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a b s t r a c t

A semi-analytical method is proposed for calculating the response of a linear cascade with
spanwise mean flow subject to oblique gusts. It is developed based on the boundary value
problems defined by Lloyd and Peake (AIAA paper 2008e2840). A gust strength parameter
is introduced and the correct three-dimensional (3-D) response is obtained. The classic
similarity rules are extended; the approach can be used to extend any 2-D methods to
account for oblique gusts and 3-D mean flows. It is validated against analytical approxi-
mations for single-airfoil and cascade responses. The method is used to investigate the
effect of gust angle ag on the unsteady lift and the sound field. It is found that as ag in-
creases, the 2-D equivalent response varies slightly. However, the 3-D lift is amplified by
factor 1=cosag, and the spanwise phase variation increases. Cascade effects are also
studied. The inter-blade phase angle (IBPA) is important even for very low solidity. As the
solidity increases, the chordwise distribution of lift is no longer leading-edge dominant.
Cascade effects are small only when the cascade blade count is lower than a limit. A
statistics analysis reveals that Mach number is the most important parameter for deter-
mining this blade count limit, and frequency is the least important.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The philosophy in turbofan engine designs today is to maximize the bypass ratio (BPR). It benefits both engine efficiency
and noise reduction. As BPR increases, jet noise is significantly reduced and fan noise becomes more important. Fan noise
tends to overtake jet noise and dominate at all conditions in the next generation of engines.

Fan noise includes tones and broadband noise (BBN). With the development of mitigation technologies in the past few
decades, tone noise can now be effectively controlled; BBN is receiving more attention in new engine developments and
academic research. There are two types of fan broadband noises: the self-noise and the interaction noise [1]. Self-noise is
generated by turbulence in airfoil surface boundary layers scattered at blade trailing edges (TE). Interaction noise is generated
by turbulent flows interacting with downstream blade rows. The most important broadband noise source is the interaction
between fanwakes and outlet guide vanes (OGV). Depending on the operation conditions, fan self-noise and noise generated
by casing boundary layer - fan tip interaction may also be important.
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Nomenclature

a0 sound speed in the mean flow, dimensional, velocity scale
C airfoil chord length, dimensional, length scalebh±
mnðk1;k2;k3Þ chordwise integrated unsteady liftbhþ
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP jbhþ
mnj2

q
(summation over all the cut-on modes)

K ¼ k1Mx=b
2
M

Ks vortical wavenumber magnitude
k1, k2, k3 vortical wavenumbers in the x, h, and z directions respectively
kd u=a0, acoustic wavenumber
L unsteady lift due to oblique gust - cascade interaction
l unsteady lift due to 2-D gust - cascade interaction calculated by LINSUB
M U0=a0, Mach number
Mx u0x=a0, Mach number in the x direction
m spinning mode number
Nv number of the blades
n radial mode index
p acoustic pressure
R radius at which the annular duct is unwrapped
Rr rth acoustic pressure at the reference blade leading edge calculated by LINSUB
S spacing between blades in the linear cascade
u ¼ ðux;uh;uzÞ unsteady velocity vector & its components
U0; u0 mean flow velocity magnitude and vector

w
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3 TKE

q
, time-averaged upwash velocity

x, y axial and tangential coordinates in the unwrapped duct coordinate system
z spanwise coordinate along the leading edge of the reference blade
as gust angle to the x-axis
a wavenumber in the x (axial) direction
b wavenumber in the y direction

bM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

q
, compressibility parameter

Gj parameters defined in Eqs.(20) & (28)
h chord-normal coordinate on the reference blade
q stagger angle of the linear cascade
L turbulence integral length scale
l u=u0x, reduced frequency
x chord-wise coordinate on the reference blade, normal to the blade leading edge
r0 density of the mean flow, dimensional, density scale
s bS, inter-blade phase angle (IBPA)
4 acoustic velocity potential
j mean flow angle to the x-axis
u circular frequency
ue ¼ u� k3u0z ¼ ks1u0x, effective frequency

Subscripts
0 mean flow
r acoustic wave index
s source (vortical component)
a acoustic component

Superscript
* complex conjugate
Caret ‘̂’ Fourier components
Over bar ‘-’ variables in two dimensions
± downstream (þ) and upstream (-)
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Fig. 1. Gust - cascade interaction. (Span-wise coordinate z is normal to the paper.)

H. Ju, R. Mani / Journal of Sound and Vibration 436 (2018) 95e111 97
Vorticity waves in the upstream turbulent flow convect through the cascade (Fig. 1), inducing the normal component of
the vortical velocity on the blade surfaces. To satisfy the impermeable boundary condition at the blade surfaces, the normal
component of the acoustic velocity and the sound wave are generated. The normal vortical velocity is the ultimate driver of
the interaction noise. The cascade has two effects. One is to scatter an incident vorticity wave into other vorticity waves [2].
The other effect is the acoustic interaction between the blades and the occurrence of cascade resonances under some con-
ditions. In a ducted engine, the duct has a significant effect on sound propagation. It cuts off acoustic waves with high
wavenumbers, only letting a limited number of modes to propagate (cut-on).

Modeling noise generation and propagation involves two steps: the cascade harmonic analysis and the broadband
modeling. In the first step, a method is developed to calculate the response from a cascade subject to a harmonic vorticity
wave. For an unloaded flat-plate cascade in a uniform flow shown in Fig. 1, a harmonic wave with frozen vorticity has this
form:

Geiðk1xþk2hþk3z�utÞ; u ¼ k1u0x þ k3u0z: (1)

x is the coordinate on the reference blade, normal to the blade leading edge. z is the spanwise coordinate along the leading
edge. h is the coordinate normal to both x and z. k1, k3, and k2 are wavenumbers in these three directions. G represents the
strength of the vorticity wave. The source of the broadband noise is the random turbulence in the flow. Since turbulence is
composed of correlated/uncorrelated harmonic waves in a wide spectral range, the second step, broadband modeling, is
needed to compute the sound power.

Cascade harmonic analyses are fundamental for broadband noise predictions. Hundreds of gust - cascade responses are
calculated to predict the sound power at each frequency. Quick turnaround computation is critical for predicting a spectrum.
Analytical or semi-analytical methods are preferred. Over the years, several analytical solutions have been proposed. High-
and low-frequency approximations for 3-D gust - single airfoil interactions were developed by Adamczyk using the Wiener-
Hopf technique [3,4], and by Amiet using the Schwarzschild's theorem [5]. The blade tip end effect was accounted for in the
Amiet's theory by Roger et al. using a composite two-dimensional Schwarzschild's technique [6]. The 3-D gust - linear cascade
response using the Wiener-Hopf technique was proposed by Glegg [7] and Posson et.al. [8]. A high frequency model for 3-D
gust - annular cascade interaction was developed by Envia [9]. Some semi-analytical models have also been developed, such
as the 2-D bound vorticity model LINSUB by Smith [2], the lift model for 3-D gust - annular cascade by Namba [10], and the lift
model for 2-D gust - linear cascade by Ventres et.al. [11], etc. Based on these harmonic analyses, several broadband models
and codes have been developed. Based on Glegg's analytical harmonic analysis [7], Hanson developed the BBCascade code
[12]. Morin extended it to 3-D using the strip theory and developed the BFaNS code [1]. Nallasamy and Envia [13] developed
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the RSI code based on Ventres et.al.’s semi-analytical harmonic analysis [11]. The RSI code was explored and validated by
Grace [25]. Posson and Moreau proposed a model based on their analytical cascade response function [26]. Cheong et al.
developed a broadband model based on LINSUB [14].

Cascade harmonic analyses for 3-D gust - annular cascade, such as Namba's model [10], account for realistic geometries
and mean flows. However, broadband models based on these analyses may be very complex, with little flexibility to adapt to
even slightly different geometries or flows. They are not necessarily the best choices in applications [11]. On the other hand,
methods based on 2-D theories are easier to develop and are more flexible in applications. For example, LINSUB was modified
for perforated cascades by Reba and Morin [15].

In 2-Dmethods, assumptions must be made for responses with k3s0. If turbulence lengthscales are small and duct modal
shapes change little within the integration range, in the region away from the duct walls the 2-D gust (k3¼ 0) makes most
contribution to the noise. Responses from oblique gusts cancel each other and can be simply disregarded [13]. This leads to
under-predictions of sound power level (PWL) when compared with methods that include oblique gust effects [16]. On the
other hand, equal responses from all k3 are assumed in some methods; and sound power is usually over-predicted [14].
Obviously, it is necessary to study oblique gust effects and account for them in the response.

Twomajor effects of an oblique gust are illustrated in Fig. 2. The spanwise phase gradient (ik3eik3z) is first introduced. This
increases the source cancellation and more sound waves are cut off, both reducing the sound power in the far field. On the
other hand, the phase gradient and the source cancellation in the chordwise direction are reduced. The reduced frequency
decreases as the gust tilts and the cascade response becomes stronger according to the Sear's function. For a long blade
(aspect ratio [ 1), the benefit from the spanwise source cancellation is larger than the chordwise noise penalty; therefore
the tone noise in the far field is reduced. This is the major mechanism of the tone noise reduction in swept cascade con-
figurations. Sweep of blades also introduces secondary effects, such as introducing the spanwisemean flow, reducing effective
inflow velocity, and reducing the inter-blade phase angle, etc [7].

Theories fully accounting for 3-D gusts include: Filotas [18] andMugridge [19] for incompressible flows, Adamcyzk [3] and
Amiet [5] for isolated airfoils in compressible flows, Namba [10] for annular cascades, Martinez and Widnall [20] for rect-
angular wings with finite span, Goldstein [17] and Atassi and Hamad [21] for rectilinear cascade with endwalls, Glegg [7] and
Posson et al. [8] for linear cascades, etc. Recently there are attempts to extend 2-D methods to account for oblique gusts. For
example, the integral equation in LINSUB was modified by Reba and Morin to calculate responses from 3-D gusts interacting
with a perforated cascade [15]. Similarity rules and 2-D equivalence theories were also developed, inwhich only the inputs to
a 2-D method need to be modified. Graham [28] and Adamczyk [4] reveal that the response from an isolated airfoil only
depends on two parameters. Similar analyses apply for cascades, except that parameters related to the cascade geometry are
also involved. Atasii and Hamad [21] developed the similarity rules for cascades in 2-D flows. Lloyd and Peake [22] further
considered 3-D mean flows. They found that all the five inputs to LINSUB need to be modified and the equivalent 2-D lift was
directly used in the 3-D response. However, the similarity rules in Eq. (80) and the acoustic pressure in Eq. (85) in Ref. [22] are
not consistent with Eqs. (7), (26) and (27) in Ref. [21] when the span-wise mean velocity is zero.

The 2-D equivalence method in Ref. [22] is revisited in this paper. Similar boundary value problems are defined; but a
different solving procedure is proposed. It is found that, in addition to the five inputs to LINSUB, the upwash velocity also
needs to bemodified. The 3-D lift is not equal to the equivalent 2-D lift. Themethod is validated against analytical solutions by
Adamcyzk for isolated airfoils [4] and by Posson et al. for linear cascades [8]. Since there is no need to modify original 2-D
methods, this approach is very useful for extending any existing 2-D models to account for 3-D gusts and 3-D mean flows.

The rest of the paper is arranged as follows. The boundary value problem (BVP) for the oblique gust - cascade interaction
and the BVP for the 2-D gust - cascade interaction are defined respectively in sections 2 and 3. The equivalent 2-D problem is
discussed in Section 4. The 3-D response is derived in Section 5. The major results are the similarity rules in Eq. (32), the lift
Fig. 2. Effects of an oblique gust interacting with a linear cascade. (a) 2-D gust (k3¼ 0); (b) 3-D (oblique) gust (k3s0):① higher spanwise phase gradient/more
source cancellation & cutoff modes for tones, ② less chordwise phase gradient / lower reduced frequency / higher response.
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distribution on blades in Eq. (34), and the acoustic solution in Eq. (37). The method is validated against analytical solutions in
Section 6. Effects of oblique gusts and cascades are discussed in Section 7. Concluding remarks are made in Section 8.

2. 3-D vorticity wave - cascade interaction

2.1. The linear Euler equations

Two coordinate systems shown in Fig. 1 are used in the analysis. Cascade coordinates (x; h, z) are convenient for describing
the turbulent flow (the acoustic source) since the upwash velocity is in the h direction. Duct coordinates (x, y, z) are suitable
for describing sound propagation in the duct. In the cascade coordinate system, the linearized Euler equations for an adiabatic
process are:

Dp
Dt

þ vux
vx

þ vuh
vh

þ vuz
vz

¼ 0; (2)

Dux vp

Dt

þ
vx

¼ 0; (3)

Duh vp

Dt

þ
vh

¼ 0; (4)

Duz vp

Dt

þ
vz

¼ 0; (5)

Dr Dp

Dt

¼
Dt

; (6)

where
D
Dt

¼ v

vt
þ u0x

v

vx
þ u0z

v

vz
:

Variables with subscript ‘0’ are mean flow quantities. Others such as p are perturbations. All variables are non-
dimensional. The scales for these variables are: length: chord C, velocity: sound speed a0, time: C=a0, density: r0, and
pressure: r0a

2
0.

It has been shown that the blade geometry (thickness and camber) and the flow angle of attack mainly affect the steady
force [17,22]. Their impact on unsteady loading is in higher orders. A recent numerical study confirms that the blade thickness
has effects only at high frequencies [27]. An unloaded flat-plate cascade is considered in this paper. The mean flow is uniform
and parallel to the cascade plates.

This form of Fourier components with time factor e�iut is adopted in the paper:

pðx; h; z; tÞ ¼ Re
nbpðk1; k2; k3;uÞeiðk1xþk2hþk3z�utÞ

o
; etc: (7)
The analysis applies for positive or negativeu. If time factor eiut were used, u in all the formulas should be replaced by � u.
Substituting Eq. (7) in Euler Eqs. (2)e(6), one finds three families of linear waves: vorticity waves, acoustic waves, and entropy
waves [2]. Wavenumbers k1; k2 and k3 satisfy three dispersion relations. Vorticity waves and entropy waves have frozen
patterns. They are determined by upstream boundary conditions. If there are no entropy waves in the upstream flow, the
solution to Eq. (6) is simply:

r ¼ p:
Similar equations can also be established in the duct coordinate system for

pðx; y; z; tÞ ¼ Re
nbpða; b; k3;uÞeiðaxþbyþk3z�utÞ

o
; etc:

aand b are wavenumbers in the x and y directions respectively. The relations between the two coordinate systems are:

x ¼ x cos qþ y sin q; h ¼ �x sin qþ y cos q;
a ¼ k1 cos q� k2 sin q; b ¼ k1 sin qþ k2 cos q;
axþ by ¼ k1xþ k2h:

(8)
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q is the stagger angle. The last equation indicates that the phase of a plane wave remains unchanged in the two coordinate
systems.

2.2. Vorticity waves as the source of gust - cascade interaction

We consider upstream vorticity waves as the source of the gust - cascade interaction. A vorticity wave carries no fluc-
tuating pressure (bps ¼ 0); associated with it is only fluctuating velocity bus. Subscript ‘s’ denotes the source. The following
relations must hold to satisfy Euler Eqs. (2)e(6):

ue≡u� k3u0z ¼ ks1u0x; (9)

ks1busx þ ks2bush þ k3busz ¼ 0: (10)
Only one Fourier component is to be considered in the z direction. Since eik3z is a common factor for all the waves, k3 is
used instead of ks3. To define a unique vorticity wave, five of the seven variables, such as bush, busz, k1, k3, and u, need to be
prescribed. Amplitudes bush and busz are usually determined from the turbulence kinetic energy (TKE), turbulence integral
length scale L, and a turbulence spectrum model such as the Liepmann spectrum, the Karman spectrum, or the Gaussian
spectrum. For the other three parameters, it is convenient to prescribebsð¼ ks1 sin qþ ks2 cos qÞ,k3, and u for engine noise
studies.

The upwash velocity at the cascade blades induced by the vorticity wave is:

busheiðks1xþks2hþk3z�utÞ ¼ bushei½uex=u0xþðbs�ue sin q=u0xÞjSþk3z�ut�; (11)

for jS sin q � x � jS sin qþ 1, h ¼ jS cos q ¼ 2pjR cos q=Nv, j¼ 0,1,…, Nv-1. Nv, S and R are respectively the blade count, the
spacing between two blades, and the radius at which the annular cascade is unwrapped. ue is the effective frequency defined
in Eq. (9). j¼ 0 represents the reference blade; j¼ 1 is the blade above the reference blade, etc.

2.3. The boundary value problem defined in acoustic velocity potential

Define the acoustic velocity potential 4:

ua ¼ V4; (12)

D4

p ¼ �

Dt
: (13)
Assume this form of acoustic waves:

4ðx; h; z; tÞ ¼ Ref4^ðx; h; k3;uÞeiðk3z�utÞg; ;

pðx; h; z; tÞ ¼ Refp^ðx; h; k ;uÞeiðk3z�utÞg::
3
Substituting them in Eq. (2)e(5) and (12)e(13) yields�
� iue þ u0x

v

vx

�2

4
^ �

 
v2

vx2
þ v2

vh2
� k23

!
4
^ ¼ 0; (14)

^
�

v
�
^
p ¼ iue � u0xvx
4: (15)
Apply the Prandtl-Glauert transformation:

x ¼ x; h0 ¼ bMh; ~4ðx; h0; k3;uÞ ¼ 4
^ðx; h; k3;uÞeiKMxx; (16).

2
.

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
q

K ¼ ue bM ¼ ks1Mx bM ; Mx ¼ u0x; bM ¼ 1�Mx :
Then acoustic Eq. (14) can be written in terms of ~4 as:
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v2

vx2
þ v2

vh02
þ K2 � k23

b2M

!e4 ¼ 0: (17)
Formally it is the acoustic wave equation in a stationary medium. The boundary condition at the blades, Eq. (11), is recast
as:

uah ¼ �ush ¼ �bushei½uex=u0xþðbs�ue sin q=u0xÞjSþk3z�ut�; i:e:;

ve4
vh0

¼ �bush

bM
ei½Kx=u0xþðbs�ue sin q=u0xÞjS�; (18)

for jS sin q � x � jS sin qþ 1, h0 ¼ jbMS cos q, j¼ 0,1,…, Nv-1.
The Kutta condition requires the continuous pressure at the blade trailing edges and in the wakes:

Dp
^ ¼ 0:
Applying (15) on both sides of the wake, the Kutta condition is satisfied if�
iue � u0x

v

vx

�
D
he4ðx; h0; k3;uÞe�iKMxx

i
¼ 0;

i:e:;
�
i�Mx

K
v

vx

�
De4 ¼ 0; (19)

for x � jS sin qþ 1, h0 ¼ jbMS cos q, j¼ 0,1,…, Nv-1.
Eqs. 17e19 form a complete boundary value problem for ~4. Its solution is determined by six parameters:

G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � ðk3=bMÞ2

q
; G2 ¼ K

.
Mx; G3 ¼

�
bs � uesinq

.
u0x
�
S

G4 ¼ S sin q; G5 ¼ bMS cos q; G6 ¼ bush
�
bM : (20)
For the gust - isolated airfoil response, the solution only depends on three parameters: cut-off parameterG1, frequency
parameterG2, and gust strength parameter G6. The other three parameters, G3, G4 and G5, are related to the cascade geometry.
It is noted that gust strength parameter G6 was not considered by Lloyd & Peake [22].

Once e4, or iG2e4� ve4=vx, is known, the acoustic pressure is determined from Eq. (15), or:

p
^ ¼ u0xe

�iKMxxðiG2e4� ve4=vxÞ: (21)
3. 2-D vorticity wave - cascade interaction

Based on Eq. (17), it is possible to define an equivalent frequency to account for the k3 effect. However, k3 also appears in
the source [Eq. (18)] and in the Kutta condition [Eq. (19)]. All the variables, not only the frequency, need to be accounted for in
the 2-D equivalence problem.

Both the gust and the mean flow are assumed to be two dimensional. Variables in two dimensions are denoted by overbar
‘-’. The 2-D cascade coordinates are related to the duct coordinates by

x ¼ xcosqþ ysinq; h ¼ �xsinqþ ycosq:
Define acoustic velocity potential 4:

ua ¼ V4; p ¼ �Dx4

Dt
;
Dx

Dt
¼ v

vt
þ u0x

v

vx
: (22)
Assume the Fourier components
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4ðx; h; tÞ ¼ Re
n
�4ðx; h;uÞe�iutÞ

o
; pðx; h; tÞ ¼ Re

n
�pðx; h;uÞe�iutÞ

o
: (23)
Applying the Prandtl-Glauert Transformation:

x ¼ x; h0 ¼ bMh; e4ðx; h0;uÞ ¼ �4ðx; h;uÞeiKMxx; (24)

K ¼ u
.
b
2
M ; bM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

2
q

; M ¼ u0x;

the acoustic equation in terms of e4 is: 
v2

vx2
þ v2

vh02
þ G2

1

!e4 ¼ 0: (25)

G1 is to be defined later in Eq. (28). It will be shown that the variables such as x, h0, ~4, and G1 in the 3-D BVP are the same as in
the equivalent 2-D BVP. Therefore over bar ‘-’ is omitted on these variables.

The boundary condition at the blade surfaces is:

v~4

vh0
¼ �G6e

iðG2xþG3jÞ; (26)

for jG4 � x � jG4 þ 1, h0 ¼ G5j, j¼ 0,1,…, Nv-1.
The Kutta condition at the blade trailing edges and in the wakes is:�

i� 1
G2

v

vx

�
De4 ¼ 0; (27)

for x> jG4 þ 1, h0 ¼ G5j, j¼ 0,1,…, Nv-1.
Eq. (25)e(27) form a BVP for two dimensional gusts interacting with the linear cascade. ~4 is uniquely determined by these

six parameters:

G1 ¼ K; G2 ¼ K
.
Mx; G3 ¼

�
bs � usinq

.
u0x
�
S; G4 ¼ Ssinq; G5 ¼ bMScosq;

G6 ¼ û sh
�
bM :

(28)
Acoustic pressure is computed by [ref. Eq. (21)]:

�p ¼ u0xe
�iKMxxðiG2e4� ve4=vxÞ: (29)
4. The equivalent 2-D problem

BVPs for acoustic potential e4ðx; h0;uÞ in 3-D [Eq. (17)e(19)] and in 2-D [Eq. (25)e(27)] have exactly the same form. If the six
parameters in Eq. (20) match those in Eq. (28), the two problems have the same solutions in the transformed coordinate
system (x, h0) shown in Fig. 3(a).

The cut-on condition for acoustic waves in the 3-D case is:h
b
�
1�M2

x

�
þMyue

i2
1�M2

x

þ k23
�
1�M2

x

�
<u2

e :
For cut-on modes in a subsonic flow,

k23 � u2
e

.
b2M : (30)
We can define an equivalent 2-D problem by matching the parameters in Eqs. (20) and (28):



Fig. 3. (a) The 2-D BVP and the 3-D BVP have the same geometry and solutions in the transformed coordinate system ðx;h0Þ. (b) In the physical coordinate systems
the two problems have different geometries and mean flows.
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G1 ¼ K ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � ðk3=bMÞ2

q
; ð þ if ue � 0; � if ue <0Þ;

G2 ¼ K
.
Mx ¼ K

.
Mx;

G3 ¼ bsS� uSsinq
.
u0x ¼ bsS� ueSsinq

.
u0x;

G4 ¼ Ssinq ¼ S sin q; G5 ¼ bMScosq ¼ bMS cos q; G6 ¼ bush

�
bM ¼ bush

�
bM :

(31)
From these equations we can determine the six 2-D variables. It is noted that the geometry, the mean flow and the gust are
all changed in the physical coordinate systems as shown in Fig. 3(b).

5. The 3-D gust - cascade response

5.1. Solving the 2-D equivalence problem

The three steps to calculate the oblique gust - cascade response are: (1) solve the 2-D Euler equations for acoustic pressure
�p; (2) compute iG2~4� v~4=vx from Eq. (29); and (3) calculate the 3-D response from Eq. (21).

Here LINSUB [2] is employed to solve the 2-D equations. The five inputs to LINSUB can be obtained from Eq. (31):

Mach number:M ¼ u0x ¼ G1=G2 ¼ u0x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbMk3=ueÞ2

q
;

Stagger angle: q ¼ tan�1
h
ðtan qÞbM

.
bM

i
;

Inverse solidity: S ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 qþ cos2 q

�
bM

.
bM

�2r
;

Reduced frequency: l≡u
.
u0x ¼ G2b

2
M ¼

�
bM

.
bM

�2
le; le ¼ ue

.
u0x ¼ l� k3u0z

.
u0x;

Inter� blade phase angle: s ¼ sþ Ssinq
	�

bM

.
bM

�2 � 1


le; s ¼ bsS; s ¼ bsS:

(32)
The physical explanation of these equivalent 2-D parameters is as follows. According to the transformations in Eqs. (16)
and (24), lengths in the x direction, such as chord C, remain unchanged. Lengths in the perpendicular direction (h0) are

different. For example, the height between blades in the 2-D equivalence problem is H ¼ HbM=bM , as shown in Fig. 3(b).

Therefore the 2-D equivalent stagger angle satisfies tanq ¼ bM tan q=bM . It also explains the inverse solidity since S ¼ H=cosq,

S ¼ H=cos q, S=S ¼ bM cos q=ðbM cosqÞ ¼ sin q=sinq. It is noted that responses for k3 and �k3 are equal if u0z ¼ 0. This is not
true if u0zs0.

For isolated-airfoils, M and l are the only 2-D equivalent parameters needed. They are consistent with Adamczyk's cutoff
parameter g and frequency parameter b defined in Eqs. (3) and (7) in Ref. [4]. If there is no spanwise mean flow (u0z ¼ 0), the

two parameters reduce to M ¼ Mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=M2

x � 1Þðk3=k1Þ
2

r
and l ¼ k1ð1þ k23=k

2
1Þ, consistent with Graham's M∞ and k∞

defined in Eq. (13) in Ref. [28]. For cascade responses, the five equivalent parameters reduce to those defined by Atassi and
Hamad in Eq. (26) in Ref. [21] for u0z ¼ 0. Compared with the similarity rules defined in Ref. [22], the Mach number and the
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reduced frequency we obtained are different from Eqs. (80) and (81) in Ref. [22]. The other three parameters are the same as
in Eq. (82)e(84) in Ref. [22].

5.2. The lift

From Eq. (29), the lift on the reference blade (j¼ 0) in the 2-D equivalence problem is:

�LðxÞ ¼ D�pðx; h ¼ 0;uÞ≡�p
�
x; h ¼ 0�;u

�
� �p
�
x; h ¼ 0þ;u

�
¼ u0xe

�iKMxxDðiG2e4� ve4=vxÞ:

Applying Eqs. (21) and (29), we obtain the lift on the reference blade for oblique gusts:

L
^ðxÞ ¼ Dp

^ðx; h ¼ 0; k3;uÞ ¼ u0xe
�iKMxxDðiG2e4� ve4=vxÞ

¼
�
u0x
.
u0x
�
�LðxÞei

�
1�b

2

M

.
b
2
M

�
uex=u0x

:
(33)
With the inputs from Eq. (32), LINSUB computes l*ðxÞ, the lift normalized by r0u
2
0x for gust strength û

*
sh ¼ u0x and time

factor eiut. (Superscript '*' denotes the complex conjugate.) Then the lift in the 2-D equivalence problem is,

LðxÞ ¼ r0u0xû shlðxÞ:
The lift due to the oblique gust - cascade interaction is

L
^ðxÞ ¼ r0u0xbush

�
bM

.
bM

�
lðxÞei

�
1�b

2

M

.
b
2
M

�
uex=u0x

: (34)
This result is different from Eq. (85) in Ref. [22] in which the factor bM=bM is missing. This factor results from the gust
strength equivalence parameter introduced in Eqs. (20), (28) and (31). For isolated-airfoils with no spanwise mean flow,

bM

.
bM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk3=k1Þ2

q
; L
^ðxÞ ¼ r0u0xbushlðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk3=k1Þ2

q
e�ik23x=k1 ;

which is consistent with Graham's similarity rule Eq. (14) in Ref. [28]. For cascades, Eq. (34) reduces to Eq. (27) in Ref. [21] if
u0z ¼ 0.

5.3. Acoustic waves

The output of the rth acoustic wave from LINSUB, R
*
r , is the sound pressure normalized byr0u

2
0x at the leading edge xLE for

gust amplitude û
*
sh ¼ u0x. Therefore, the acoustic pressure in time domain for gust û

*
sh is

Re
h
R
*
rr0u0xû

*
she

i½a±
r ðx�xLEÞþbryþut � i; (35)
where

u ¼ u0x
�
bM

.
bM

�2
ue

.
u0x; br ¼ bs � 2pr

.
S

a±r ¼
"
u0x
�
� uþ bru0y

�
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� bru0y

�2 � b
2
r

�
1� u20x

�r #,�
1� u20x

�
:

For time factor e�iut, the 2-D equivalent sound pressure is

�pr ¼ Rrr0u0x
bbushei

��
a±
r cosqþbr sinq


x�
�
a±
r sinq�br cosq


h0
�
bM

�
:

Substituting this into Eqs. (29) and (21), we obtain the rth acoustic pressure for oblique gusts:
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p
^±
r ¼ u0xe

�iðKMx�KMxÞx�p±r
.
u0x

¼ Rrr0u0xbush

�
bM

.
bM

�
e
i
�
1�b

2

M

.
b
2
M

�
uex=u0xei

��
a
±
r cosqþbr sinq


x�
�
a
±
r sinq�br cosq


hbM

�
bM

� (36)
It can be recast in the duct coordinate system as:

p
^±
r ¼ Rrr0u0xbush

�
bM

.
bM

�
eiða±

r xþbryÞ; (37)

where

br ¼ br sin q=sinqþ
�
1� b

2
M

.
b2M

�
ue sin q

.
u0x ¼ bs � 2pr=S;

a±r ¼ a±r cosq
.
cos qþ br sin q cosq

�
bM

.
bM � bM

.
bM

�
þ
�
1� b

2
M

.
b2M

�
ks1 cos q

¼
n
u0x
�� uþ bru0y þ k3u0z


±
h�
u� bru0y � k3u0z

2 � �b2r þ k23
��

1� u20x
�i1=2o.�

1� u20x
�
:

(38)

br and a±r are consistent with the 3-D acoustic dispersion relation. The proof of Eq. (38) is given in the Appendix.
The 2-D equivalent responses (lift and acoustic waves) for inter-blade phase angles sþ 2pn are the same for any integer n.

According to Eq. (32), 3-D responses for sþ 2pn are also the same for any n.

6. Validation

The 2-D equivalencemethod is first validated on an isolated airfoil configuration. Themean flow and the oblique gust as in
Fig. 2 are:

u0x ¼ U0 cos j;u0z ¼ U0 sin j;
k1 ¼ Ks cosas; k3 ¼ Ks sinas; k2 ¼ ðs=S� k1 sin qÞ=cos q;
u ¼ k1u0x þ k3u0z ¼ KsU0 cosðj� asÞ:

(39)

j and as are respectively the angles of themean flowand the gust to the x-axis. Only two equivalent parameters in Eq. (32) are

required: Mach numberM and reduced frequency l. Amiet's high frequency approximation [5] is applied to calculate the 2-D

equivalent lift lðxÞ, which is substituted into Eq. (34) to obtain the 3-D lift L
^ðxÞ. L^ðxÞ is compared in Fig. 4 with the analytical

approximation [4]. The two results are identical.
The 2-D equivalencemethod combinedwith LINSUB is validated on a cascade configuration defined in Ref. [8], Table 3. The

gust oblique angle is 26.60. The predicted unsteady lift is compared in Fig. 5 with the analytical solution from Ref. [8]. Both the
real and the imaginary parts match well.
Fig. 4. Normalized lift L
^ðxÞ=ðr0U0bushÞ from oblique gust - isolated airfoil interaction at high frequency: (a) magnitude, (b) phase in degree. M¼ 0.41, Ks¼ 11.56,

j ¼ 300, as ¼ 200; 2-D equivalent parameters: M ¼ 0:1, l ¼ 12:3. Solid line: 2-D equivalence þ Amiet's 2-D gust high frequency approximation [5], symbols:
Adamczyk's 3-D gust high frequency approximation [4].



Fig. 5. Unsteady lift L
^ðxÞ normalized by r0U0w0 (w0: incident upwash amplitude at mid-chord). The cascade geometry and the gust parameters defined in Table 3

of [8] are used: S¼ 1, q ¼ 300, M¼ 0.5, j ¼ 00 (no sweep), k1 ¼ 20, k2 ¼ 4, k3 ¼ 10. 2-D equivalent parameters: S¼ 0.92, q¼ 32.80, M ¼ 0.25, l¼ 25, s¼15.96.
Solid line: real part of normalized L

^ðxÞ from 2-D equivalence þ LINSUB, dashed line: imaginary part; symbols: analytical solution from Fig. 5(b) in Ref. [8].

H. Ju, R. Mani / Journal of Sound and Vibration 436 (2018) 95e111106
7. Effects of the gust oblique angle and the cascade on lift distribution

7.1. Effects of the gust oblique angle

According to Eqs. (32) and (39),

l ¼ Ks=cosas; bM
.
bM ¼ 1=cosas: (40)
If Ks is held constant, 2-D equivalent reduced frequency l increases with gust angle as; therefore 2-D lift lðxÞ in Eq. (34)
reduces. However, the far-field acoustic wave may still be stronger due to smaller chord-wise phase gradient and less

acoustic source cancellation. bM=bM in Eq. (34) increases to maximum 1=bM for cut-on modes [ref. Eq. (30)]. With the

combination of these effects, it is difficult to tell how the 3-D lift L
^ðxÞ and the acoustic wave strength vary with the gust angle.

Fig. 6 compares lift L
^ðxÞ from guste isolated airfoil interactions at a high frequency for two gust angles. As as increases, the

lift magnitude varies very little near the leading edges and the trailing edges. It increases in the mid-chord region between
40% and 70% of the chord. The phase gradient decreases. A similar trend is shown in Fig. 7(a) for the gust - cascade interaction
with s¼ 0, except that the phase difference is more substantial. At low frequencies, the effect of the gust angle is smaller, as
shown in Fig. 8. The lift is more leading-edge dominant at low frequencies compared to high frequencies. The phase gradient
is almost zero in the high lift region from the leading edge to the mid-chord.
Fig. 6. Lift L
^ðxÞ from gust - airfoil interaction at a high frequency using Adamczyk's high frequency approximation [4]: (a) magnitude, (b) phase in degree.

M¼ 0.41, Ks¼ 11.56, j ¼ 00. Solid line: as ¼ 00 (2-D equivalent parameters: M ¼ 0.41, l¼11.56), symbols: as ¼ 200 (2-D equivalent parameters: M ¼ 0.24,
l¼ 12.3).



Fig. 8. Lift L
^ðxÞ from gust - cascade interaction at a low frequency using 2-D equivalence þ LINSUB: (a) magnitude, (b) phase in degree. Solidity: 1.7, q¼ 10.290,

s¼ 0, M¼ 0.41, Ks¼ 0.0072, j ¼ 300. Solid line: as ¼ 00 (2-D equivalent parameters: S¼ 0.59, q¼10.290, M¼ 0.36, l¼ 0.0072, s¼ 0), symbols: as ¼ 200 (2-D
equivalent parameters: S¼ 0.55, q¼10.930, M¼ 0.1, l¼ 0.0077, s¼ 0.0000942).

Fig. 7. Lift L
^ðxÞ from gust - cascade interaction at a high frequency using 2-D equivalence þ LINSUB: (a) magnitude, (b) phase in degree. Solidity: 1.7, q¼ 10.290,

s¼ 0, M¼ 0.41, Ks¼ 11.56, j ¼ 300. Solid line: as ¼ 00 (2-D equivalent parameters: S¼ 0.59, q¼10.290, M ¼ 0.36, l¼11.56, s¼ 0), symbols: as ¼ 200 (2-D
equivalent parameters: S¼ 0.55, q¼10.930, M¼ 0.1, l¼12.3, s¼ 0.15).
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Study shows that the effect of the oblique angle on the magnitude of the 2-D equivalent lift lðxÞ is small. Its impact on the
phase gradient is larger especially at high frequencies. However, in the high lift region, the phase gradient varies little with the
gust angle. Therefore, it is reasonable to use the 2-D gust response lðxÞ for all k3 in Eq. (34). Themajor effects of an oblique gust

are the spanwise phase variation as in eik3z and the magnitude factor bM=bM in Eqs. (34) and (36).
Similar conclusions can be made if the frequency is kept constant as as varies.
7.2. 2 Effects of the cascade

Cascade effects are studied by comparing gust - cascade responses with gust - airfoil responses. Two major controlling
parameters are IBPA and solidity. For a low-solidity cascade, Fig. 9 shows the effect of IBPA on both the magnitude and the
phase of the lift. The leading edge dominance of the lift is no longer applicable for s¼�1.98. The lift has a node and the phase
changes the sign at 13% of the chord.

The effect of solidity is studied for different frequencies with s¼ 0. At high frequencies, as the solidity increases, both the
magnitude and the phase are affected, as shown in Fig. 10. At a very high frequency shown in Fig. 11, the lift is no longer
leading-edge dominant. The effect of the solidity on the lift magnitude is significant even at low frequencies, as shown in
Fig. 12.
7.3. Vane count limit for small cascade effects

Cascade effects are important in the full frequency range if the cascade solidity or the vane count is large. They are
accounted for in the 2-D equivalence method combined with the LINSUB. However, this method requires intensive



Fig. 9. Lift L
^ðxÞ from gust - low-solidity cascade interaction at a high frequency: (a) magnitude, (b) phase in degree. Solidity: 0.0951, q¼ 10.290, M¼ 0.41,

Ks¼ 11.56, j ¼ 300, as ¼ 200. 2-D equivalent parameters: S¼ 9.9, q¼10.930, M¼ 0.1, l¼12.3. Symbols: single-airfoil approximation [4], dashed line: 2-D
equivalence þ LINSUB, s¼ 3.32, s¼ 2.7; solid line: s¼�1.98, s¼ 0.72.

Fig. 10. Lift L
^ðxÞ from gust - cascade interaction at a high frequency: (a) magnitude, (b) phase in degree. Vane count: 54, solidity: 1.7, q¼ 10.290, s¼ 0, M¼ 0.41,

Ks¼ 11.56, j ¼ 00, as ¼ 00. 2-D equivalent parameters are the same as 3-D parameters. Solid line: 2-D equivalence þ LINSUB, symbols: Adamczyk's high fre-
quency approximation.
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computation resources for high frequencies. When predicting broadband noise generated by fan wakes - OGV interactions in
turbo-jet engines, analytical models such as Amiet's isolated-airfoil approximation are preferred. It is critical to identify the
vane count limit (VCL), below which these analytical models are valid.

In an annular duct, sound power for the mth spinning mode and the nth radial mode is proportional to the chord-wise
integrated lift at radius R [23]:

bh±
mnðk1; k2; k3Þ ¼

�
a±mn sin q�m

R
cos q

� Z
chord

e�ixða±
mn cos qþm sin q=RÞ L^ðx; k1; k2; k3Þdx:
We study

bh±
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n

jbh±
mnj2

s
; (41)

where the summation is carried out over all the cut-on modes in the duct. To evaluate VCL for realistic situations, we use the
mean flow and the geometry from the NASA Source Diagnostic Test (SDT) at the approach condition [24]. Fig. 13 depicts a

typical cascade response bhþ
s for sound waves in the downstream duct. It is compared with the response from the same gust

interacting with isolated airfoils. It is noted that even at very low vane count, the cascade response is not the same as the
isolated-airfoil response due to the IBPA effect discussed previously. However, the cascade effect is considered small if the
difference of the two responses is less than 5%. For the case in Fig. 13, the cascade effect is small when the vane count is less
than 20, i.e., VCL¼ 20.



Fig. 12. Lift L
^ðxÞ from gust - cascade interaction at low frequency: (a) magnitude, (b) phase in degree. Vane count: 54, solidity: 0.6, q¼ 10.290, M¼ 0.5, s¼ 0,

Ks¼ 0.0072, j ¼ 00, as ¼ 00. 2-D equivalent parameters are the same as 3-D parameters. Solid line: 2-D equivalence þ LINSUB, symbols: Adamczyk's low
frequency approximation (Eq. (13) in Ref. [4]).

Fig. 11. Lift L
^ðxÞ from gust - cascade interaction at a very high frequency: (a) magnitude, (b) phase in degree. Vane count: 30, solidity: 0.95, q¼ 10.290, s¼ 0,

M¼ 0.41, Ks¼ 104, j ¼ 00, as ¼ 00. 2-D equivalent parameters are the same as 3-D parameters. Solid line: 2-D equivalence þ LINSUB, symbols: Adamczyk's high
frequency approximation.

Fig. 13. Chord-wise integrated lift bhþ
s from gust e cascade interactions (solid line) and gust e isolated-airfoil interactions (dashed line). ±5% over the single-airfoil

response are indicated by dotted lines.
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A six-sigma statistics analysis was performed to find the key control parameters (KCP) for VCL. Four parameters were
examined: sweep angle j in radians, Mach number M, reduced frequency l, and spanwise wavenumber k3L. A matrix of 16
groups of parameters were chosen with M¼ 0.4 and 0.65, l¼2.24 and 20.1, k3L¼ 0 and 0.12, j¼ 0 and 0.5236. The average
VCL is found to be 14 with standard deviation of 3.3. A regression analysis was performed to obtain the transfer function from
KCPs to VCL:
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VCLz7:06þ 17:7M � 68:7k3Lþ 6:88j� 0:228l: (42)
Mach number is found to be the vital parameter among all the KCPs. VCL is higher at higherMach number. Frequency is the
least important. A general belief is that at high frequency, acoustic wavelength is small compared with the spacing between
the airfoils; therefore the acoustic interaction is small. This study reveals the opposite trend, even though the frequency effect
is small. The vane count of the baseline OGV in the SDT is 54, much larger than 14. Therefore, isolated-airfoil approximations
are not applicable for SDT configurations.

8. Conclusions

The boundary value problem defined in terms of the acoustic velocity potential in the Prandtl-Glauert coordinate system
has the same format for 2-D gusts and 3-D gusts. A 2-D equivalence method was developed accordingly to calculate the
response from an oblique gust interacting with a linear cascade. Classic similarity rules for isolated airfoils and cascades were
extended to account for spanwise mean flows. The formulas for the lift on the cascade and the acoustic pressure in the far-
field were derived. In this method, only the inputs to a 2-D method need to be modified. It provides a convenient way to
introduce oblique gusts and sweep into any 2-D models, such as the LINSUB [2] or the modified LINSUB [15]. Accuracy and
effectiveness of this method combined with LINSUB were demonstrated.

The method was used to investigate the effect of gust angles. Two major effects are the spanwise phase variation and the

lift magnitude factor bM=bM (ref. Eq. (34)). The 2-D equivalent lift doesn't vary much with the gust angle and can be
approximated using a 2-D model.

Cascade effects due to IBPA and solidity were studied. Overall, a cascade has a stronger effect on lift phase than on its
magnitude. IBPA effect is important even for very low solidity. As cascade solidity increases, lift becomes less leading-edge
dominant. A statistical analysis was carried out to evaluate the vane count limit for small cascade effects. The transfer
function from KCPs to VCL was established. It was found that Mach number is the vital parameter. The sweep angle and the
span-wise wavenumber are less important. Frequency is least important among all KCPs.

This methodwas employed in the investigation of fanwakeseOGV interaction broadband noise andwas validated against
the NASA SDT data in Ref. [23].
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Appendix. Proof of Eq. (38)

Substituting the coordinate transformation Eq. (8) into Eq. (35), we obtain Eq. (36) for the acoustic wave in the duct
coordinate system with

br ¼ br sin q=sinqþ
�
1� b

2
M

.
b2M

�
ue sin q

.
u0x; (A1)

± ±
. � . . � � 2 . 2

�

ar ¼ ar cosq cos qþ br sin q cosq bM bM � bM bM þ 1� bM bM ks1 cos q: (A2)
From Eqs. (35) and (32),

br ¼ bs � 2pr
.
S ¼

�
bs þ sinq

	�
bM

.
bM

�2 � 1


le � 2pr=S

��	
sin2 qþ cos2 q

�
bM

.
bM

�2
1=2
:

Substituting it into Eq. (A1), one has

br ¼ bs � 2pr=S:
From Eqs. (A1), (35), and (32),

https://doi.org/10.1016/j.jsv.2018.08.013
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a±r ¼
u0x
�� uþ bru0y þ k3u0z


cos2qb

2
M

.�
b2M cos q

�
±cosq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� bru0y

�2 � b
2
r

�
1� u20x

�r
cos q

�
1� u20x

� :

Since
 �
u� bru0y

�2 � b
2
r

�
1� u20x

�
¼
�
bM

.
bM

�4�
cos2q

.
cos2 q

�	�
u0xks1 � bru0y

�2 � �b2r þ k23
��

1� u20x
�

þk2s1u
2
0x

�
cos2 q� cos2q� u20x cos

2 q sin2qþ u20x sin
2 q cos2q

�.�
b2M cos2q

�i
¼
�
bM

.
bM

�4�
cos2q

.
cos2 q

�	�
u0xks1 � bru0y

�2 � �b2r þ k23
��

1� u20x
�


;

then
a±r ¼
cos2qb

2
M

.�
b2M cos q

�
cos q

�
1� u20x

� "
u0x
�� uþ bru0y þ k3u0z


±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u0xks1 � bru0y

�2 � �b2r þ k23
��

1� u20x
�r #

¼
u0x
�� uþ bru0y þ k3u0z


±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u� bru0y � k3u0z

2 � �b2r þ k23
��

1� u20x
�r

1� u20x
:

References

[1] B.L. Morin, Broadband Fan Noise Prediction System for Turbofan Engines, vol. 1, Setup_BFaNS User’s Manual and Developer’s Guide, November 2010.
NASA/CR-2010-216898.

[2] S.N. Smith, Discrete Frequency Sound Generation in Axial Flow Turbomachines, 1973. ARC R. & M. No. 3709.
[3] J.J. Adamczyk, R.S. Brand, Scattering of sound by an aerofoil of finite span in a compressible stream, J. Sound Vib. 25 (1972) 139e156.
[4] J.J. Adamczyk, Passage of a swept airfoil through an oblique gust, J. Aircraft 11 (5) (1974).
[5] R.K. Amiet, High frequency thin-airfoil theory for subsonic flow, AIAA J. 14 (8) (1976) 1076e1082.
[6] M. Roger, C. Schramb, S. Moreau, On vortexeairfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics, J. Sound

Vib. 333 (2014) 283e306.
[7] S.A.L. Glegg, The response of a swept blade row to a three-dimensional gust, J. Sound Vib. 227 (1) (1999) 29e64.
[8] H. Posson, M. Roger, S. Moreau, On a uniformly valid analytical rectilinear cascade response function, J. Fluid Mech. 663 (2010) 22e52.
[9] E. Envia, in: A High Frequency Model of Cascade Noise, AIAA Paper 1998-2318, 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France, June 1998.

[10] M. Namba, Three-dimensional analysis of blade force and sound generation for an annular cascade in distorted flows, J. Sound Vib. 50 (4) (1977)
479e508.

[11] C.S. Ventres, M.A. Theobald, W.D. Mark, Turbofan Noise Generation, vol. 1, 1982. Analysis, NASA CR-167952.
[12] D.B. Hanson, Theory for Broadband Noise of Rotor and Stator Cascades with Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep,

NASA CR-2001-210762.
[13] M. Nallasamy, E. Envia, Computation of rotor wake turbulence noise, J. Sound Vib. 282 (2005) 649e678.
[14] C. Cheong, P. Joseph, S. Lee, High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction, J. Acoust. Soc. Am. 119

(1) (2006).
[15] R.A. Reba, B.L. Morin, The gust response of an acoustically treated flat-plate cascade, in: AIAA paper 2008-2898, 14th AIAA/CEAS Aeroacoustics

Conference, Vancouver, Canada, May 2008.
[16] S.M. Grace, A. Wixom, J. Winkler, D.L. Sondak, M.M. Logue, Fan broadband interaction noise modeling, in: AIAA paper 2012-2269, 18th AIAA/CEAS

Aeroacoustics Conference, Colorado Springs, June 2012.
[17] M.E. Goldstein, Aeroacoustics, NASA SP-346, 1976.
[18] L.T. Filotas, Theory of Airfoil Response in a Gusty Atmosphere, Part I - Aerodynamic Transfer Function. UTIAS-139, Toronto University, 1969.
[19] B.D. Mugridge, Gust loading on a thin, Airfoil. Aeron. Quart. 22 (3) (Aug. 1971) 301e310.
[20] R. Martinez, S.E. Widnall, Unified aerodynamic-acoustic theory for a thin rectangular wing encountering a gust, AIAA J. 18 (1980) 636e645.
[21] H. Atassi, G. Hamad, Sound generated in a cascade by the three-dimensional disturbances convected in subsonic flow, in: AIAA Paper 1981-2046, 7th

AIAA Aeroacoustics Conference, Palo Alto, California, 1981.
[22] A.E.D. Lloyd, N. Peake, Rotor-stator broadband noise prediction, in: AIAA paper 2008-2840, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA

Aeroacoustics Conference), Vancouver, Canada, May 2008.
[23] H. Ju, R. Mani, M. Vysohlid, A. Sharma, Investigation of fan wake - OGV interaction broadband noise, AIAA J. 53 (12) (2015) 3534e3550.
[24] C.E. Hughes, Aerodynamic performance of scale-model turbofan outlet guide vanes designed for low noise, in: AIAA paper 2002-0374, 40th AIAA

Aerospace Sciences Meeting & Exhibit, Reno,NV,U.S.A, Jan, 2002.
[25] S.M. Grace, Fan broadband interaction noise modeling using a low-order method, J. Sound Vib. 346 (1) (2015) 402e423.
[26] H. Posson, S. Moreau, Effect of rotor shielding on fan-outlet guide vanes broadband noise prediction, AIAA J. 51 (7) (2013) 1576e1592.
[27] J.R. Gill, X. Zhang, P. Joseph, T. Node-Langlois, Reduced dimension modeling of leading edge turbulent interaction noise, in: AIAA paper 2014-2321,

20th AIAA/CEAS Aeroacoustics Conference, Atlanta, June 2014.
[28] J.M.R. Graham, Similarity rules for thin aerofoils in non-stationary subsonic flows, J. Fluid Mech. 43 (4) (1970) 753e766.

http://refhub.elsevier.com/S0022-460X(18)30512-1/sref1
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref1
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref2
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref2
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref3
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref3
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref4
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref5
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref5
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref6
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref6
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref6
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref6
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref7
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref7
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref8
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref8
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref9
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref10
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref10
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref10
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref11
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref13
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref13
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref14
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref14
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref15
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref15
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref16
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref16
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref17
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref18
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref19
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref19
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref20
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref20
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref21
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref21
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref22
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref22
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref23
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref23
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref24
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref24
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref24
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref25
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref25
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref26
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref26
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref27
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref27
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref28
http://refhub.elsevier.com/S0022-460X(18)30512-1/sref28

	A semi-analytical method for oblique gust - cascade interaction
	1. Introduction
	2. 3-D vorticity wave - cascade interaction
	2.1. The linear Euler equations
	2.2. Vorticity waves as the source of gust - cascade interaction
	2.3. The boundary value problem defined in acoustic velocity potential

	3. 2-D vorticity wave - cascade interaction
	4. The equivalent 2-D problem
	5. The 3-D gust - cascade response
	5.1. Solving the 2-D equivalence problem
	5.2. The lift
	5.3. Acoustic waves

	6. Validation
	7. Effects of the gust oblique angle and the cascade on lift distribution
	7.1. Effects of the gust oblique angle
	7.2. 2 Effects of the cascade
	7.3. Vane count limit for small cascade effects

	8. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	Appendix. Proof of Eq. 
	References


