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The validity of the lattice Boltzmannmethod for direct aeroacoustics simulations depends on its ability to correctly

recover the equation of state of the gas and its dynamic viscosity.This paperpresents a latticeBoltzmannmethodwith

two relaxation times to carry out the direct aeroacoustics simulations of a two-dimensional Gaussian sound pulse in a

uniform flow over a range ofMach numbers (M) varying from 0.01 to 0.9. It is assumed that there is no shock present

in the range ofMach numbers tested. A sixth-order finite-difference scheme is used to evaluate the convective term in

the modeled Boltzmann equation, and a second-order Runge–Kutta scheme is used to forward march in time. Thus

solved, the calculations show that the wave propagation speed (c) over the range 0:01 � M � 0:9, determined from

the deduced equation of state and from the propagation of the pulse, are in good agreement with theoretical analysis

and direct numerical simulation results obtained by solving the unsteady compressible Navier–Stokes equations

using a low-dispersive and low-dissipative finite-difference scheme. The specific heat ratio (�) for a diatomic gas is

recovered correctly and so is the dependence of the internal energy on �. Thus, the proposed lattice Boltzmann

method is valid for direct aeroacoustics simulations at very low to near transonic M.

I. Introduction

T HE development of computational aeroacoustics essentially
centers around two approaches [1]. One is based on the

application of the acoustic analogy or hybrid approach to the time-
dependent computational fluid dynamics data. Another, known as
direct noise computation or direct aeroacoustics simulation (DAS), is
based on the simultaneous calculation of the aerodynamic and
acoustic fields obtained by solving the unsteady compressible
Navier–Stokes equations plus the perfect gas equation of state. The
solutions of these two approaches are different. The first approach
yields the noise radiation in the far field, but the second approach
could, in addition, provide a better understanding of the noise source
mechanisms. Furthermore, the DAS would also provide the link
between turbulence dynamics and the acoustic waves. However, this
understanding is obtained at the expense of serious numerical issues
that may be difficult to overcome [1,2].

In the first approach, the aerodynamic field is solved using one of
three different methods: direct numerical simulation (DNS), large
eddy simulation (LES), and Reynolds averaged Navier–Stokes
(RANS) modeling of the turbulence field. These methods solved the
governing flow equations including the equation of state of the fluid
with no attempt made to resolve the acoustics scales, which are, in
general, 2 orders of magnitude smaller than the aerodynamic scales.
The unsteady compressible Navier–Stokes equations are solved for a
wide range of flow scales with no assumptions made on the
turbulence field in theDNS approach. In the case of LES, theNavier–
Stokes equations explicitly filtered in space are solved with a
subgrid-scale turbulencemodel for the near-wall region. On the other
hand, the RANS solution is based on a suitable turbulence model for
the whole flowfield. Once the time-dependent solution of the

aerodynamic field is available, velocity fluctuations can be
introduced directly into the integral appearing in the inhomogeneous
wave equation of Lighthill [3] to estimate the radiated acoustic field.
Alternatively, velocity fluctuations can be input to the linearized
Euler equations [4,5] to obtain an estimate of the noise source and the
radiated acoustic field. In the acoustic analogy or hybrid approach,
the wave equation in one form or another is solved. This means that
the propagation speed of sound is specified and is not calculated as
part of the solution.

In the DAS approach, the unsteady compressible Navier–Stokes
equations and the gas equation of state are solved simultaneously
using DNS, thus allowing the acoustic field and the aerodynamic
field to be determinedwithout modeling the source terms in the wave
equation. This is accomplished through the use of a mesh that
includes the acoustic field. Because aerodynamic noise is
represented by very small amplitude fluctuations compared with
flow fluctuations, typically u0

acous=u
0
aero is of order 10

�3 to 10�4 and
p0
acous=p

0
aero is of order 10

�2 for a jet at a Mach numberM� 0:9, the
length scale separation between these two fields is large, of the order
of 102. Here, u0 is the fluctuating velocity and p0 is the fluctuating
pressure; the subscripts “acous” and “aero” denote acoustic and
aerodynamic field, respectively. Therefore, a low-dispersive and a
low-dissipative numerical scheme is required if the acoustic waves
propagating in the computational domain are to be preserved
correctly [1,2,6,7]. Besides, there are other complicating issues
involved in the inflow and outflow boundary conditions. At these
boundaries, the assumed computational boundaries should allow the
aerodynamic field to pass freely with minimal reflection while at the
same time they should be nonreflecting for the incident acoustic
waves. Otherwise, the spurious erroneous waves reflecting from the
boundaries would contaminate the numerical simulations, decrease
the computational accuracy, and might even drive the solutions
towards a wrong time-stationary state. Practical approaches to deal
with these issues have been discussed and proposals made to remedy
the difficulties. Among the more promising proposals [8] are the
Navier–Stokes characteristics-based boundary conditions (NSCBC)
[9], the absorbing boundary condition (ABC) [10], and themethod of
perfectly matched layer [11]. These proposals have been applied to
numerous problems, including jet flow and duct flowwith geometric
discontinuities [12–15]. Therefore, DAS is a viable approach to
estimate far field noise and its source mechanisms in the study of
aeroacoustic problems.

Recently, the lattice Boltzmann method (LBM), which is derived
from the lattice gas automata, has been proposed as an alternative to
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conventional computational fluid dynamics techniques [16,17].
Since then, LBM has been used to tackle a variety of fluid dynamics
problems ranging from single-component hydrodynamics to
multiphase flows to flow through porous media to flows with
reaction and diffusion, etc. However, development of LBM for
single-phase compressible flow, such as air, has received particular
attention because all LBM proposed can recover the macroscopic
unsteady compressible Navier–Stokes equations [18,19]. Some
recent proposals were evenmade to simulate compressible flows and
wave propagation [20–24], thus allowing DAS to be carried out.
Other proposals based on the lattice kinetic equation [25] and the
direct simulation Monte Carlo [26] have also been put forward. All
these proposals are not very satisfactory for DAS because they have
drawbacks of one type or another. First, it is not clear whether the
wave propagation speed c could be estimated correctly as the Mach
number M ! 0, even though the LBM with an assumed collision
model is shown to be correct in the incompressible limit [27] and has
been applied to simulate incompressible turbulent jets [28]. Second,
some proposals [20] yield a dynamic viscosity coefficient � that
varies linearly with temperature whereas others [22,23] assume
monoatomic gas particles with a constant specific heat ratio of
� � 1:67. Third, the gas equation of state is recovered but not always
correctly [29,30]. Consequently, the validity of these proposals for a
true DAS is questionable. Other methods have also been put forward
for compressible flow with sound waves propagation [29] and wave
propagation with shock [30] buildup. These proposals give rise to a
speed of sound given by c2 � p=�, where p is the thermodynamic
pressure and � is the gas density, thus implying that � � 1 for a
perfect diatomic gas. As yet, there is no single proposal that could
recover the gas equation of state’s �, �, and c correctly for a wide
range ofM. If the LBM were to be a true alternative to the DNS as a
viableDAS technique, its ability to recover the gas equation of state’s
�, �, and c correctly is most desirable.

Therefore, it is necessary to develop a LBM, the performance of
which is comparable to the DNS in a direct simulation of
aeroacoustic problems. If this objective were to be achieved, it is
essential that the gas equation of state’s �, �, and c be recovered
correctly for a perfect gas, such as air, for a range ofM varying from
the incompressible limit to finite M. Such a proposal [31] has been
put forth recently. The proposal demonstrates that the gas equation of
state’s � and � could be calculated accurately for a diatomic gas at
finite M. However, it is not clear whether �, �, and the internal
energy e could be recovered correctly in the limit of M ! 0. The
present objective is to show that c and the theoretical relation
between c and e can also be recovered exactly over a range of M
ranging from the incompressible limit to transonic flow. A Gaussian
sound pulse in a uniform flow is used as the vehicle to demonstrate
the validity and extent of the proposed LBM, and the results are
calibrated against theoretical analysis and DNS calculations of the
same problem.

In the next section, the DNS solution of the governing unsteady
compressible Navier–Stokes equations and the perfect gas equation
of state is briefly described. Details of the low-dispersive and low-
dissipative numerical method used have been fully discussed [7] and
were also described elsewhere [31,32]. This is followed by a
discussion of the proposed LBM, the time scales, and the lattice used.
Numerical solution of the LBM governing equations is obtained by
using the same low-dispersive and low-dissipative scheme. The
results of the numerical simulations of a Gaussian sound pulse in a
uniform flow are presented over a range of M varying from 0.01 to
0.9 in Sec. IV. Finally, the conclusions drawn are summarized in
Sec. V.

II. Direct Numerical Simulation Solution

The unsteady compressible Navier–Stokes equations in strong
conversation form and the equation of state p� �RT for a perfect
gas (in this case air) in two dimensions aremade dimensionless using
U1,L1,�1,�1, andT1 as reference quantities for velocity, length,
density, dynamic viscosity, and temperature, respectively,whereR is
the universal gas constant. The reference time is given by L1=U1,
the reference pressure by �1U21, and the reference internal energy
byU21. Thus normalized, the Reynolds number at an upstream inlet
isRe� �UL=�. Here, the dimensionless pressure, density, velocity,
length, time, internal energy, and dynamic viscosity are denoted by
p, �, u, l, t, e, and �, respectively. In the following discussion all
quantities are expressed in dimensionless form unless otherwise
specified. The nondimensional governing equations are solved by a
five-point sixth-order compact finite-difference scheme suggested
by Lele [7] to obtain the spatial derivative and an explicit fourth-
order Runge–Kutta scheme for time marching. High-order filtering
of Visbal and Gaitonde [33] is applied in every final stage of the
Runge–Kutta scheme to suppress numerical instabilities due to
spatial differencing. Because the present calculations are carried out
over open spacewith no solid boundaries, NSCBC is applied to close
the governing equations at all boundaries. Together, this constitutes
the low-dispersive finite-difference scheme used to obtain solutions
over the range 0:01 � M � 0:9.

Central finite-difference schemes are generally dispersive and
dissipative. Their resolutions of high-frequency fluctuations are
poor. The low-dispersive and low-dissipative nature of the present
scheme is verified by analyzing the spatial Fourier transform of the
waveform of the Gaussian sound pulse. According to Hu et al. [34],
the maximum resolvable dimensionless effective wave-number
k�c�x for the present scheme is 1.36 and the maximum stable
effective wave number is k�max�x� 2:0, where �x is the
dimensionless spacing of a uniform mesh. This is determined using
a criterion jk��x � k�xj< 0:005, where k�x is the true wave
number. In otherwords, the scheme can resolve only longwaveswith
a low cutoff wavelength around 0:217=�x. For shorter wavelengths,
the numerical dispersion due to finite differencing will be significant.
Altogether, nine cases withM varying from 0.01 to 0.9 (see Table 1)
are calculated. The Reynolds number at the inlet is taken to be
1:0 � 103 for all cases studied. The flow can still be assumed to be
laminar with this choice of Reynolds number; therefore, there is no
need to complicate the computations with the assumption of
turbulence modeling. An effective way to ascertain whether the
propagation of the Gaussian pulse is properly resolved and free from
numerical dispersion is to trace the variation of its Fourier
components in wave-number space during calculation. It was
observed that all the Fourier components in each calculation do not
show observable change during propagation, and their distributions
in all nine cases are essentially identical. A sample distribution of
Fourier components of pulse density fluctuation �k� versus the
dimensionless effective wave-number k��x is shown in Fig. 1. The
�x chosen is independent ofM and is taken to be 0.1. On the other
hand, �t varies from 2 � 10�7 to 1 � 10�4 for the range
0:01 � M � 0:9. It is found that this choice of�x and�t gives very
stable calculations over the range of M investigated. It can be seen
that the power spectral density (PSD) is essentially zero beyond
k��x� 1:36. Therefore, it can be concluded that the low-dispersive
and low-dissipative scheme of Lele [7] can be used to simulate a
Gaussian sound pulse in a uniformflow. It will be shown later that the
c and e thus recovered are in excellent agreement with theoretical
results over the M range studied.

Table 1 Comparison of the numerically calculated c with its theoretical value

M 0.01 0.0125 0.02 0.05 0.1 0.3 0.5 0.7 0.9

Theoretical c 100 80 50 20 10 3.33 2 1.43 1.11
LBM/DNS calculated c 100 80 49.75 20.25 10.2 3.33 2 1.45 1.14
Error, % 0 0 0.5 1.25 2 0 0 1.39 2.7

LI, SO, AND LEUNG 2897



III. Lattice Boltzmann Method Simulation

A. Conventional Lattice Boltzmann Method

The LBM adopted here is based on the conventional LBM in
which the collision function is approximated by the commonly used
Bhatnagar–Gross–Krook (BGK) model [35]. The derivation of this
LBM/BGK has been described in detail elsewhere [19,22,36];
therefore, only the salient features are highlighted here. The LBM is
based on themodeled solution of the continuousBoltzmann equation
(BE) that describes the evolution of the distribution function f of a
cloud of particles in a fluid. The BE can be written as

@f

@t
� � � rf� Fex � r�f�Q�f; f	 (1)

where f�x; �; t	 is the probability of finding a gas particle at location
xmovingwithmicroscopic velocity � at time t,Fex indicates external
body force due to gravity or of electromagnetic origin, and the
operatorQ accounts for the binary particle collision occurring within
a differential collision cross section. Equation (1) is difficult to solve
becauseQ involves the integral of f over the velocity space aswell as
over the collision cross-sectional space. Consequently, Eq. (1)
becomes a very complicated integral–differential equation whose
solution up to now could be obtained only by appropriatelymodeling
Q.

In the conventional approach, Fex � 0 and the popular BGK
kinetic model with a single relaxation time is adopted for Q.
Consequently,Q in Eq. (1) can be replaced by��f � feq	=��, where
� is the relaxation time, � is the relaxation time factor, f is the
distribution function, and feq is its equilibrium value given by the
Maxwell–Boltzmann distribution function

feq � �

�2�RT	D=2
exp

�
� j� � uj2

2RT

�
(2)

Here,D is the dimension number, 2 for two-dimensional (2D) and 3
for three-dimensional (3D) flows. According to Ferziger and Kaper
[37], from the kinetic theory point of view, single relaxation time is
tantamount to the adoption of a rigid sphere collision model. The
modeled Eq. (1) could then be discretized in the velocity space and a
9-bit square lattice model usually denoted as D2Q9 is used to
simulate 2D flows. It is shown that the unsteady compressible
Navier–Stokes equations are recovered correctly with the transport
coefficients and pressure given by

��
�
� � 1

2

�
2

D
�e� (3)

��DR

2
�0 � �� � 1	 �D� 2	R

D
�e� (4)

p� 2

D
�e (5)

c�
�������
�p

�

r
�

�����������������������
2�D� 2	

D2
e

r
(6)

� �D� 2

D
(7)

where � and �0 are the fluid thermal conductivity and diffusivity,
respectively. It is obvious that the transport coefficients are related to
D; therefore, the results yield a correct gas equation of state for 3D
flows with � � 1:4 but an incorrect state equation with � � 2 for 2D
flows. Furthermore, � > 1=2 has to be chosen if the condition of
positivity of the transport coefficients has to be realized.

B. Modified Lattice Boltzmann Method

The conventional LBM/BGK has drawbacks, and the sound speed
thus calculated will be in error for 2D flows. To remedy these
drawbacks, the conventional BGK model has to be revisited. One
possible alternative is to consider relaxing the rigid sphere collision
model. In general, a polyatomic gas can undergo translational,
rotational, and vibrational motions. If a proper macroscopic internal
energy were to be defined, both translational and rotational motions
have to be taken into account. Using DT to denote the degree of
freedom of translational motion and DR to signify the degree of
freedom of rotational motion, the total number of degrees of freedom
for a diatomic gas like air is given by DT �DR � 5. Some
measurablemacroscopic averages of theflow, such as�,�u, e, andp,
can be defined from the velocity moments of the distribution
function, where bold letters are used to denote velocity vectors and
the parameters are all normalized by the reference scales defined
above. These expressions can be written as

��
Z

f d� (8)

�u�
Z

�f d� (9)

�e� 1

2
�juj2 �DT �DR

DT

Z
1

2
fj�j2 d� (10)

�
�e� p� 1

2
�juj2

�
u�DT �DR

DT

Z
1

2
fj�j2� d� (11)

Integration of Eq. (10) suggests an explicit internal energy definition
e� �DT �DR	RT=2 for diatomic gas, and Eq. (11) can then be used
to determineponce e is known. Therefore, it can be seen that the total
number of degrees of freedom of gas molecular motions plays an
important role in the determination of p and e.

The added degrees of freedom could be incorporated into the
derivation of the unsteady compressible Navier–Stokes equations in
the following manner. If the conventional BGK model [35] with
slight modification is assumed forQ andFex is again taken to be zero
for the cases studied here, Eq. (1) can be rewritten as

@f

@t
� � � rxf�� 1

�eff
�f � feq	 (12)

Fig. 1 PSD of the effective wave-number k��x: LBM, circles; DNS,
solid line.
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where �eff is an effective relaxation time and would reduce to � in the
case of the conventional BGK model. The relaxation time,
irrespective of � or �eff , is usually much smaller than the gas particle
movement time. This disparity in time scales could be exploited in
the derivation of the unsteady compressible Navier–Stokes
equations and their transport coefficients from the Boltzmann
Eq. (12) by means of the Chapman–Enskog expansion [38]. The
expansion is about the Knudsen number ", which is defined as the
ratio of themean free path between two successive particle collisions
and the characteristic spatial scale of thefluid system.Typically, " is a
very small number and terms of order "2 can be neglected. Thus
derived, the unsteady compressible Navier–Stokes equations can be
recovered, and the transport coefficients of the fluid can be written as
[31]

�� �� � 1	�e�eff (13)

	���� � 1	2�e�eff (14)

�0 � ��� � 1	�e�eff (15)

where � and the gas equation of state are given by

� �DT �DR � 2

DT �DR

(16)

p� 2�e

DT �DR

� �� � 1	�e� �RT (17)

The relation between sound speed c and e then follows:

c2 � �p

�
� ��� � 1	e (18)

Because DT �DR � 5, � � 1:4; therefore, � and the relation
between c and e are recovered. This formulation requires the
transport coefficients to be a function of �eff . If �eff � � is assumed, it
gives rise to � / T1=2 even after the translational and rotational
degrees of freedom are considered in the collision model [31]. The
question then is how to formulate �eff so that at least � could be
rendered consistent with Sutherland’s law.

The incorrect � dependence on T could be remedied by
considering the phenomenon of fluid viscosity, which could be
interpreted as the result of momentum transfer between gas particles
before and after collisions. The distributions of particle momenta
depend on the individual particle momentum when they are far apart
and on the intermolecular potentials when they are close to each
other. The intermolecular potentials could be modeled by assuming
the molecules as rigid spheres. However, this model alone would
lead to the single relaxation time given in Eq. (12) and an incorrect
estimate of�. Sutherland (see Ferziger andKaper [37]) suggested the
inclusion of a weak but rapidly decaying repulsive potential in
modeling particle interactions and obtained a more realistic
representation of the dependence of � on T. This weak interaction
effect could be accounted for in the proposed LBM by postulating a
relaxation time for the weak repulsive potential. The relaxation times
for the intermolecular potential and for the weak repulsive potential
are then used to determine �eff for Eq. (12). The correct form for �eff
could be gleaned from the functional form of Sutherland’s law. If this
form were to be recovered correctly, �eff � �1=�1� �1=�2	 has to be
defined, where �1 � � is the relaxation time associated with the
conventional BGK model and �2 is the relaxation time associated
with the weak repulsive potential. Thus derived, � can be shown to
be given by

�� �RT�eff �
�RT

�1=�1 � 1=�2	
(19)

According to Ferziger andKaper [37], �1 could be estimated from the
rigid sphere model and the result gives �1 / T�1=2. The relaxation
time �2 could be deduced by requiring the derived � to have T

dependence as that given by Sutherland’s law. It can be shown that
�1=�2 � S0=T, where S0 is the Sutherland constant. Because
�1 / T�1=2, �2 / T1=2 follows immediately from �1=�2 � S0=T, and
both relaxation times are known. Therefore, the modified LBM
solves Eq. (12) with two relaxation times rather than one and gives
the correct gas equation of state’s � and �.

C. Numerical Scheme

Only a brief description of the numerical method is given in the
following discussion because the scheme has been described in other
references [31,39]. The discretized form of Eq. (12) is solved. The
equation is discretized in a velocity space using a finite set of velocity
vectors f�ig whereas the Maxwell–Boltzmann equilibrium function
feq is expanded in a Taylor series of � � u such that

feq � �Ai

�
1� � � u



� �� � u	2

2
2
� u2

2

� �� � u	u2

2
2

� �� � u	3
6
3

�O

�
u4


2

��
(20)

where u� �u; v	, 
� RT, and the weighting factors Ai are
dependent on the assumed latticemodel used to represent the discrete
velocity space. The weighting factors are estimated from the
constraints imposed on the evaluation of the local macroscopic flow
variables. The term on the right-hand side of Eq. (12) is evaluated
locally at every time step, whereas the second term on the left–hand
side of Eq. (12) is estimated using a sixth-order finite-difference
scheme similar to that proposed by Lele [7]. A second-order Runge–
Kutta time marching scheme is used to calculate the time-dependent
term in Eq. (12).

For the 2D diatomic gas problems studied here, two different
velocity lattices have been tested, and these are the D2Q9 and the
D2Q13 models. For the present calculation, �t for the lattice motion
is chosen to be the same as�t for timemarching, and the grid size�x
is again taken to be the same as that used in theDNS scheme. It is also
assumed the same for all M cases calculated. To obtain stable
numerical solutions for allM considered, the lattice size �x has to be
chosen so that �x=�t
 c. This choice of c yields very stable
numerical solutions for the whole range of M investigated. The
validity was found to be true for both the D2Q9 and the D2Q13
models. Like the calculations reported previously [31,39], the
D2Q13 model was found to give more accurate results, and it was
used throughout this investigation.

Essentially, the numerical scheme adopted is similar to that used to
carry out the DNS simulation. Furthermore, the same�x and�t are
adopted. Therefore, it is also a low-dispersive and low-dissipative
scheme. This fact can be gleaned from a comparison of the DNS and
the LBM numerical simulation results of a Gaussian sound pulse in a
uniform stream and the resultant PSD determined from the
waveform. A typical plot of the PSD versus the dimensionless wave
number is shown in Fig. 1. The DNS and LBM results are essentially
identical, thus lending evidence to support the claim that the
proposed LBM scheme is also suitable for DAS.

IV. Numerical Results and Discussion

Both DNS and LBM schemes are used to simulate the
aerodynamic and acousticfields created by aGaussian sound pulse in
a uniform stream. The simulation is truly a DAS approach in which
the aerodynamic and acoustic fields are resolved simultaneously.
The Reynolds number specified for the range of M investigated is
1:0 � 103. Altogether nine different inlet flows are investigated, and
these range fromM� 0:01 to 0.9. The exact choices ofM are listed
in Table 1. The same Gaussian sound pulse is specified, and it is
defined as

�� �0 � � exp

�
� ln 2 � �x� 1	2 � y2

0:22

�
(21a)
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u� u0 (21b)

v� v0 (21c)

p� p0 �
1

M2
� exp

�
� ln 2 � �x� 1	2 � y2

0:22

�
(21d)

where the inlet conditions are given by �0 � 1, u0 � 1, v0 � 0, and
p0 � 1=�M2 and � � 10�4 is chosen for the present calculations.
The accuracy of the numerical scheme used to solve the DNS and
LBM equations has already been demonstrated in Fig. 1.

The objective of the present study is to show that c can be
recovered correctly using the modified LBM, and the theoretical
relation between c and e is validated. To verify that this is the case,
two different ways of estimating c are proposed: One method is to

determine c by tracking the speed with which the peaks of the pulse
move away from each other, and the second method is to calculate c
from Eq. (18). Some sample plots of the pressure pulse for four M
cases are shown in Fig. 2. These plots further show that the DNS and
the LBM results are essentially identical. From these plots, the
distance S between the peaks can be determined, and because the
time lapse is known, the speed with which the peaks moved away
from each other can be determined. The calculations are carried out
for different S and t, and sample plots for M� 0:01 and 0.9 are
shown in Fig. 3. In this figure is also shown the least-squares fit of all
the S and t points chosen for the twoM cases presented. These results
show very small error in the determination of c by this method.

From the calculated aerodynamic and acoustic fields, p, �, and e
are known. The p and � values can be substituted into Eq. (18) to
determine c, and the c thus determined can be plotted against the
expression for � and e. The plots of c versusM for the two different
ways of determining c are given in Figs. 4 and 5. The plot of c versus
e for a diatomic gas, where � � 1:4, is shown in Fig. 6. In these plots,

Fig. 2 Instantaneous pressure fluctuations p0 � p � p0 along the x axis.

Fig. 3 Aplot of the distanceSbetween twomaximumpeaks versus time

t.
Fig. 4 A plot of the propagation speed of sound c� ������������

�p=�
p

versus

Mach numberM.
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the DNS and LBM results are denoted by symbols whereas the
theoretical analysis is represented by a solid curve. The errors in the
determination of c compared with the theoretical values are listed in
Table 1. It can be seen that a maximum error of 2.7% occurs in the
M� 0:9 case; all other cases have errors � 2%. This error could be
attributed to the lattice and grid sizes chosen. By varying these lattice
and grid sizes, a reduced error would result. In the present study,
optimal lattice and grid sizes have not been systematically
determined. However, the lattice and grid sizes were determined by
putting the emphasis on obtaining stable solutions, and this seems to
yield very small errors in the whole calculation (Table 1). In fact, the
same error is calculated for the DNS and LBMschemes. This implies
that the error is more dependent on �x than on �x. The agreement
between theoretical analysis and the DNS and LBM results is
excellent (Figs. 4–6). Both the aerodynamic and acoustic fields are

resolved correctly within this M range and Reynolds number
investigated.

The same LBM has been used to calculate three cases at different
M with and without mean flow [31]. These cases are 1) a plane
pressure pulse, 2) a circular pressure pulse, and 3) the propagation of
acoustic, entropy, and vorticity pulses in a uniform stream. All the
problems tested were wave propagation in an infinite medium. No
solid boundary is present. Very good agreement between LBM
simulations and DNS calculations is obtained.

Previous theoretical analysis [40] with hexagonal lattice shows
that linear wave propagation in a lattice gas model is anisotropic and
the propagating wave front is distorted with a magnitude depending
onwave frequency. The LBM results of cases 2 and 3 in Li et al. [31],
as well as all calculations in the present paper, correctly predict a

Fig. 5 A plot of the propagation speed of the wave c versus Mach
number M.

Fig. 6 A plot of the internal energy e versus the propagation speed of

sound c.

Fig. 7 Propagation of the sound wave in the x direction.
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circular expansion of the acoustic pressure pulses. No distortion of
the wave front is observed. This shows that sound propagation in the
present LBM model is truly isotropic. This property is extremely
important in any 2D DAS. Propagation anisotropy, even though a
weak one, could lead to incorrect calculations of the interaction
between sound and flow, and consequently the error in overall
radiating power prediction would be significant.

To verify the frequency independence of the isotropic property of
the LBMmodel, onemore case of plane sinusoidal wave propagation
in quiescent fluid is calculated. The computational domain size of the
problem is �l � x � l by �h � y � h (Fig. 7a). The same uniform
grid (of size 0:02 � 0:02) as that used in Li et al. [31] is adopted. Two
kinds of nonreflecting boundary conditions proposed by Kam et al.
[41] are used. On the upper and lower boundaries, an extrapolation
methodwith continuity for the first derivative of f invoked is applied
across the boundary. The ABC is adopted on the inlet and outlet
boundaries with two buffer regions having sizeDI � 1 andDO � 1,
respectively. The initial conditions of the fluid are �� �1,
u� v� 0, and p� p1 � 1=�. On the other hand, Re� 1:0 � 103

and M� 0:1 are specified. The wave is generated by a weak line
sinusoidal pressure excitation with amplitude "p and wavelength 	:

p� p1�1� "p sin�!t	� (22)

where !� 2�c=	. The excitation location xe is one grid from
x��l. Two calculations are performed, and the calculated density
fluctuations are shown in Fig. 7. One is excited with 	� 2 and
"p � 10�5, another is with 	� 10 and "p � 1:8 � 10�4. Evidently
the present LBM scheme is truly isotropic and no distortion in sound
propagation is observed (Fig. 7b). Furthermore, very good
agreement between LBM and DNS simulations are obtained
(Fig. 7c). These cases show that the modified LBM scheme is a valid
alternative to the DNS scheme in DAS calculations for M varying
from 0.01 to 0.9 and for different types of aeroacoustic problems.

V. Conclusions

A BGK model with two relaxation time scales is used to
approximate the collision term in the Boltzmann equation. The time
scales are chosen to represent the phenomenon of fluid viscosity to
account for the momentum transfer between gas particles before and
after collisions properly. Thus formulated, the Boltzmann equation
can be shown to recover the unsteady compressible Navier–Stokes
equations with the dynamic viscosity having the correct dependence
on temperature, and � for a diatomic gas is determined to be exactly
1.4. This modified LBM is used to calculate the aerodynamic and
acoustic fields of a Gaussian sound pulse in a uniform stream
simultaneously. The inlet Reynolds number is set at 1:0 � 103, and
the inletM vary from 0.01 to 0.9. It is assumed that there is no shock
present in the range ofM. A DNS scheme is also used to simulate the
same problem to provide a benchmark for the LBM approach. The
results of both the DNS and LBM approaches are compared with
theoretical analysis. Comparisons are made with c versus M and c
versus e. Two different ways of determining c from the numerical
calculations are carried out: one from the calculated p and � over the
whole field and another from the determination of the speed with
which the peaks of the pulse are moving away from each other. Both
methods give identical results for c. The DNS results are the same as
the LBM results, and both are in excellent agreement with the
theoretical results. The maximum error in the determination of c
compared with the theoretical value is 2.7%, and it occurs at
M� 0:9. For all other M cases, the error is either zero or less than
2.7%. In addition, the sound propagation with long (	� 10) and
short (	� 2) wavelengths is calculated. The agreement between
LBM and DNS results are excellent. There is no distortion of wave
fronts in the solutions. This is further evidence that the present LBM,
like theDNS, is truly isotropic. Therefore, themodified LBM is valid
for theM range from 0.01 to 0.9 and is a true alternative to DNS for
DAS calculations of the aerodynamic and acoustic fields
simultaneously.
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