p = p0 + M 2 p2 + p' ,                                                 (28)

† 

ui = u0i + M 2u2i + u'i.                                                (29)



6

† 

u0i , 

† 

p2, 

† 

r2 and 

† 

u2i  have small length scale l. They are solved from incompressible
equations (22)&(23) and equations (21)&(19) on a fine grid system. Substitute
expansions (27)~(29) into the N.S. equations and subtract the incompressible equations
from them to obtain a set of equations for 

† 

r' , 

† 

p' , and 

† 

u'i. These equations are acoustic
equations. Since only the long length scale, sound wavelength, exists in the acoustic
equations, they can be solved on a coarse grid system. By splitting the incompressible
flow and the sound waves, the singularity due to length scale disparity is removed. A
similar acoustic/viscous splitting numerical scheme was proposed by Hardin&Pope1994,
in which 

† 

u2i  is not solved in the incompressible flow.

Outer Expansion

In the sound region, the appropriate length scale is sound wavelength 

† 

l . Use 

† 

l  as the
new length scale to define the dimensionless coordinate:

† 

Xi = xil /l = Mxi .                                             (30)

Eq.(30) is a stretching transformation of the coordinate. The sound is generated by the
fluid flow, therefore the inner and outer regions have the same time scale: 

† 

l /a• = l /u0.

† 

r• is the density scale and 

† 

gp• = r•a•
2  the pressure scale. We may still use 

† 

u0 as the
velocity scale. However we may have a better choice. From the 

† 

O(M 2)  momentum

equation of the inner expansion, 

† 

M 2 p2 ~ 1
2

M 2r0u0
2 (on the inner expansion scales), then

the pressure fluctuation in dimensional form is 

† 

p' ~ 1
2

r0u0
2. As we know for sound waves,

† 

p' ~ r0a0ua  (

† 

ua  is the acoustic velocity). Which means the acoustic velocity is in the
order of 

† 

ua ~ u0M , which seems to be a better choice for velocity scale in the outer
region:   

† 

r 
U = r u u0 /(u0M) =

r u / M . Then the dimensionless equations in the outer region are:

† 

∂r
∂t

+ M 2 ∂(rU j )
∂X j

= 0 ,                                              (31)

† 

M 2 ∂(rUi)
∂t

+ M 4 ∂(rUiU j )
∂X j

= -
∂p
∂Xi

,                                  (32)

† 

p = rg /g .                                                      (33)

The next regular expansion series are used:

  

† 

r = P0 + M 2P2 + M 3P3 +L,                                      (34)
  

† 

p = P0 + M 2P2 + M 3P3 +L,                                        (35)
  

† 

Ui = U0i + M 2U2i + M 3U3i +L.                                    (36)

We have:
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† 

O(1)+

† 

O(M)  equations:

† 

∂P0

∂t
= 0 , 

† 

∂P0

∂Xi

= 0 , 

† 

P0 = P0
g /g .                                     (37)

The 

† 

O(1)  solutions are:

† 

P0 =1/g , 

† 

P0 =1.                                                 (38)

† 

O(M 2)  equations:

† 

∂P2

∂t
+

∂(P0U0 j )
∂X j

= 0 , 

† 

∂(P0U0i)
∂t

= -
∂P2

∂Xi

, 

† 

P2 = P2 .                      (39)

From the momentum equation in (39), one has:

  

† 

∂(— ¥
r 

U 0)
∂t

= 0 .

In the far field there is no vorticity initially, therefore the velocity field is vorticity free in
this order:

  

† 

— ¥
r 

U 0 = 0 .                                                       (40)

The wave equation is obtained from equations in (39):

† 

∂ 2P2

∂t 2 - —X
2 P2 = 0 .                                                  (41)

† 

O(M 3)  equations:

† 

∂P3

∂t
= 0 , 

† 

∂P3

∂Xi

= 0 , 

† 

P3 = P3 .                                         (42)

The solutions are:

† 

P3 = P3 = 0.                                                 (43)

† 

O(M 4 ) equations:

† 

∂P4

∂t
+

∂(P0U2 j + P2U0 j )
∂X j

= 0 ,                                   (44)
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† 

∂(P0U2i + P2U0i)
∂t

+
∂(P0U0iU0 j )

∂X j

= -
∂P4

∂Xi

,                        (45)

† 

P4 = P4 + (g -1)P2 /2 .                                      (46)

In this order vorticity   

† 

— ¥
r 

U 2 is not necessarily zero.

† 

O(M 5)  equations:

† 

∂P5

∂t
+

∂(P0U3 j )
∂X j

= 0 ,                                              (47)

† 

∂(P0U3i)
∂t

= -
∂P5

∂Xi

,                                                (48)

† 

P5 = P5 + (g -1)P0
g -2P2P3 = P5 .                                   (49)

From (48), 03 =¥— U
r

.

The wave equation is:

† 

∂ 2P5

∂t 2 - —X
2 P5 = 0 .                                                  (50)

Here we will only discuss the solution to 

† 

O(M 5)  wave equation (50) because it is the
term which will match the inner expansion. The general solution to this wave equation is
composed of monopoles, dipoles, quadrupoles, and even higher order components. But
only the quadrupole is needed for matching to the inner solution:

† 

P5 =
∂ 2

∂Xi∂X j

1
R

Aij (t - R)
È 

Î Í 
˘ 

˚ ˙ , where 
  

† 

R =
r 
X .                             (51)

Therefore, pressure in the sound field is:

  

† 

pout (
r 
X ,t) =

1
g

+ M 5 ∂ 2

∂Xi∂X j

1
R

Aij (t - R)
È 

Î Í 
˘ 

˚ ˙ + O(M 6) .                        (52)

Matching

Both the inner and outer expansions are the approximations to the same function, but just
in different regions. They have to match with each other in the overlap region. There are
two matching methods: Intermediate Matching Principle and Asymptotic Matching
Principle (Crighton, et.al. 1992, Van Dyke1975, Holmes1995). We will use Intermediate
Matching Principle here. In this method, the two expansions match in an overlap region.
As 

† 

M Æ 0 , the overlap region is the far field for the inner region, but a near field for the
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outer expansion. To describe this region mathematically, a new coordinate system is
introduced:

† 

hi = Mxi /m. 

† 

m(M) is chosen so that as 

† 

M Æ 0  when keeping 

† 

hi fixed,

† 

xi =
m
M

hi Æ • , 

† 

Xi = mhi Æ 0.                                         (53)

One may choose 

† 

m = M b , 

† 

0 < b <1. In the new coordinate system,

  

† 

1
r

=
1

r x - r y 
=

M
m

1
r 
h -

M
m

r y 
=

M
m

1
h

-
M 2

m2 y j
∂

∂h j

1
h

+L,                        (54)

  

† 

h =
r 
h .

Inner solution (26) can be written in the new coordinate system as:

)()(
1

4
/1

)(
4

/1

)(
)/(

4
/1

3
4

62

00
0

3

5

300
2

02

300
2

02

MO
M

Oydvv
M

MOyd
r

vv

xx
M

MOyd
yy

rvv
Mp

jiV

ji

V

ji

ji

V ji

ji
in

++˜
˜
¯

ˆ
Á
Á
Ë

Ê
+=

++=

++=

ÚÚÚ

ÚÚÚ

ÚÚÚ

mh∂h∂h
∂

p
r

m
g

∂∂
∂

p
r

g

dd

d

p
r

g

r

r

r

.           (55)

(Note that the scale of   

† 

r y  is still l.)

Outer solution (52) is rewritten as:

)()(
1

)(/1

)()(
1

/1

6
2

52

3

5

6
2

3

5

MO
M

OtA
M

MOtA
M

p

ji
ij

ij
ji

out

+++=

+˙
˚

˘
Í
Î

È
-+=

mh∂h∂h
∂

m
g

mh
h∂h∂h

∂
m

g

.                    (56)

Matching the terms with 

† 

M 5 /m3  in (55) and (56), we have:

  

† 

Aij (t) =
r0

4p
v0iv0 jd

r y 
V
ÚÚÚ .                                         (57)
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Final Solutions

Now we summarize the final solutions with scales: length l, velocity 

† 

u0, time 

† 

l /u0 ,
density 

† 

r•, and pressure 

† 

gp• = r•a•
2 .

Inner solution:

† 

p =1/g + M 2 p2 + O(M 3),                                           (58)

† 

r =1+ M 2r2 + O(M 3) ,                                              (59)

† 

ui = v0i + M 2u2i + O(M 3);                                            (60)
  

† 

— ⋅
r v 0 = 0 ,                                                          (61)

  

† 

p2 =
r0

4p
1
r

d 2(v0iv0 j )
dyidy j

dr y 
V
ÚÚÚ ,                                         (62)

† 

r2 = p2 ,                                                         (63)

† 

∂u2 j

∂x j

= -
1
r0

∂r2

∂t
+ u0 j

∂r2

∂x j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ .                                       (64)

Outer solution:

† 

r =1+ M 5P5 + O(M 6),                                             (65)

† 

p =1/g + M 5P5 + O(M 6) ,                                           (66)

† 

ui = M 3u3i + O(M 5);                                              (67)

  

† 

P5 =
r0

4pM 2
∂ 2

∂xi∂x j

1
R

v0iv0 jd
r y 

V
ÚÚÚ

È 

Î 
Í 

˘ 

˚ 
˙ 

t-M |
r 
x |

,                          (68)

† 

P5 = P5 ,                                                      (69)

† 

∂u3i

∂t
= -

∂P5

∂xi

.                                                   (70)

Acoustic Analogy of the Low Speed Flow Sound

From sound wave equation (50) and solution (68), the equivalent inhomogeneous wave
equation in the sound field is:

† 

∂ 2P5

∂t 2 - —X
2 P5 =

∂ 2(r0v0iv0 j )
M 3∂Xi∂X j

, or                                   (71)

† 

∂ 2 p
∂t 2 -

1
M 2 — x

2 p =
∂ 2(r0v0iv0 j )

∂xi∂x j

.                                   (72)
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In dimensional form, inhomogeneous wave equation (72) is (the same variable names are
used):

ji

ji
x xx

vv
p

t
p

a ∂∂

r∂

∂
∂ )(1 000

2
2

2

2

2 =—-
•

.                                      (73)

The nonlinear incompressible flow in the near field acts as a quadrupole source driving
the far field acoustic field. Strength of the quadrupole source is jivv 000r , which is the
Lighthill stress tensor in Lighthill’s Analogy Theory. From Eq.(24),

2
22

2

2

2

1
pp

t
p

a xx -—=—-
• ∂

∂ .                                          (74)

2p  is the hydrodynamic pressure in the near field. 2
2 px—  represents the relative value of

2p  at one point compared to the average pressure around this point. 02
2 ≥— px  means 2p

is the local minimum, otherwise it is the local maximum. Therefore, the sound source is
the pressure at one point relative to the averaged pressure of its neighbor caused by the
turbulent eddies. 2

2 px—  is called jetlets by Ribner.

The same result can also be obtained by weakly nonlinear analysis.


