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One-Step Aeroacoustics Simulation
Using Lattice Boltzmann Method

X. M. Li,∗ R. C. K. Leung,† and R. M. C. So‡

Hong Kong Polytechnic University, Hong Kong, People’s Republic of China

The lattice Boltzmann method (LBM) is a numerical simplification of the Boltzmann equation of the kinetic theory
of gases that describes fluid motions by tracking the evolution of the particle velocity distribution function based
on linear streaming with nonlinear collision. If the Bhatnagar–Gross–Krook (BGK) collision model is invoked, the
velocity distribution function in this mesoscopic description of nonlinear fluid motions is essentially linear. This
intrinsic feature of LBM can be exploited for convenient parallel programming, which makes itself particularly
attractive for one-step aeroacoustics simulations. It is shown that the compressible Navier–Stokes equations and
the ideal gas equation of state can be correctly recovered by considering the translational and rotational degrees of
freedom of diatomic gases in the internal energy and using a multiscale Chapman–Enskog expansion. Assuming
two relaxation times in the BGK model allows the temperature dependence of the first coefficient of viscosity of
diatomic gases to be replicated. The modified LBM model is solved using a two-dimensional 9-discretized and a two-
dimensional 13-discretized velocity lattices. Three cases are selected to validate the one-step LBM aeroacoustics
simulation. They are the one-dimensional acoustic pulse propagation, the circular acoustic pulse propagation,
and the propagation of acoustic, vorticity, and entropy pulses in a uniform stream. The accuracy of the LBM
is established by comparing with direct numerical simulation (DNS) results obtained by solving the governing
equations using a finite difference scheme. The tests show that the proposed LBM and the DNS give identical
results, thus suggesting that the LBM can be used to simulate aeroacoustics problems correctly.

Nomenclature
cp, cv = specific heats at constant pressure

and constant volume
c0 = speed of sound
D = spatial dimension
DT , DR = translational and rotational degrees of freedom

of particle motion
e = internal energy
Fex = external body force
f = particle velocity distribution function
f eq = Maxwellian–Boltzmann equilibrium

distribution function
f neq = nonequilibrium particle distribution function
h = enthalpy
J = approximation for Q
kB = Boltzmann constant
l = length
M = Mach number
Mn = molecular mass
n = particle number density
Pr = Prandtl number
p = thermodynamic pressure
Q = collision operator
R = gas constant
Re = Reynolds number
rm = particle separation
S0 = Sutherland constant
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T = temperature
Tref = Sutherland law reference temperature
t = time
u = velocity vector
u, v = velocity components along x and y directions
γ = specific heat ratio, cp/cv

δαβ = Kronecker delta
ε = Knudsen number
κ = thermal conductivity
κ ′ = thermal diffusivity
λ = second coefficient of viscosity
µ = first coefficient of viscosity
ν = index of repulsion
ξ = velocity vector of fluid particle
ρ = density
σm = effective particle diameter
σ(�) = collision cross section
τ, τ1, τ2, τeff = relaxation times
ταβ = viscous stress tensor
� = dissipation rate
ψ = collision invariants
� = spatial angle
ω = collision frequency
‖ = modulus

Subscripts

i = indices of discrete lattice
α, β = indices
0 = reference variables
∞ = mean flow quantities

Superscripts

¯ = average values

ˆ = peak values

I. Introduction

N OISE reduction is an important part of engineering design in
the transportation industries. Airplane, automobiles, and trains
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all produce noise that disturbs passengers, operators, and the sur-
rounding communities. Examples of current interest include air-
frame noise, cavity acoustics, jet screech, sonic boom, cabin noise,
and noise generated by blade/vortex interactions. In particular, the
need to meet more stringent community noise-level standards has
resulted in recent attention given to the relatively new field of time-
domain computational aeroacoustics (CAA), which focuses on the
accurate prediction of aerodynamic sound generated by airframe
components and propulsion systems, as well as on its propagation
and far-field characteristics. Both aspects of the problem, that is,
sound generation and propagation, are extremely demanding from
a time-domain computation standpoint due to the large number of
grid points and small time steps that are typically required. There-
fore, if realistic aeroacoustics simulations are to become more fea-
sible, higher-order accurate and optimized numerical schemes have
to be sought to reduce the number of grid points required per wave-
length while still ensuring tolerable levels of numerically induced
dissipation and dispersion.

There are two major categories of CAA simulation methodol-
ogy, namely, hybrid methods and one-step or direct simulations.1,2

In hybrid methods, unsteady computational fluid dynamics simu-
lations, such as direct numerical simulation (DNS) or large eddy
simulation, are used to replicate the space–time properties of the
noise-generating flow. The solutions are then treated as equivalent
noise sources with distributed strength and used as inputs for a sec-
ond calculation of the noise propagation to the far field. The noise
calculation is usually achieved by exploiting Lighthill’s acoustic
analogy,3 or its derivative (see Ref. 4), by solving the linearized
Euler equation (see Ref. 5), or by acoustic/viscous decomposition
techniques.6,7 Usually two different meshes are required due to the
different length scales of the flow and sound fields. Consequently,
hybrid methods are not able to handle any interaction of the flow
with the noise it generates and are, therefore, only good for noise-
generation prediction. One-step simulations attempt to resolve both
the unsteady flow and the sound in just one calculation. The com-
putational mesh required is not only able to cover the source and
observer regions, but also capable of resolving the different length
scales of the two regions. The calculated flow and sound fields are
required to leave the computational domain smoothly, and there is no
nonphysical disturbances created by the domain boundaries.8 This
is commonly achieved by laying artificial absorbing buffer regions
around the entire domain to eliminate the outgoing waves before
they touch the boundaries. High computational cost is required to
satisfy all of these requirements for accurate one-step simulations.
Even then, one-step simulations are still preferred because they can
provide the details of sound generating mechanisms, as well as flow–
sound interactions in complex flows.

Recent reviews of computational aeroacoustics have been given
by Tam1 and Wells and Renaut,9 who discuss various numerical
schemes that are currently used in CAA. These include, among oth-
ers, the dispersion-relation-preserving scheme of Tam and Webb,10

the family of higher-order compact differencing schemes of Lele,11

the method for minimization of group velocity errors due to
Holberg,12 and the essentially nonoscillatory scheme.13 The first
three schemes are all centered nondissipative schemes, a property
that is desirable for linear wave propagation. However, the inherent
lack of numerical dissipation may result in spurious numerical oscil-
lations and instability in practical applications involving general ge-
ometries, approximate boundary conditions, or nonlinear features.
In the dispersion-relation-preserving approach, for instance, artifi-
cial selective damping has to be employed under these conditions.1

Although quite robust, standard upwind and upwind-biased formu-
lations may be undesirable for situations involving linear wave prop-
agation due to their excessive dissipation. To overcome this diffi-
culty, higher-order upwind or essentially nonoscillatory approaches
were proposed.14 These spatial semidiscretizations are typically
combined with high-order explicit time-integration methods such
as the multistage Runge–Kutta procedure (see Ref. 15). In addition
to the spatial and temporal discretizations, another critical aspect
in CAA simulations is the accurate treatment of the physical and
computational boundary conditions. Recent reviews of radiation,

outflow, and wall boundary treatments are provided by Colonius8

and Tam.16 In most of these formulations, a continuum model is
used to derive the governing equations from the Navier–Stokes and
energy equations.

The Boltzmann equation (BE) describes the evolution of the par-
ticle velocity distribution function based on the free streaming and
collisions of particles.17,18 The macroscopic quantities of the fluid,
such as density, momentum, internal energy, and energy flux, are
defined via moments of the distribution function. These relations
constitute the kinetic equations. There are three major differences
between the Navier–Stokes equations and the BE. First, the BE is
applicable even if the medium could not be considered as contin-
uous, such as in simulating rarefied gas flows or multiphase and
multicomponent flows. Second, the BE provides clear physical def-
initions for the equation of state of the fluid, the viscous stress, and
the heat conduction from the molecular transport viewpoint. For
the Navier–Stokes equations, these considerations could not be de-
rived directly from the continuum model. In general, the perfect gas
equation of state, the Stokes viscous hypothesis, and the Fourier
heat conduction relation have to be introduced to solve the equa-
tions. Third, there is a large timescale disparity between these two
kinds of equations. In most fluids of practical interest, the velocity
distribution function has a timescale equal to that of the collision in-
terval time of the particles, which is of the order of 10−8 ∼ 10−9 s for
most practical ranges of pressure and temperature.19 On the other
hand, the macroscopic quantities in the Navier–Stokes equations,
such as density, velocity, pressure, and temperature, are affected
by the long timescale of the velocity distribution function, which
is of the order of about 10−4 s. Consequently, the BE has a much
smaller timescale than the Navier–Stokes equations. However, the
BE is relatively simple compared to the Navier–Stokes equations.
Therefore, the numerical code could exploit the intrinsic features of
parallelism. This makes it especially useful to model problems with
complicated boundary conditions and with multiphase interfaces.

The lattice Boltzmann method (LBM) is derived from the lattice
gas automata.18 As a simplified version of the BE, the LBM is dis-
crete in phase (or velocity) space. It was proposed as an alternative to
the conventional computational fluid dynamics techniques20,21 more
than a decade ago. A variety of LBM models have been proposed for
different hydrodynamic systems, such as single component hydro-
dynamics, multiphase and multicomponent flows, particle suspen-
sions in fluid, reaction-diffusion systems, and flow through porous
media.22 In kinetic theory of gases, the evolution of a fluid is de-
scribed by the solutions to the continuous BE. Development of LBM
for single-phase compressible flow, such as air, has received partic-
ular attention because its solution recovers the macroscopic Navier–
Stokes equations in the asymptotic limit of Knudsen number (see
Refs. 23–26). When a fully discrete particle velocity model was
used, where space and time were discretized on a square lattice,
internal energy of the particles was fixed. Therefore, the LBM was
only used to simulate isothermal flows and low Mach number flows
in the incompressible limit.27,28

There have been attempts to incorporate the effects of tempera-
ture variations in the LBM to simulate compressible flows and wave
propagation. Sun29 introduced a potential energy term into the ex-
pression of particle energy in the LBM on hexagonal lattice for shock
wave simulations. The potential energy term was not dependent on
temperature but arbitrarily prescribed to recover the correct local
specific heat ratio of all fluid particles. Thus modified, the LBM
has serious limitations. The numerical results compared rather fa-
vorably with analytical solutions. This was accomplished by setting
the relaxation time to unity. However, under this assumption, the
first coefficient of viscosity would vary linearly with temperature
and Sutherland law could not be recovered correctly. Palmer and
Rector30 attempted to incorporate the temperature effect by sepa-
rately modeling the internal energy as a scalar field using a second
distribution in addition to the isothermal LBM calculation. The en-
ergy is then properly accounted for in the evaluation of the density
and the momentum of the fluid particles. Good agreement was ob-
tained in several thermal convection test cases but the applicability
of their model to aeroacoustics simulations is questionable because
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the equation of state is not explicitly recovered. Tsutahara et al.31

and Kang et al.32 attempted to include the particle rotational energy
into a modified LBM by solving an additional distribution function
that is the product of velocity distribution and a rotational energy
term. This model assumed monoatomic gas particles and gave rise to
a constant specific heat ratio of 1.67. They calculated shock reflec-
tion and Aeolian tone generated by a circular cylinder and obtained
qualitative agreement with DNS results. However, this was at the
expense of having to specify 21 discrete velocities on a hexagonal
lattice.

This paper focuses on the development of a one-step aeroacous-
tics simulation scheme using the LBM for two-dimensional flows. If
the aeroacoustics calculations were to be correct, the ideal gas equa-
tion of state and the temperature dependence of the first coefficient
of viscosity of the gas have to be recovered properly. Therefore,
it is important to show that the LBM could satisfy these require-
ments. Furthermore, the credibility of the one-step LBM simulation
of aeroacoustics has to be established, either by comparing the cal-
culations with theoretical solutions or with DNS results.

In the next section is given a brief description of the set of un-
steady compressible Navier–Stokes equations and their solution us-
ing a DNS technique where the governing equations are solved using
higher-order schemes for spatial differencing and for time marching.
This is followed by a discussion of the continuous Boltzmann equa-
tion and the kinetic energy equations for different particle velocity
orders. It is shown that the set of unsteady compressible Navier–
Stokes equations for real diatomic gas could be fully recovered with
the specific heat ratio given by γ = 1.4 after the Chapman–Enskog
expansion has been assumed for the expansion of the distribution
function in the BE and the internal energy expression has been
properly modified. In Sec. IV, the recovery of the correct temper-
ature dependence of the first coefficient of viscosity as described
by the Sutherland law is achieved provided the relaxation time for
the collision model has been suitably adjusted to include the ef-
fect of the weak repulsive potential. Two velocity lattice models,
a two-dimensional 9-discrete-velocity lattice (D2Q9) and a two-
dimensional 13-discrete-velocity lattice (D2Q13), are introduced
together with a higher-order finite difference scheme in Sec. V. Val-
idations of the LBM against some basic acoustic pulses where ana-
lytical solutions are available are given in Sec. VI. In addition, the
LBM solutions are also compared with one-step DNS solutions of a
number of aeroacoustics problems. All comparisons show that the
proposed LBM could be used to carry out one-step aeroacoustics
simulations with equal accuracy as the DNS.

II. One-Step DNS Aeroacoustics Simulation
A one-step aeroacoustics simulation means that the sound field

generated from unsteady flows and its propagation are calculated
without having to carry out the calculations of aerodynamics and
acoustics fields separately. Because the flow and acoustics fields are
calculated simultaneously in a single computation, further inves-
tigations of the aerodynamic sound-generation mechanisms could
be easily carried out. In aeroacoustics analysis, the fluid is usually
modeled as a continuum and its unsteady dynamics is essentially
determined by the fundamental principles of the conservation of
mass, momentum, and energy at each fluid point in the continuum.
The acoustic fluctuations are considered as weak pressure or den-
sity fluctuations that propagate to the stationary regions of the same
continuum where the effects of flow unsteadiness have completely
decayed. The governing equations for the fluid flow are the un-
steady compressible Navier–Stokes and energy equations; they are
given as

∂ρ

∂t
+ ∂(ρuα)

∂xα

= 0 (1)

∂(ρuα)

∂t
+ ∂(ρuαuβ)

∂xβ
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)
(3)

where uα and xα are the velocity component and position coordinate
in the α direction, p is pressure, ρ is fluid density, and summation
over repeated indices α and β is assumed. The viscous stress ταβ

and the dissipation rate � are given by

ταβ = 2µ

(
Sαβ + 1

3
δαβ Sχχ

)
, � = ταβ Sαβ

Sαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
(4)

where Stokes hypothesis with zero bulk viscosity is invoked to de-
duce the viscous stresses, µ is the first coefficient of viscosity of the
fluid, and κ is the fluid thermal conductivity. The viscosity µ and
thermal conductivity κ are regarded as functions of temperature.
Equations (1– 4) are closed once the thermodynamic coupling of
the internal energy, the pressure and the density is specified by the
ideal gas equation of state, that is,

p = ρRT (5)

where R = cp − cv is the gas constant and cp and cv are the specific
heats at constant pressure and constant volume, respectively.

The conventional approach for aeroacoustics simulation proceeds
by truncating the governing equations, or their linearized forms, in
the spatial domain. The temporal evolutions are resolved by means
of finite difference or finite volume techniques. On the other hand,
if DNS is used to simulate aeroacoustics problems instead of the
conventional methods, Eqs. (1–5) are solved directly. This way, it
is possible to deduce and analyze the flowfield in detail. Because
the acoustics quantities could be as small as 10−4 ∼ 10−6 of the
mean flow quantities, high-accuracy schemes are required if the
sound field are to be resolved correctly with minimum numerical
errors. This imposes a rather heavy penalty on the DNS scheme. In
view of the credibility and accuracy of the DNS scheme, it is used
in the present study as a benchmark to assess the proposed LBM
scheme. The DNS solutions are obtained by solving Eqs. (1–5) us-
ing a sixth-order spatial scheme and a fourth-order Runge–Kutta
time-marching scheme. Because the boundary conditions are asso-
ciated with the aeroacoustics problems to be calculated, they will
be discussed when the specific cases are analyzed. Details of the
DNS scheme and its solutions of specific aeroacoustics problems
are given elsewhere33; therefore, they will not be repeated here.

III. One-Step LBM Aeroacoustics Simulation
To simulate aeroacoustics problems correctly using a one-step

LBM approach, it is necessary to demonstrate that Eqs. (1–5) can be
recovered properly. This requires the ideal gas equation of state with
γ = 1.4 and µ to be recovered correctly from the LBM formulation.
An attempt to accomplish this is carried out in the following sections.

Continuous BE
The basis of the LBM is the connection between the BE describing

the kinetic theory of gases and the macroscopic equations of fluid
flow. In kinetic theory, a simple dilute gas, such as air, is represented
as a cloud of particles and is fully described by a continuous particle
distribution function,34 f (x, ξ, t), which is the probability of find-
ing a gas particle at location x moving with microscopic velocity
ξ at time t . The tracking of f gives rise to a mesoscopic descrip-
tion of the fluid. This description is an intermediate step between
the macroscopic continuum model and the microscopic description,
which treats the fluid as an avalanche of discrete interacting gas
molecules. For a dilute gas in which only binary collisions between
particles occur, the evolution of the distribution function is governed
by the continuous BE,

∂ f

∂t
+ ξ · ∇ f + Fex · ∇ξ f = Q( f, f )

=
∫

d3ξ

∫
d�σ(�)|ξ − ξ1|[ f (ξ ′) f (ξ ′

1) − f (ξ) f (ξ1)] (6)
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The left-hand side of Eq. (6) describes the motions of streaming par-
ticles. The variable Fex indicates external body force due to gravity
or of electromagnetic origin. Because the rate of particle collision
is not affected by the external body force, Fex = 0 is assumed in the
present formulation as a first attempt to solve Eq. (6). The operator
Q accounts for the binary particle collision occurring within a differ-
ential collision cross section σ(�), which transforms the velocities
from the (incoming) space {ξ, ξ1} to the (outgoing) space {ξ ′, ξ ′

1}.
For elastic collisions, the mass, momentum, and kinetic energy of
the particles are conserved. Consequently, Q must possess exactly
five collision invariants ψs(ξ), s = 0, 1, 2, 3, 4, in the sense that∫

Q( f, f )ψs(ξ) d3ξ = 0

The elementary collision invariants are ψ0 = 1, (ψ1, ψ2, ψ3) = ξ and
ψ4 = |ξ |2, which are proportional to mass, momentum, and kinetic
energy of the fluid, respectively.

The nonlinear integro–differential equation (6) completely de-
scribes the spatiotemporal behavior of a dilute gas, but it is quite
difficult to solve due to the complicated mathematical structure of Q
for the closure problem.34 Nevertheless, some measurable macro-
scopic averages of the flow can be defined from the velocity mo-
ments of the distribution function, for example, the zero- and first-
order moments will give ρ and ρu, or

ρ =
∫

f dξ (7)

ρu =
∫

ξ f dξ (8)

The definition of the fluid internal energy e needs further consid-
eration of the molecular nature of the fluid. As will be indicated,
realization of the diatomic nature of the fluid molecules is crucial to
a successful recovery of the equation of state for a perfect gas, which
is the key to a correct estimate of the first coefficient of viscosity
and, hence, proper simulations of aeroacoustics problems.

A monoatomic gas model was commonly assumed in most pre-
vious LBM treatments. In this model, each gas particle supports
only translational motion with only a DT degree of freedom. This
assumption does not appear to be appropriate for aeroacoustics com-
putation because the fluid medium of interest is mostly air, which is
mainly composed of diatomic nitrogen and oxygen gases. Generally,
a polyatomic gas particle can undergo rotational motion with an ad-
ditional DR degree of freedom. This indicates that both translational
and rotational kinetic energies of polyatomic gas particles should be
taken into account in a proper definition of the macroscopic internal
energy. The total number of degrees of freedom is DT + DR = 5 for
diatomic gas such as air.35 From the statistical mechanics point of
view, the kinetic energy should be equally distributed by all degrees
of freedom of gas particle motions. Following the arguments de-
scribed in Appendix A, the macroscopic internal energy of the fluid
can be defined by the second velocity moment as

ρe + 1

2
ρ|u|2 = DT + DR

DT

∫
1

2
f |ξ |2 dξ (9)

Similarly, the fluid energy flux can be defined by the third velocity
moment as(

ρe + p + 1

2
ρ|u|2

)
u = DT + DR

DT

∫
1

2
f |ξ |2ξ dξ (10)

Integration of Eq. (9) suggests an explicit internal energy definition
e = (DT + DR)RT/2 for diatomic gas. Actually, it can be shown
that, with the definitions of macroscopic fluid variables described
in Eqs. (7–10), the compressible Navier–Stokes equations and the
perfect gas equation of state can be completely recovered from the
BE and certain microscopic collision models through the Chapman–
Enskog expansion (see Ref. 36).

Collision Model and the Chapman–Enskog Expansion
The collision operator Q contains all of the details of the binary

particle interactions, but it is very difficult to evaluate due to the
complicated structure of the integral. Simpler expressions for Q
have been proposed. The idea behind that replacement is that the
vast amount of details of the particle interactions is not likely to
influence significantly the values of many experimentally measured
macroscopic quantities.34,35 It is expected that the fine structure of
Q( f, f ) can be replaced by a blurred image based on a simpler
operator J ( f ), which retains only the qualitative and average prop-
erties of the true operator. Furthermore, the H theorem shows that
the average effect of collisions is to modify f by an amount propor-
tional to the departure from the local Maxwellian–Boltzmann equi-
librium distribution f eq, which is expressed in D spatial dimensions
as

f eq = [ρ/(2π RT )D/2] exp(−|ξ − u|2/2RT ) (11)

Therefore, the collision operator is approximated as J ( f ) =
−ω( f − f eq). In case of a fixed collision interval, that is,
ω = 1/τ , the well-known Bhatnagar–Gross–Krook37 (BGK), or
single-relaxation-time (SRT) model for monoatomic gas is recov-
ered, and Eq. (6) is expressed as the Boltzmann–BGK kinetic
model,

∂ f

∂t
+ ξ · ∇x f = − 1

τ
( f − f eq) (12)

where τ is the time taken for a nonequilibrium f to approach f eq.
The relaxation time τ is much smaller than the free movement

time of the particle. It is the basic timescale in the BE. The dispar-
ity in the Boltzmann and macroscopic timescales indicates that all
macroscopic quantities have converged to local equilibrium states
at a very fast rate. The two disparate timescales in fact facilitate the
derivation of the macroscopic compressible Navier–Stokes equa-
tions and their transport coefficients from the kinetic model of
Eq. (12) by means of the Chapman–Enskog expansion (see Ref. 36).
In essence, it is a standard multiscale expansion in which time and
spatial dimensions are rescaled with the Knudsen number ε as a
small expansion parameter, so that

t1 = εt, t2 = ε2t, x1 = εx

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
,

∂

∂x
= ε

∂

∂x1
(13)

and the distribution function f is expanded as

f = f eq + f neq = f (0) + ε f (1) + ε2 f (2) + O(ε3) (14)

The Knudsen number ε is the ratio of the mean free path between
two successive particle collisions and the characteristic spatial scale
of the fluid system. When ε ∼O(1) or larger, the gas in the system
under consideration can no longer be considered as a fluid. When
Eq. (14) is inserted into Eq. (12), terms with the same order of ε
are collected, the resulting equation are multiplied with ψs(ξ), and
subsequent integration is performed over dξ 3 in the velocity space,
the following conservation laws are obtained:

∂ρ

∂t
+ ∂(ρuα)

∂xα

= 0 (15)

∂(ρuα)

∂t
+ ∂(ρuαuβ)

∂xβ

= − ∂

∂xα

(
2

DT + DR
ρe

)

+ ∂

∂xα

[
µ

(
∂uβ

∂xα

+ ∂uα

∂xβ
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+ ∂

∂xα

(
λ

∂uγ

∂xγ

)
(16)
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∂

∂t

(
ρe + 1

2
ρu2

)
+ ∂

∂xα

(
ρe + 2ρe

DT + DR
+ 1

2
ρu2

)

= ∂

∂xα

(
κ

∂e
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+ ∂
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(
∂uβ

∂xα

+ ∂uα

∂xβ
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+ ∂

∂xα

(
λ

∂uγ

∂xγ

uα

)
(17)

It is clear that Eqs. (15–17) are the macroscopic conservation
equations needed for a flow governed by the compressible Navier–
Stokes equations with the first coefficient of viscosity, the second
coefficient of viscosity, and the thermal diffusivity defined as

µ = (γ − 1)ρeτ (18)

λ = −(γ − 1)2ρeτ (19)

κ ′ = γ (γ − 1)ρeτ (20)

In Eqs. (16) and (17), the terms associated with the second viscos-
ity, that is, λ(∂uγ /∂xγ ), are generally small compared to the other
terms in practical flows38; therefore, they could be neglected in the
following analysis. The relation between κ and κ ′ in the present
formulation is κ = κ ′cv/Pr . Comparing these expressions with the
macroscopic energy conservation Eq. (3) leads to µcp = κ and con-
sequently a Prandtl number of unity in the present formulation. A
different Prandtl number could be assigned by scaling the value
(DT + DR)/DT in Eqs. (9) and (10), but it was not attempted in the
present paper.

The fluid properties are all dependent on τ , which is a function
of T because the relaxation phenomenon depends on T . Therefore,
the temperature behavior of the fluid properties is, to a great extent,
governed by the relation between τ and T . In the following section,
the ideal gas equation is derived first, and this is followed by a
derivation of µ based on a SRT model for J . The need for another
τ model besides the SRT is shown.

Equation of State and the Specific Heat Ratio
If the pressure and the ratio of specific heats are defined as

p = 2ρe/(DT + DR) and γ = (DT + DR + 2)/(DT + DR), respec-
tively, then the ideal gas equation of state follows:

p = (γ − 1)ρe = ρRT

which is identical to Eq. (5). Since DT + DR = 5, γ = 1.4 and
the ideal gas equation of state are recovered correctly using the
Chapman–Enskog expansion to facilitate the derivation of the un-
steady compressible Navier–Stokes equations.

In most numerical simulations of aerodynamics and aeroacoustics
based on macroscopic conservation laws, the value of µ is usually
estimated from the Sutherland law. The law of viscosity based on
Sutherland’s model of intermolecular force potential shows that the
dependence of µ on T takes the following form:

µ = 5

16
√

π

1

σ 2
m

√
MnkB T

1 + S0/T
≈

(
T

Tref

) 3
2 Tref/T + S0/T

1 + S0/T
(21)

where Tref is a reference temperature and S0 is the Sutherland con-
stant, equal to 111, 107, and 139 K for air, nitrogen, and oxygen,
respectively (see Ref. 39). The error associated with this approxi-
mation is within 2–4% over a temperature range of 210–1900 K. If
the LBM scheme were to be credible, it should recover µ correctly;
otherwise, the Reynolds number effect of unsteady flows would be
incorrectly captured.

According to Eq. (12), a SRT model is tacitly assumed for τ . In
other words, a rigid-sphere collision model is assumed, and the ki-
netic model admits a relaxation time for particle velocity expressed
as38

τ ≈ 5

4
τ̄ = 5

4

λ̄

|ξ̄ | = 5

4

1√
2πnσ 2

m |ξ̄ | = 5

4
√

2

(
1

/
πnσ 2

m

√
8kB T

π Mn

)

(22)

where λ̄ is the average mean free path, τ̄ is the time interval of
particle collision and |ξ̄ | = √

(8kB T /π Mn) is the magnitude of the
mean particle velocity. This gives a relation between τ and T and
allows the determination of µ from Eq. (18). Combining Eqs. (5)
and (18) gives µ = (γ − 1)ρeτ = pτ = ρRT τ . Simple manipula-
tion then shows that

µ ≈ (
5
/

16
√

π
)(

1
/

σ 2
m

)√
MnkB T (23)

Equation (23) clearly indicates that µ has a different T dependence
compared to Eq. (21), the Sutherland law. This means that real gas
effects on µ cannot be modeled properly from the microscopic SRT
model. If µ were to reflect the correct temperature dependence as
indicated in Eq. (21), another model for τ has to be proposed.

IV. Recovery of the Correct First
Coefficient of Viscosity

The phenomenon of fluid viscosity could be attributed to momen-
tum transfer between gas particles before and after collisions. The
distributions of momenta of the particles depend on the momentum
of each particle when they are far separated, as well as the inter-
actions of intermolecular potentials when two particles are in close
encounter. The intermolecular potential represents the contributions
of intermolecular attraction and repulsion to the potential function.
According to Ferziger and Kaper,39 from the kinetic theory point
of view, SRT is equivalent to the adoption of a rigid-sphere model
in which the short-range force potential behaves as if a Dirac-delta
function with finite repulsion at the separation when two rigid par-
ticles are in contact (particle separation rm = σm). The model yields
an exaggerated potential change at rm ≈ σm and predicts poorly the
temperature dependence of the macroscopic fluid properties. Suther-
land (see Ferziger and Kaper39) then suggests to include a weak but
rapidly decaying repulsive potential, ∼(σm/rm)ν (ν being the index
of repulsion), in the interaction and successfully provides a more
realistic description of the dependence of µ on temperature, such as
given by Eq. (21). The effects of this weak potential might be more
pronounced in the relaxation of a diatomic gas due to its more com-
plicated molecular structure. The question then is how to account
for this weak potential effect. As a first attempt, it is proposed to
include the relaxation times associated with both the intermolecular
potential and the weak repulsive potential in the estimate of τ for
the BGK collision model invoked in Eq. (12).

It is assumed that τ in Eq. (12) can be replaced by an effective
relaxation time τeff and that this could be determined from a com-
bination of the relaxation times associated with the intermolecular
potential τ1 and the weak repulsive potential τ2. The relation be-
tween τeff, τ1, and τ2 together with separate expressions for τ1 and
τ2 have to be determined. According to Ferziger and Kaper,39 τ1

could be estimated from the rigid-sphere model. Therefore, τ1 is
given by Eq. (22). It can be rewritten as

τ1 ≈ (5/4)τ̄ ∝ 1
/√

T (24)

The determination of τ2 is much more complicated because it de-
pends on the particle velocity as well as on the physical nature of
the gas under consideration. It could be argued that because the
weak potential is a long-range potential, τ2 could be postulated to
be proportional to the average approach velocity of the particles,
that is,

τ2 ∝ |ξ̄ | ∝ T
1
2 (25)

The dependence of τ2 on T is, therefore, known; however, the exact
relation has yet to be determined. Its determination will become
clear after a thorough comparison of the derived µ has been made
with the Sutherland law.

With the functional form known for τ1 and τ2, the next step is
to determine τeff so that the LBM scheme would yield a correct µ
in addition to being able to recover the ideal gas equation of state.
How to relate τeff to τ1 and τ2 can be gleaned from an examination
of the derivation of µ as shown in Eq. (23) and Sutherland law. It
is obvious that an SRT based on the rigid-sphere model would give
an incorrect representation for µ. The discrepancy is in the T de-
pendence. If the correct dependence on T were to be recovered, the
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Fig. 1 Variations of first coefficient of viscosity with temperature and
its comparison with Sutherland law.

right-hand side of Eq. (23) should be multiplied by a factor propor-
tional to 1/(1 + S0/T ). Because τ1/τ2 is proportional to 1/T , this
suggests representing τeff by τeff = τ1/(1 + τ1/τ2). Consequently, the
simplified collision operator J can be expressed as

J ( f ) = −(1/τeff)( f − f eq) = −1/[τ1τ2/(τ1 + τ2)]( f − f eq)

(26)

The procedure used to derive Eq. (23) can be repeated using Eq. (26)
for J ( f ). The result is

µ = ρRT τeff = ρRT

/(
1

τ1
+ 1

τ2

)
≈ 5

16
√

π

1

σ 2
m

√
MnkB T

1 + τ1/τ2

(27)

A comparison of Eq. (27) with Eq. (21) clearly shows that τ1/τ2

should be related to S0/T by the simple expression τ1/τ2 = S0/T .
This is the relation for the determination of τ2. Thus derived, the
LBM scheme will yield a µ that has the proper dependence on T .

A comparison of the Sutherland law with the derived viscosity
relations can now be made. Figure 1 shows the variations of µ for
two common diatomic gases, nitrogen and oxygen, as calculated
using Eqs. (23) and (27) and the Sutherland law. It is evident that
the SRT model overpredicts the values of µ for a wide range of
temperature with errors ranging from 28% at high temperature to
70% at low temperature. On the other hand, the two-relaxation-time
(τ1 and τ2) model yields results that are in excellent agreement with
those given by the Sutherland law. Theoretical analysis40 shows
that the acoustic properties of a fluid can be fully and accurately
resolved by a multiple-relaxation-time (MRT) model in which τ
[in Eq. (12)] for each velocity moment can be adjusted separately.
However, adoption of an MRT model would require complicated
programming to adjust τ for each velocity moment, thus, giving rise
to higher computational cost. As will be seen in later comparison
with DNS and theoretical results, the present model will also yield
fully and accurately the acoustic properties of the fluid with much
less complication in programming for the same problem.

V. Numerical Scheme
Instead of tracking the evolutions of the primitive variables in

the flow solutions in conventional numerical flow simulations, the
method of LBM solves only the evolution of f as prescribed in
Eq. (12). This equation is first discretized in a velocity space using
a finite set of velocity vectors {ξi } in the context of the conservation
laws27 such that

∂ fi

∂t
= −ξi · ∇x fi − 1

τeff

(
fi − f eq

i

)
(28)

where fi (x, t) = f (x, ξi , t) is the distribution function associated
with the αth discrete velocity ξi and f eq

i is the corresponding equi-

librium distribution function in the discrete velocity space. The con-
tinuous local Maxwellian f eq may be rewritten up to the third order
of the velocity after a Taylor expansion in u and can be expressed
in the discrete velocity space as

f eq = ρ Ai

{
1 + ξ · u

θ
+ (ξ · u)2

2θ2
− u2

2θ
− (ξ · u)u2

2θ2

+ (ξ · u)3

6θ3
+ O

(
u4

θ2

)}
(29)

where u = (u, v) and θ = RT . The weighting factors Ai are depen-
dent on the lattice model selected to represent the discrete velocity
space. They are evaluated from the constraints of local macroscopic
variables [Eqs. (7–10)] in the lattice with N discrete velocity sets,
as

ρ =
N∑

i = 1

f eq
i , ρe + 1

2
ρ|u|2 = DT + DR

DT

N∑
i = 1

1

2
f eq
i |ξα|2

ρu =
N∑

i = 1

ξi f eq
i

(
ρe + p + 1

2
ρ|u|2

)
u = DT + DR

DT

N∑
i = 1

1

2
f eq
i |ξi |2ξi (30)

For the two-dimensional diatomic gas flow considered in the present
study, two discrete velocity sets are attempted for the lattice, namely,
a D2Q9 model and a D2Q13 model. For the D2Q9 model (Fig. 2a),

ξ0 = 0

ξi = c(cos[π(i − 1)/4], sin[π(i − 1)/4]), i = 1, 3, 5, 7

ξi =
√

2c(cos[π(i − 1)/4], sin[π(i − 1)/4]), i = 2, 4, 6, 8

A0 = 1 + 2γ θ 2 − 3θ

A1 = A3 = A5 = A7 = −γ θ2 + θ

A2 = A4 = A6 = A8 = (γ /2)θ2 − 1
4 θ

For the D2Q13 model (Fig. 2b),

ξ0 = 0

ξi = c(cos[π(i − 1)/4], sin[π(i − 1)/4]), i = 1, 3, 5, 7

ξi =
√

2c(cos[π(i − 1)/4], sin[π(i − 1)/4]), i = 2, 4, 6, 8

ξi = 2c(cos[π(i − 1)/2], sin[π(i − 1)/2]), i = 9, 10, 11, 12

a) b)

Fig. 2 Lattice velocity models: a) D2Q9 and b) D2Q13.
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A0 = 1 − (5/2)θ + [−3/2 + 2γ ]θ 2

A1 = A3 = A5 = A7 = (2/3)θ + (1 − γ )θ 2

A2 = A4 = A6 = A8 = [−3/4 + (1/2)γ ]θ2

A9 = A10 = A11 = A12 = −(1/24)θ + (1/8)θ2

It is evident from later comparisons that the D2Q13 model yields
more accurate results; hence, it is preferred.

The collision process represented by J on the right-hand side
of Eq. (28) is evaluated locally at every time step, whereas the
streaming process represented by the convective derivatives of fi

are evaluated by a sixth-order finite difference scheme.11 The time-
dependent term on the left-hand side of Eq. (28) is calculated by
time marching using a second-order Runge–Kutta scheme. No nu-
merical filter is used for the following cases in the present study.
These treatments have minimal effects on the numerical viscosity
for small quantity disturbances, and so a one-step numerical simu-
lation of the BE could lead to realistic prediction of aeroacoustics
problems where the results are essentially identical to those derived
from similar DNS solutions and theoretical results.

VI. Results and Discussion
Many practical aeroacoustics simulations aim to predict sound

radiation created by unsteady flows and their interactions with solid
boundaries. Correct simulation of wave propagation is an impor-
tant measure of the success of a numerical model for aeroacoustics
simulation. With all viscous terms neglected, Eqs. (1) and (2) re-
duce to the Euler equation that supports three modes of waves,
namely, acoustic, vorticity, and entropy waves. The acoustic waves
are isotropic, nondispersive, nondissipative, and propagate with the
speed of sound c = √

(γ RT). The vorticity and entropy waves are
nondispersive, nondissipative, and propagate in the same direction
of the mean flow with the same velocity of the flow. Propagations
of the three types of waves are selected for the validation of the
present LBM scheme. The accuracy of the LBM aeroacoustics sim-
ulation is assessed by comparing the LBM calculations with the DNS
results obtained by using convectional finite difference method33

to solve the two-dimensional fully compressible unsteady Navier–
Stokes equations. A measure of the difference between the LBM
and DNS results of a macroscopic variable b is expressed in terms
of the L p integral norm, that is,

‖L p(b)‖ =
[

1

M

M∑
b = 1

|bLBM, j − bDNS, j |p

]1/p

(31)

for any integer p and its maximum

‖L∞(b)‖ = max
j

|bLBM, j − bDNS, j | (32)

Three example test cases are carried out to validate the proposed
LBM. These are 1) the propagation of a plane pressure pulse in
stationary fluid in a tube, 2) the propagation of a circular pulse in
stationary fluid, and 3) simulations of an acoustic, an entropy, and
a vortex pulse convected with subsonic uniform mean flow velocity
u0. In the first two cases, the nondimensional parameters for the
length, time, density, velocity, pressure, and temperature are speci-
fied as L0, L0/c0, ρ0, c0, ρc2

0, and T0, and the Reynolds number is
defined by Re = ρ0 L0c0/µ. For the LBM, the pressure is implied
in the kinetic equation and can be deduced from the state equation,
p = (γ − 1)ρe. The normalized internal energy and sound speed are
given by e = T/[γ (γ − 1)] and c = √

T . In the third case, the nondi-
mensional parameters for time, density, velocity, pressure, and tem-
perature are L0/u0, ρ0, u0, ρu2

0, and T0, respectively, and M = u0/c0

is the Mach number. The LBM and DNS solutions are compared in
all three cases. In case 3, analytical solutions are also available10;
these, too, will be shown for comparisons with the LBM and DNS
solutions. All physical quantities in the following discussion are
dimensionless, except where specified.

Case 1: Propagation of a Plane Pressure Pulse
This one-dimensional problem aims to validate the accuracy and

robustness of the proposed LBM and, at the same time, to assess the
efficiency of the proposed lattice models. The distribution function
fi (x, t) = f (x, ξi , t) is developing with the collision function and
the streaming function of Eq. (28). The initial fluid state is defined
as a small plane pressure fluctuation in the center of a tube, such
that

ρ = ρ∞ (33a)

u = 0 (33b)

v = 0 (33c)

p = p∞ + ε exp(−ln 2 × x2/0.082) (33d)

where mean field density and pressure are given by ρ∞ = 1 and
p∞ = 1/γ , the pulse amplitude ε is set to 4 × 10−6, 16 × 10−6,
and 100 × 10−6, respectively, and Re = 5000 is specified in this
case. The computational domain size of the tube is −5 ≤ x ≤ 5 by
0 ≤ y ≤ 2. A uniform grid of size 0.02 × 0.02 is adopted. Slip bound-
ary conditions are applied on the upper and lower tube surfaces in the
DNS calculation. The stability criterion31 of the collision term re-
quires that the time step should be �t < τ/2; therefore, �t = 0.0001
is chosen for the present LBM computations. Two buffer zones are
specified in the DNS calculation to simulate a true nonreflecting
inlet and outlet boundary condition.33 For all LBM calculations,
the gradient of the distribution function on all boundaries are set to
zero. When all disturbances are far away from the numerical bound-
aries, these conditions can ensure that there is essentially no error
contribution coming from the boundary treatment.

In case 1, the initial conditions Eq. (33) essentially combine one
acoustic wave and one entropy wave. These two waves overlap the
density fluctuations with each other only for the initial state. After
the acoustic wave leaves the center area, the density fluctuations cre-
ated by the entropy wave would appear in the center. Figure 3 shows
the fluctuations along the centerline of the tube at t = 1.0 and 3.0
for the case ε = 100 × 10−6. The LBM and DNS simulations show a
slight difference in the density at the center when the acoustic pulse
propagates toward computational boundaries. (Further calculations
carried out after the manuscript had been accepted showed that the
slight difference at the center was due to an error in setting the initial
value of f at that point.) However, the density distribution in the cen-
tral region is essentially the same. The two positive density fluctua-
tion peaks are leaving the center with a propagation speed c = 1, and
the amplitude of this density fluctuation is ρ̂ = 4 × 10−5 (t = 3.0).
At the same corresponding positions, there are two pressure fluctu-
ation peaks with a value of p̂ = 4 × 10−5. Actually these two waves
are the exact acoustic waves because the transmission speed is the
physical sound speed and the amplitudes follow the acoustic relation
p̂ = c2ρ̂. These results show that the proposed LBM can replicate
the correct acoustic waves and the calculated macroscopic quantities
are developing correctly, just as the DNS solution indicates.

This is evident from a comparison of the calculated ‖L p(p)‖
(pressure). Figure 4 shows the time-dependent difference in the be-
havior of ‖L1(p)‖, ‖L2(p)‖, and ‖L∞(p)‖ (ε = 4 × 10−6). Both
lattice D2Q9 and D2Q13 solutions are reported. The differences be-
tween the LBM and DNS solutions using the D2Q13 lattice are much
smaller than those using the D2Q9 lattice. For example, consider the
‖L2(p)‖value, the difference obtained for the D2Q13 lattice is about
10−11, whereas the corresponding value for the D2Q9 lattice is close
to 10−9. This shows that the D2Q13 lattice could effect an improve-
ment in ‖L p(p)‖ of two orders of magnitude when only four more
discrete velocities are specified. In view of this, only the D2Q13
lattice model results are presented in the following discussion.

The pulse amplitude effect on the difference ‖L2(p)‖ is compared
in Fig. 5. The criterion of a Taylor expansion on a Maxwellian dis-
tribution requires that the flow speed u to be much smaller than the
particle speed ξ , and the error of this expansion would occur in the
term of O(u4/θ2). When the pulse amplitude is smaller, the dis-
turbance u is also smaller. This would lead to a smaller error term
O(u4/θ2). Therefore, ‖L2(p)‖ would be smaller for ε = 4 × 10−6
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a) b)

Fig. 3 Density, pressure, and velocity u fluctuations along the x axis at a) t = 1.0 and b) t = 3.0 for ε= 100 ×× 10−6: ∗, LBM (D2Q13) and ——, DNS.

Fig. 4 Time history of the difference ‖Lp(p)‖.

than for ε = 16 × 10−6 and 100 × 10−6. This result is clearly demon-
strated in Fig. 5, which shows that the performance of the LBM is
better with smaller fluctuations than those large fluctuations.

Case 2: Propagation of a Circular Pulse
If an initial circular pulse is imparted to a uniform fluid, the

fluctuations thus created would propagate equally in all directions.
This means that, at any time, the pulse would remain circular in
shape. However, the lattice velocity model restricts the particles to

Fig. 5 Time history of the difference ‖‖L2(p)‖‖ with D2Q13.

move in certain discrete directions, such as 0, ±π/4, ±π/2, and π
(Fig. 2). To test the ability of the LBM with a D2Q13 lattice model
to replicate the symmetry property of the circular pulse, it is used
to simulate a circular initial pressure pulse in a uniform fluid. The
distribution is defined as

ρ = ρ∞ (34a)

u = 0 (34b)
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p-p∞

a)

p-p∞

b)

Fig. 6 Pressure and velocity fluctuations at a) t = 2.5 and b) t = 5.0:
——, positive levels and - - - -, negative levels.

v = 0 (34c)

p = p∞ + ε exp[−ln 2 × (x2 + y2)/0.22] (34d)

where ρ∞ = 1, p∞ = 1/γ , ε = 16 × 10−6, and Re = 5000. The com-
putational domain is 20 × 20, and the grid size is 0.05 × 0.05. Both
LBM and DNS are used to simulate this problem.

The contours of the pressure and u fluctuations are shown in
Fig. 6. The upper-half of the computation domain is the LBM so-
lution and the lower-half the DNS solution at the same time. For
pressure fluctuations, six contours are equally distributed between
−0.4 × 10−6 and 0.4 × 10−6; for velocity fluctuations, six contours
are equally distributed between −1 × 10−6 and 1 × 10−6. It is clear
that the contours of the LBM solution have no discernible difference
with those of the DNS result. This is despite that the LBM solu-
tion is derived from a velocity lattice model D2Q13, where particle
velocities are specified for discrete directions only. This shows that
the LBM simulation is just as valid as the DNS result.

Case 3: Simulations of Acoustic, Entropy, and Vortex Pulses
The acoustic, entropy, and vorticity pulses are basic fluctuations

in aeroacoustics problems. In this case, the pulses are developing in a
uniform mean flow. Basically, only the acoustic pulse is propagating
with the sound speed; the entropy pulse and the vortex pulse would
move with the mean flow. The initial conditions are defined as

ρ = ρ∞ + ε1 exp{−ln 2 × [(x + 1)2 + y2]/0.22}

+ ε2 exp{−ln 2 × [(x − 1)2 + y2]/0.42} (35a)

u = u∞ + ε3 y exp{−ln 2 × [(x − 1)2 + y2]/0.42} (35b)

v = v∞ + ε3(x − 1) exp{−ln 2 × [(x − 1)2 + y2]/0.42} (35c)

p = p∞ + (1/M2)ε1 exp{− ln 2 × [(x + 1)2 + y2]/0.22} (35d)

where M = 0.2 and ε1 = 0.0001, ε2 = 0.001, and ε3 = 0.001. The
mean field has density, speed, and pressure given by ρ∞ = 1, u∞ = 1
and v∞ = 0, and p∞ = 1/(γ M2), and Re = 1000. These pulse mod-
els follow the definitions of Tam (see Ref. 10). The acoustic pulse is
initialized at the point x = −1, y = 0. The entropy pulse and the vor-
ticity pulse are initialized at x = 1, y = 0. The computational domain

p-p∞

a)

p-p∞

b)

Fig. 7 Pressure and velocity fluctuations at a) t = 1.0 and b) t = 1.5:
——, positive levels and - - - -, negative levels.

is −10 ≤ x ≤ 10 by −10 ≤ y ≤ 10, and the grid size is 0.05 × 0.05.
For this problem with a relatively large mean flow, the mean flow ef-
fect could become critical because the symmetry lattice coefficients
are based on the assumption that the flow speed is much smaller than
the particle speed. An improvement to the proposed LBM model is
given in Appendix B to address this problem.

The pressure and the u velocity fluctuation contours are shown
in Fig. 7 at t = 1.0 and 1.5. Both LBM and DNS results are shown
together. The initial acoustic pulse causes disturbances. Because the
mean flow speed is defined as 1.0, the center of the pulse has moved
to x = 0, y = 0 at t = 1.0, and to x = 0.5, y = 0 at t = 1.5. The acous-
tic pressure fluctuation is propagating with c = 1/M = 5 and exhibit
circles of radii equal to 5 and 7.5 at the same moment. The u velocity
fluctuation is symmetric about the x axis. For the vorticity pulse,
the center of the vortex would move to x = 2, y = 0 at t = 1.0 and to
x = 2.5, y = 0 at t = 1.5. In Fig. 7, the upper-half of the domain is the
LBM solution; the lower-half the domain is the DNS solution. For
pressure fluctuations, six contours are equally distributed between
−5 × 10−5 and 5 × 10−5; for velocity fluctuations, six contours are
equally distributed between −5 × 10−5 and 5 × 10−5. The distribu-
tion of the u velocity fluctuation from this pulse would give the
same absolute fluctuations that propagate along the negative x axis.
The pressure and u velocity fluctuations are in Fig. 8. The LBM and
DNS simulations are essentially identical, and they agree well with
the analytical inviscid solutions.10

The same case with Re = 100 is also calculated to investigate
the effect of viscosity on the LBM simulation. The pressure and
velocity fluctuations at t = 1.0 are compared in Fig. 9, where the
distributions along −6 ≤ x ≤ 0 are shown. The asterisks represent
the LBM solution, whereas the DNS result is given by the dotted
line. The solid line shows the analytical inviscid solution. Again,
LBM and DNS give essentially the same solution and are close
to the inviscid result. There is a discernible viscous effect on the
acoustic pulse, which is essentially a disturbance generated from
the viscous effect on the entropy pulse. The ‖L p‖ differences for
pressure and u velocity fluctuations are given in Table 1.

There are two macroscopic velocity scales in case 3, namely,
the mean flow velocity and the fluctuation propagation velocity. To
assess the correctness of the LBM in resolving small-fluctuation
propagation in a mean flow, it is worthwhile to study the spreading
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Fig. 8 Pressure and velocity fluctuation distributions along x axis at
t = 1.0 and Re = 1000: ——, analytical inviscid solution; ∗, LBM solution;
and •, DNS solution.

Fig. 9 Pressure and u velocity fluctuation distributions along x axis at
t = 1.0 and Re = 100: ——, analytical inviscid solution; ∗, LBM solution;
and •, DNS solution.

of the acoustic pulse. Figure 10 shows the decay of acoustic pulse
peak in LBM and DNS solutions at Re = 100 and 1000. The ana-
lytical result is also shown. For an acoustic pulse spreading in two
dimensions, the local intensity of the wave I should be proportional
to 1/r due to conservation of total energy e = I · 2πr , where r is the
radial distance. In the absence of viscosity, the intensity bears a re-
lationship with instantaneous pressure peak amplitude A as I ∝ A2.
Therefore, the analytical result should be a straight line in Fig. 10
with slope equal to − 1

2 . For Re = 1000, the amplitudes are very
close to the inviscid solution, indicating the acoustic propagation is

Table 1 Lp difference and the effect of Reynolds numbera

Trial L1 L2 L∞

L p =
(

1

N

∑
−6 < x < 0

( p̂ − pr )
p

)1/p

LBM (Re = 1000) 8.8339e−007 1.8589e−006 8.9069e−006
DNS (Re = 1000) 8.0505e−007 1.6447e−006 7.5991e−006
LBM (Re = 100) 6.8489e−006 1.3173e−005 5.8618e−005
DNS (Re = 100) 6.4574e−006 1.2113e−005 5.1829e−005

L p =
(

1

N

∑
−6 < x < 0

(û − ur )
p

)1/p

LBM (Re = 1000) 1.8577e−007 3.7268e−007 1.7917e−006
DNS (Re = 1000) 1.6058e−007 3.2878e−007 1.5348e−006
LBM (Re = 100) 1.4394e−006 2.6432e−006 1.1803e−005
DNS (Re = 100) 1.2827e−006 2.4207e−006 1.0477e−005

aHere, p̂ = p − p∞, û = u − u∞ and pr , ur are the analytical solutions.

Fig. 10 Variation of pressure peak amplitude with the radius the
acoustic pulse travels: ——, analytical inviscid solution; ∗, LBM
(Re = 1000); •, DNS (Re = 1000); �, LBM (Re = 100); and �, DNS
(Re = 100).

correctly captured with a viscous formulation in the DNS and LBM
calculations at this Reynolds number. For Re = 100, the LBM and
DNS solutions are essentially identical. The difference in peak am-
plitude is only 6% after the pulse has propagated a distance equal
to 19 times the initial pulse width (r = 7.5). It can be observed that
viscosity has a significant effect and gives rise to a difference of
about 20% between the Re = 100 and Re = 1000 cases at the same
distance.

With the comparison of the performance of the LBM with the
DNS in the simulations of one-step aeroacoustics problems made, a
word about the programming and computational requirements of the
two different methods is in order. In terms of programming, the LBM
is much simpler. The LBM code consists of 420 lines compared to
1350 lines required for the DNS code. As for the computational
time required, the CPU time for calculating 1000 time steps using a
100 × 100 grid differ for the three cases tested. For the plane pressure
pulse case (one dimensional), the LBM is 25% more efficient than
the DNS; for the circular pulse case (two dimensional), the DNS is
about 20% more efficient; whereas for the three pulses case, the DNS
is about 30% more efficient. These comparisons are made with the
D2Q13 velocity lattice model. If the D2Q9 model is used instead,
the LBM is more efficient by a margin ranging from 15 to 50% for
the three cases tested. However, the ‖L p(b)‖ accuracy suffers by
two orders of magnitude (Fig. 4).

VII. Conclusions
An LBM scheme has been formulated for one-step aeroacous-

tics simulations. In the formulation, the definition of fluid internal
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energy has been modified to include both the translational and ro-
tational degrees of freedom of the particles. The collision model is
modified to take into account the relaxation times associated with
the intermolecular potential and the weak repulsive potential. With
these modifications, the ideal gas equation of state with γ = 1.4 is
recovered exactly and the first coefficient of viscosity of the gas has
the correct temperature dependence. Consequently, the set of un-
steady compressible Navier–Stokes equations is fully recovered for
aeroacoustics simulations. Two lattice (D2Q9 and D2Q13) models
were used to carry out calculations for diatomic gases. A sixth-order
finite difference scheme is used to evaluate the streaming term, and a
second-order time-marching technique is used to calculate the time-
dependent term in the BE, whereas the collision term is evaluated
locally. Three test cases were used to validate the LBM. They are
the one-dimensional acoustic pulse propagation, the circular acous-
tic pulse propagation, and the propagation of acoustic, vorticity, and
entropy pulses in a uniform mean flow. The accuracy of the method is
established by comparing the calculations with analytical solutions
and with DNS results obtained with a sixth-order spatial scheme
and a fourth-order Runge–Kutta time-marching scheme. All com-
parisons show that the LBM aeroacoustics simulation possesses the
same accuracy as DNS solutions for CAA and is a simpler numerical
method.

It is especially convenient to use LBM to simulate aeroacoustics
problems numerically. First, the inherent linearity of the govern-
ing Boltzmann equation and the numerical efficiency of the LBM
allow the intrinsic features of parallelism23 to be exploited. Sec-
ond, the LBM offers new opportunities for kinetic-type nonreflect-
ing boundary conditions. These two difficulties are common in
most CAA but could be overcome with further developments of
LBM. Finally, the results of test cases 1–3 reflect that the present
two-relaxation-time LBM scheme correctly captures the physical
sound speed for 0.2 ≤ M ≤ 1.0. This contrasts with the extremely
narrow Mach number range (M → 0) for conventional SRT LBM
scheme. For the sake of completeness, it is important to investigate
whether the present LBM scheme can capture the high sound speed
in the limit of M < 0.2. This issue will be discussed in a companion
paper.

Appendix A: Definition of Internal Energy
The internal energy e is defined by the following relation:

ρe + 1

2
ρ|u|2 = DT + DR

DT

∫
1

2
f |ξ |2 dξ (A1)

In general, the particle distribution function f can be decom-
posed into an equilibrium part and a nonequilibrium part, that is,
f = f eq + f neq. The nonequilibrium f neq is required to satisfied
the nullity requirement for moments of different velocity orders,
that is,

∫
f neq dξ =

∫
f neqξ dξ =

∫
f neqξ 2 dξ = 0 (A2)

Therefore, with use of Eq. (11) for f eq, Eq. (A1) can be expressed
as

ρe + 1

2
ρ|u|2 = DT + DR

DT

∫
1

2
f eq|ξ |2 dξ

= DT + DR

DT

∫
1

2

ρ

(2π RT )D/2
exp

(
−|ξ − u|2

2RT

)
|ξ |2 dξ (A3)

The total number of degrees of freedom for diatomic gas motions
is always DT + DR = 5 (where DT = 3 and DR = 2). Therefore,
the right-hand side of Eq. (A3) is a function of temperature alone.
The sole temperature effect on e is realized in the redistribution of the
particle momentum due to particle collision and should be indepen-
dent of the mean flow velocity carrying the particles.31 Therefore,
e should be the same irrespective of whether u = 0. Integration of

Eq. (A3) in three-dimensional simulations (D = 3) leads to

e = DT + DR

3

∫ ∞

0

4πr 2 1

2

1

(2π RT )
3
2

exp

(
− |r |2

2RT

)
|r |2 dr

= DT + DR

3

(
3

2
RT

)
= DT + DR

2
RT (A4)

where r = ξ − u.
In a two-dimensional simulation, only two planar translational

motions are allowed, thus giving DT = 2. If similar arguments for
the temperature dependence in the three-dimensional case is applied,
then, with r = ξ − u in two dimensions,

e = DT + DR

2

∫ ∞

0

2πr
1

2

ρ

(2π RT )
exp

(
− |r |2

2RT

)
|r |2 dr

= DT + DR

2
RT (A5)

Evidently, the definition of e in the present LBM holds for both
two- and three-dimensional flows. Note that the integration results
of Eqs. (A3) and (A5) perfectly match the classical equipartition
theorem of the kinetic theory of gases, which states that, for a poly-
atomic gas, each degree of freedom equally contributes RT/2 to the
total amount of internal energy.

Appendix B: LBM with Mean Flow
The Taylor expansion of the local Maxwellian, Eq. (11), in the

discrete velocity space is given by Eq. (29). The assumption of
symmetry coefficients of the lattice requires that the velocity u to
be much smaller than the particle speed. When the effective flow
speed is large, the truncation error in this expansion would increase.
For the present problem, the macroscopic flow velocity is about the
same as the mean flow velocity ū. This means that the fluctuation
velocity u − ū is much smaller than the particle speed. When the
local Maxwellian is rewritten with this interpretation, Eq. (11) can
be expressed as

f eq = ρ

(2π RT )D/2
exp

(
−|(ξ − ū) − (u − ū)|2

2RT

)
(B1)

where u − ū is the relative flow velocity based on the mean flow and
it is much smaller than the particle speed. When the lattice velocity
speed is defined based on the total part of ξ − ū, the coefficient of
the lattice still satisfies the symmetry assumption. Therefore, the
Taylor expansion of f eq [Eq. (29)] can be expressed as

f eq = ρ Ai

{
1 + (ξ − ū) · (u − ū)

θ
+ [(ξ − ū) · (u − ū)]2

2θ2
− (u − ū)2

2θ

− [(ξ − ū) · (u − ū)](u − ū)2

2θ2
+ [(ξ − ū) · (u − ū)]3

6θ3

}
(B2)

This expansion can be used with the earlier symmetry lattice to dis-
cretize the velocity u − ū. The discretized velocities in the lattice are
defined as ξT = (0, 0), (1, 0), (0, 1), . . . ; therefore, the real particle
speed becomes ξ = ū + ξT . The original Boltzmann equation in the
discretized space can then be written as

∂ fi

∂t
= −(ξT i + ū) · ∇ fi − 1

τ

(
fi − f eq

i

)
(B3)

It follows that the kinetic equations will become

ρ =
∫

f dξT (B4)

ρ(u − ū) =
∫

ξT f dξT (B5)

ρe + 1

2
ρ|(u − ū)|2 = DT + DR

DT

∫
1

2
f |ξT |2 dξT (B6)
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(
ρe + p + 1

2
ρ|(u − ū)|2

)
(u − ū) = DT + DR

DT

∫
1

2
f |ξT |2ξT dξT

(B7)

When ū = (0, 0), Eqs. (B4–B7) reduce to Eqs. (7–10). If there is an
effective macroscopic mean flow, only the relative velocity u − ū is
considered in the Taylor expansion and the kinetic equations. Again,
the relative velocity is much smaller than the particle speed, and so
the symmetry coefficients can be used but the evolution equation is
given by Eq. (B3). This method is proven useful in case 3.
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