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In an uniform mean flow, linear waves of vorticity, sound, and heat propagate
independently. They only couple at boundaries. If the mean flow is not uniform, waves
will be diffracted by the mean flow gradient, different waves may interact with each
other, and new wave modes may be generated.

To simply the problem, in this chapter we will discuss a special case of the nonuniform
mean flow: surface of discontinuity (interface). Media on each side of the surface are
uniform, in which analytical wave solutions apply. Across the surface one or more flow
parameters are discontinuous. At the surface partial differential equations break down.
Integral equations have to be used to establish the relations between the solutions on both
sides. The final solutions are obtained by matching solutions at the surface according to
these relations.

The interface itself is assumed to be stable in this chapter.

Surface of Discontinuity

Assume the surface of discontinuity is steady on the y — z plane at x =0. (If the interface
moves at a constant velocity, the coordinate system can be established moving with the
same speed so that the interface is steady in this coordinate.) Across the interface
derivatives and partial differential equations don’t apply. However, mass, momentum,
and energy of the flow must be conserved. Therefore one should use the integral form of
the Euler equations. Suppose there is no mass injection, no external force or heat, and no

viscous effects, then integral conservative equations for mass, momentum, and energy are
(cht23.doc):

fff pdV+ffpunds 0, (1)
222+ [T, 5 =0 )

(E+—+ uu)u —Kj—TndS 0. 3

J

f{f %(p(E + %u,-u,.))dv + ff




Surface of Discontinuity

|

Region 1 Region 2

Fig.1, Steady surface of discontinuity.

Choose a fluid element with volume dxdydz as in Fig.1. From continuity equation (1) we
have:
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Square bracket represents the difference of a quantity at the two sides of the interface,
[pu ]=pu_,—-pu,. Similar equations can be established for momentum and energy
equations (2) and (3).

As dx — 0 we have

[pu,]=0, (5)
[ + p| =0, [pu,u,]=0[ puu.]=0, (6)
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Quantities in square brackets must be continuous across the interface. These are the
matching conditions (boundary conditions BCs) for the solutions at the two sides of the
interface.

Tangential discontinuity

There are two types of discontinuities depending on whether there is flow across the
interface.



If there is no flow across the discontinuity surface, BCs (5)~(7) becomes:

u =0, (8)

[p]=0, )
JoT

KE] =0. (10)

Across the interface pressure and heat must be continuous. Tangential velocities and
density can be discontinuous:

[u,]=0, [u]=0, [p]=0. (11)
This is called tangential discontinuity.
Normal Discontinuity and Shock Wave

The second type of discontinuity is when mass flux across the interface is not zero. Then:

u =0, (12)
[ou,] =0, (13)
[ + p] =0, (14)
[uy]=0, [uz]=0, (15)
pux(E+£+—uiul)—K£ =0. (16)
p ox
For a perfect gas,
E=cT= s v=c,lc,.

p(y =1

If the perfect gas is adiabatic (k =0), with Eq.(13), energy BC (16) is simplified to:
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Equations in (15) show that tangential velocities must be continuous at the interface.

Pressure, density, and normal velocity can be discontinuous. This is called normal

discontinuity.

If any three of the six variables: u,, p,;, Poi» Uirs Poas Poo» are known, the other three
can be explicitly expressed by solving Egs.(13), (14), and (17). One example of normal
discontinuity is when u, is supersonic. It is called shock wave, or shock, also called



compression discontinuity. Since tangential velocities are continuous, one can always
establish the coordinate in which the shock wave front is stationary and the flows on both
sides are perpendicular to the shock surface. This shock is called normal shock.

For the normal shock, solving equations (13), (14), and (17), one can obtain the Rankine-
Hugoniot relations in terms of M, = u,/a, (Landau&Lifshitz1959, p.331):
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Any one of the two sets of equations, (13)~(16)&(17), or (18)~(21), can be used in
applications. Sometimes it is more convenient to combine the two sets of equations in
analysis.

If in the coordinate system tangential velocities are not zero, the above equations still
hold except that the velocity in the equations is the normal velocity to the shock. Total
velocities on both sides aren’t perpendicular to the shock wave; therefore it is called
oblique shock. An oblique shock can always be transformed into a normal shock by
establishing a coordinate system moving with the tangential velocity along the surface.

Unsteady Surface of Discontinuity

Now we will discuss unsteady surface of discontinuity. Suppose the surface of
discontinuity without disturbance is at y =0 as in Fig.2. (It shouldn’t matter whether the
surface is horizontal or vertical. We use a horizontal surface here just to show how to
develop the formulas in a coordinate system different from Fig.1.) After disturbed, the
unsteady interface is at position y = £(x,7). A local coordinate system & — 1) is established
at the interface with & tangential to the interface and 7 normal to the interface.
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Fig.2, Unsteady surface of discontinuity.

A scalar is invariant in different coordinate systems. A vector, however, changes its
component coordinates in different systems. In the x-y coordinate system, flow

velocity is u, and velocity of the interface is

V.=V.j,V. =%, J : unit vector in y.

In the § - n system,

u; =u,cos6 +u,sinf, u, =-u sinf +u, cosb,
Vie=V,sin6,V, =V cosf,

where 0 = tg’! %

ox

Flow velocity in the § —n system is

— —

W=u-V,
W,=u, -V, =-usin6 +(uy —%)cos@,
We=u. -V, =u_osb +(uy —%)sin@,

Derivative in the normal direction of the interface is:

J
—= —sin0i+ cos@i.
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If the disturbance is small, equations (23)~(26) can be approximated aty =0 :

0 =sinf =~ —,
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These are the relations between the two coordinate systems we will need.

The & - system is not an inertial system. The conservation laws in this moving volume
must be established in the x — y system (cht23.doc):
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A similar fluid element as in Fig.1 can be established at the unsteady interface in Fig.2.
Therefore across the interface at y = C(x,1):

[ow, ]=0. (35)

[ouW, + s, ]=0,ie., [pWW, +ps,]=0,i=En, (36)
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For tangential discontinuity at y = (x,t),

W, =0, or [u,]=0, (38)
[p]=0, (39)



[K ﬂ} 0. (40)

Expand p at y =0,
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If the disturbance is small then

p=pyaty=0.

Further using (27) ~ (31), equations (38)~(40) can be rewritten in terms of variables in
the x —y systemat y =0:

£+L1X£—uy=0, (41)
ot ax

[p]=0, (42)
ﬂ K£}= Kg] (43)
ox| ox dy

It is noted that all the variables are total variables which are the sum of mean variables
and perturbations. These three equations are the kinematic and dynamic boundary
conditions at the mean surface of tangential discontinuity. Across the mean interface
aty =0, pressure must be continuous [Eq.(42)]. Although velocity normal to the unsteady
interface (u,) is continuous [Eq.(38)], u, is not necessarily continuous. Instead Eq.(41)

implies the continuity of displacement:
& (x,1) =8, (x,1) =C(x,1) (44)
To prove it, we define function f(X,1):
FGn=y-C(x0),

f(x,1) =0 at the interface, f(x,f)>0 in medium 1, and f(x,7) <0 in medium 2. At the
interface y = (x,1),
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Since ﬁ = _ﬁ’ ﬁ = _ﬁ’ ﬁ =1, Eq.(41) is recovered.
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Eqs.(41)~(43) are the boundary conditions for immiscible flows such as air and water.
Sometimes this model is extended to other situations. For a jet, the two sides of the
interface separating the jet and its environment may have the same gas. However the gas
is often assumed immiscible at the interface, so that tangential discontinuity across the
interface is applicable. Another example is plug flow over an impedance wall. The
impedance wall is often considered a surface of tangential discontinuity with continuous
displacement.

For normal discontinuity, Eqs.(35)~(37) are,

W, =0, (45)
[pW,1=0, (46)
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[W1=0, (48)
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These four equations are the matching conditions for normal discontinuity with small
disturbance.



Acoustic Wave Transmission (Refraction)
at Surface of Density Discontinuity

As the first example, we discuss the sound wave reflection/refraction at an interface of
two immiscible media such as air and water as in Fig.3. The two fluids are assumed ideal,
adiabatic, and quiescent (u,, =0, u, =0). The interface is steady before sound is
introduced from medium 1. Since there is no flow across the interface, the interface has
tangential discontinuity. When there is no sound, pressure is continuous across the
interface [BC (9)]:

Po1 = Poo- (54)
Density is discontinuous, and so is sound speed:
Por # Poas oy # Aoy (55)

Impedance of a uniform medium to sound is p,a,. Eq.(55) means there is impedance
mismatch at the interface, which inevitably gives rise to sound reflection/refraction.

Fig.3, Sound transmission at surface of density discontinuity.

The interface itself is assumed stable. If there is gravity, the lighter fluid must be on the
top of the heavier fluid, otherwise the interface will have Rayleigh-Taylor Instability.

Sound wave, introduced into the first medium, propagates towards the interface at an
angle 6 as in Fig.3. At the interface part of the sound wave is reflected back and part of it
transmits into the second medium. The interface is perturbed with displacement

y=C(x,1).

When disturbance is small, tangential discontinuity requires continuous pressure and
displacement across the interface at y =0 [Eqs.(42)&(44)]. Normal velocity is generally
not continuous. However, when there is no mean flow, normal velocity is continuous
according to Eq.(41). Therefore the dynamic and kinematic boundary conditions of
disturbance (the prime is omitted) at y =0 are:



P =P (56)
vy =v,. (57)

There is no vortical motion in the ideal, quiescent medium according to chtl.doc and

cht7.doc. General acoustic solution in an ideal, quiescent medium with density p, and
sound velocity a, has been given by Eqs.(22)~(24) in chtl.doc. The solutions are:

[{)} = Real{ f]e""“’}, (58)
u U

b= Aefh, (59)
0= ;wa?, (60)
0
jo L P 61)
iy oy

The equation of computing B from « is in chtl.doc. If a is real and -w/a, <o <w/a,,
the wave is a pure propagating plane sound wave. If a is real but a>w/q, or
o <-w/a,, the wave only propagates in x direction with phase speed w/ca, with
decaying amplitude in y direction. For all other «, the wave is decayed plane wave
propagating in an oblique direction. Except for the propagating waves, effect of
disturbances is only local to the interface.

Incident wave

Assume the incident wave is a propagating wave with incident wave angle 6 to the
normal direction (Fig.3):

o=k ssinf, B, =k ccosO, k, =w/a,,, (62)

A _ ik(xsin@-ycosf) ~ _ A . A
p,=e , U= p;sinf, v, =

D, cosf. (63)
Po1% Po19

To ensure propagating wave in +x direction, o must be real and 0 <a <w/aq,,, then , is
also real, and the reflected wave is a propagating wave.
Reflected wave

From Egs.(56)&(57), the reflected wave and transmitted wave must have the same o as
the incident wave. Thus the reflected wave solutions are:

. K Crsi - | . 1 .
P, =R\ g p,sinf, v, = p,cos0. (64)



Refracted wave

The transmitted (refracted) wave solutions are:

pvo=-Lrp (65)
Py P

A i(ax=Bry)
p,=Te , U, =

Suppose the incident wave is from the medium with smaller density, i.e., p,, < p,,. Since
a, =4/Yp, /P, » we have a, > a,,. For the propagating incident wave, o is real and
o <w/a,. Therefore oo <w/a,,, f3, is real and thus the refracted wave is a propagating
wave in the direction with angle y as in Fig.3. In this case the refraction wave solutions
are:

o =k sin0=k,siny, k, =w/a,,, B, =k,cosy.

- o (xsi - | . 1 .
p, =T e"smyeon g = p,siny, v, =- P, cosy. (66)
Po2loz Po2lo2
The refracted wave angle is determined by:
siny = a,, /a,, sinf. (67)

This is the Snell’s law. When the incident wave is in the lighter fluid, the refracted wave
is bent towards the normal direction.

On the other hand, if the incident wave is in the heavier fluid, then a,, > q,,. Eq.(67)
shows the refracted wave is bent away from the normal direction. It is possible that
wl/a, <aswla,, i.e. ay,la,sinf>1, for which no angle y can be determined from
(67) and B, =isJa” —k; is a pure imaginary complex number. In this case, the refracted

wave only propagates in x direction (along the interface) with phase speed w/a, but the
amplitude decays in -y direction. (Check out Fig. 12 in paper Tam&Ju, Computation of
the Aliasing and the Interface Transmission Benchmark Problems by the Dispersion-
Relation-Preserving Scheme, 4™ CAA workshop NASA/CP-2004-212954). There is a
critical angle,

sinf, =a,,/a,,. (68)

When the incident wave angle is bigger than this angle, the incident wave will be totally
reflected.
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Reflection coefficient

Coefficients R and T in equations (64) and (65) can be determined from boundary
conditions (56)&(57):

1+R=T,

1_R=Mﬁ7~_

P00 cosO
Therefore,
2
T= " Pote B (69)
P cosb
R=T-1. (70)

When a,, > a,, and the incident angle is larger than critical angle 6., 8, = iyJa’ -k, is
purely imaginary, and |R| =1, that means the incident wave is totally reflected.

Baroclinic vorticity production

The two uniform media are vorticity free. However, as we know in cht5.doc, in a region
with nonuniform density, the mass center and the geometric center of the a fluid element
doesn’t coincide. When sound waves propagate into this region, vorticity will be
generated. This is called Baroclinic Vorticity Production. According to cht5.doc, the
indicator of vorticity generation is circulation instead of vorticity, since vorticity of a
material fluid element may change while the circulation does not. To quantify the
circulation at the surface of discontinuity, one may define the circulation density I" as in
Fig.4:

N Circulation around ABCD

r
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AN NNl el \Wall el
N N N N AN A P
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Fig.4, Circulation at the interface.

Than:
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T=i -0 —a:Temﬂ(i—i). (71)

Vorticity is generated because of the misaligned acoustic pressure and the mean density
gradients.

Physical explanation

Suppose the wave front of the incident sound hits the interface at point p, at time #,. It
generates one cylindrical wave in medium 1 and one cylindrical wave in medium 2. At ¢,
the incident wave front hits p, and generates two other cylindrical waves, one on each
side of the interface. Fig.5 shows the wave pattern at time ¢, when the incident wave just
hits p;. At this time waves generated at previous times (¢, and ¢, ) have propagated. The
envelope of these waves in medium 1 forms the reflected wave front; the envelope of the
waves in medium 2 forms the transmitted wave front. Sound speeds on both sides are
different, so are angles of the reflected and transmitted waves.

incident wave

reflected wave [ ty 1y

refracted wave

Fig.5, Sound wave transmission at surface of density discontinuity at time z,.

Wave Interaction with Shock Wave

One-dimensional analysis of wave interaction with shock wave was given by Powell. In
one dimension there is no vorticity wave and there is no sound wave propagating
upstream in the supersonic medium. If the incident wave before the shock is a sound
wave, two waves exist after the shock: the transmitted, amplified sound wave and the
convective entropy wave. If the incident wave is an entropy wave, the downstream waves
are transmitted entropy wave and intense sound wave.
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In two or three dimensions, when a vortex hits the shock wave, there exist all three modes
after the shock: vorticity wave, sound wave, and entropy wave. This is believed to be the
mechanism of broadband shock associated noise in a supersonic jet. Vortex/shock
interaction depends on whether the flow after the shock is subsonic or supersonic.

Vortex/shock interaction can be investigated analytically by fitting the shock with
Rankine-Hugoniot relation. Moore1954 analyzed the interaction of a normal shock with
an oblique plane sound wave or vortex wave. Ribner discussed plane vortex wave/shock
interaction (Ribner1954) and cylindrical vortex with axis aligned with the shock
(Ribner1985). Erlebacher, Hussaini&Shu discussed cylindrical vortex with axis normal to
the shock (i.e., longitudinal vortex). Numerical investigation was done by many
researchers, such as Meadows, Kumar&Hussaini1991, Erlebacher, Hussaini&Shu, etc.

Suppose the undisturbed shock is at x =0. The flow comes in from region 1 to region 2.
The BCs at x =0 are from (13)~(15)&(17):

[pouo] =0 ) (72)

[0otto + o] =0, (73)

Vo =V =0, (74)

B I— 2] 0. (75)
[pow 2

Or one can use Rankine-Hugoniot equations (18)~(21) directly.

With small disturbance, the shock wave surface is disturbed to position x =&(y,#). The
BCs satisfied at x =0 Eqgs.(50)~(53) are linearized to be:

l_g 1 =
[po(u at)+pu0] 0, (71)
[Zpouo(u'—%) +p'u; + p'] =0, (72)
48
' o|=—==0, 73
]+ () (73)
o 30 el [P L) 2
[(y_1+2p0u0)(u &t)+u°(y—l+2u°p)] 0. (74)

Upstream sound wave/shock interaction

Suppose the incident wave from region 1 is a plane sound wave. According to
Eqgs.(61)~(64) in chtl.doc, a plane sound wave can be represented by:
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pl - Aei(a][,x+/}y—wt)’ (75)

u, = —ei(a“,x+ﬁy—wt)’ (76)
pOI(w - alauol)
v, = A—ﬁeiw]uﬂﬁy—wr)’ (77)
pOl(w - alauol)
5=0, p = aguol' (78)

Physical variables in time domain are real parts of these variables in Eqs.(75)~(78). A and
o are amplitude (strength) and annular frequency of the sound wave. 8 is the wave

number in y direction. Wave number in x direction is computed by Eq.(66) of chtl.doc:

_ M,w/a, + \/Mgl —1\/ﬁ2 + o’ /(u, - ag,)
. M§1_1

(79)

Check Fig.10 of chtl.doc for the branch cut.

No sound wave is reflected at the shock since the flow in region 1 is supersonic. The
sound wave is refracted in region 2 behind the shock. Vorticity and entropy waves are
generated at the shock. All the waves after the shock have the same frequency and wave
number in y direction as the incident sound wave.

For the sound wave in region 2:

Dy, = Bei(a2ax+ﬁy—wt) , (80)

uza _ Baza ei(a2u~"+/5y_w’)’ (81)
poz (CU - a2au02)

v, = Bp ei(az(,x+ﬁy—(w)’ (82)
poz (CU - a2au02)

S2a = 0 5 p2a = a§2p2a‘ (83)

Assume flow after the shock is subsonic, then,

_ =Myl +iyf1- My, B - 0 fag, - u3,)
‘ 1- M, '

(84)

a,

Solution of vorticity wave in region 2 is expressed by Eqs.(72)~(75) in Chtl.doc. They
are:

uzv — Cei(azt.xﬁiy—(m)’ (85)
v, = _c%ew“ﬁy'm, (86)
p2v=0’ S2v=0’ p2v=0‘ (87)
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where a,. =w/u,.

Entropy wave in region 2 is represented by Eqs.(76)~(79) in chtl.doc:

p26=0’ u2€=0’ v26=0’ (88)
C . .
(ctyex+By—or) x+Py-
Sze - _Dp_pet Ay X+ Py-wi , pze — Dez(ozZ x+fy wt)‘ (89)
0

The total waves in region 2 are sum of these three waves:

Py = Py, = Be' P, (90)
Ba < : o
uz = I/lza + qu = 2a elamx + Cew‘hx el(ﬁy ‘Ut)’ (91)
Por (@ =ty Uy)
V, =V, +V, = B/j eiahx -C % eiazcx ei(ﬁy—ﬂ”) , (92)
P> (0 = 0y, Uy, B
B i , picact |pithr-on 93
Pr=Py+ Py, =|—5 €7 +De e , (93)
02
Cp i(oty . x+Py-wt)
§, =8, =—D——e" : (94)
Po2

Shock wave displacement & = e . Substitute incident wave Egs.(75)~(78) and
waves after the shock Eqs.(90)~(93) into the four matching conditions, Eqs.(71)~(74).

From the four equations, B, C, D, and CA can be solved in terms of 4.

Upstream plane vorticity wave/shock interaction

Suppose a plane vorticity wave is propagating towards the shock:

ul - Aei(a][x+[)’y—wt) , (95)
v, = _A&ei(“u“ﬁy—ﬂ”) , (96)
p,=0,s=0, p=0. (97)

where a,, = w/u,, .

The three waves on the downstream of the shock wave can be expressed by equations
(80)~(94). Substitute incident wave Eqgs.(95)~(97) and waves after the shock
Eqs.(90)~(93) into the four matching conditions, Eqs.(71)~(74), from which B, C, D, and

CA can be solved in terms of 4.
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Upstream plane entropy wave/shock interaction

If the upstream incident wave is a plane entropy wave, then,

p,=0,u=0,v =0, (98)
Sl - _Ac_pei(alﬁx+ﬁy—wt) , p1 — Aei(alfx+[5y—wt) . (99)
Poi

In the same way as before, B, C, D, and € can be solved by matching waves on both side
of the shock.

Downstream plane sound wave/shock interaction

Now let’s discuss the case where incident wave is from downstream of the shock. Since
no wave can propagate upstream against the supersonic flow in region 1, one has:

p,=0,u=0,v,=0,s=0, p =0. (100)

The only possible incident wave from the downstream is sound. It is represented by
equations:

p;a = Aei(az_ﬂx+ﬁy—ﬂﬁ)’ (101)
u;g _ Aa2a_ ei(az'nx+/3y—wt)’ (102)
poz(w - (X2a1/l02)
;a _ A/D) ; ei(a;“x+ﬁy—wt)’ (103)
Poz (CU - a2au02)
S;a =05 pga =a§2p;a’ (104)

where,

B i1- M3, AB? - 0* Nad, - ul,)
B 1- Mgz '

(105)

The reflected waves are represented by Eqs.(80)~(89). The total waves in region 2 are:

D, = (Aeiaz_"" + Be'®e* )ei(ﬁy"‘”t), (106)
uz — Aaza_ eiaz’ax + Bazg ei()cz“x + Ceiazl.x e[(ﬁy—wt) , (107)
P (@ = 0ty 1) P (@ =, uy,)
V2 = Aﬁ - eiaz’ax + Bﬁ eia“x _ Cgeiazl.x e[(ﬁy—wt) , (108)
P (@ = a3 uy,) P (@0 =ty 1) B
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A4 w. B, e\ s
0, = - P . o' 4 De'%e® el(ﬂy Wf)’ (109)
o, Ay,
cp i(0y.x+Py-wt)
S, =8,, = —Dp—e 2 . (110)
02

Substitute Egs.(100) and (106)~(110) into the four matching conditions, Eqs.(71)~(74).
B, C, D, and CA can then be solved in terms of 4.
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