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Introduction

HE objective of this Letter is to show that the full set of

compressible Navier—Stokes (NS) equations (which consist of
the continuity, the momentum, the thermal energy, and the gas
equation of state) can be derived from the modeled Boltzmann
equation (BE) [1] by suitably modifying the collision relaxation time
7 in the commonly assumed Bhatnagar, Gross, and Krook (BGK)
model [2]. The modeled BE thus derived is valid for dense gas only
when the mean free path between two successive particle collisions is
very small compared with the characteristic spatial scale of the fluid
system L. It is not sufficient to show that the NS equations are
recovered [3-53]; more important, it has to demonstrate that the
transport coefficients (such as bulk viscosity u, thermal conductivity
K, and the specific heat ratio y) of the fluid can be correctly replicated,
because in the solution of the NS equations, these coefficients are
specified, but they are part of the solution of the modeled BE.

Inadequacy of Existing  Model

A frequently assumed t model is the rigid-sphere model [6]; this
results in a single relaxation time t = 7, = (5/4)(A/|§]) x
(T)~'/2, where T is the gas temperature, A is the average mean free
path, and || o< +/T is the magnitude of the mean particle velocity.
The functional dependence of 7 on (7)~'/? is a result of its
dependence |&|. This treatment is tantamount to considering only the
translational degree of freedom in particle collisions. The T model
gives rise to u «x t and k « t and y = (D + 2)/D, where D is a
dimension number. This means that y is only correct for three-
dimensional flow (D = 3) of monoatomic gases. Therefore, y is not
correct for diatomic gases (such as air) and it follows that the
calculated Mach number M = U/ ¢ (where U is the fluid velocity) is
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also in error, because ¢ o /2. Because t o¢ (T)~'/2 and the derived

= pRTr, the dependence of 1 on T is not consistent with the
Sutherland law [6]. Here, p is fluid density and R is the universal gas
constant. The derived expression for « is ¥ = ¢, u; this leads to an
incorrect  dependence on 7' and a Prandtl number Pr = ¢, /i = 1,
where c, is the specific heat at constant pressure of the fluid. In other
words, the Reynolds number Re = pUL/u; the Mach and Prandtl
numbers thus deduced are different from the specifications for the
solution of the NS equations [7-11]. An attempt to address this
deficiency has been made by postulating a relaxation time matrix S to
replace t and to solve the modeled BE using the lattice approach [7].
However, the elements of S, except 7;, were not derived from
physical consideration, but rather empirically.

Because the Reynolds, Mach, and Prandtl numbers are part of the
solution of the modeled BE, their accuracies are important to a
correct recovery of the solution of the NS equations from the
modeled BE. This is especially true for aeroacoustic and shock-free
compressible flow simulations. The present Letter proposes to
recover ( (Reynolds number), y (Mach number), and « (Prandtl
number) by adopting a multiple-relaxation-time approach [7], but
with the relaxation times derived from physical consideration. This
approach does not require solving the modeled BE by the lattice
method. The modeled BE can be solved by any numerical scheme
and the solution of the NS equations is recovered. An attempt to
replicate 1 and y has been made previously [12]. This Letter presents
the derivation of k. However, for the sake of completeness, a brief
description of the derivation of u and y is first presented in the next
section.

Recovery of . and y

From the preceding discussion, it is obvious that if the Reynolds
and Mach numbers were to be recovered correctly, the correct
dependence on T has to be obtained and y = 1.4 has to be replicated
for diatomic gases irrespective of the flow dimension number. The
phenomenon of fluid viscosity could be attributed to momentum
transfer between gas particles before and after collisions. The
distributions of momenta of the particles depend on the momentum
of each particle when they are widely separated, as well as the
interactions of intermolecular potentials when two particles are in
close encounter. The intermolecular potential represents the
contributions of intermolecular attraction and repulsion to the
potential function. According to Ferziger and Kaper [6], a rigid-
sphere model poorly predicts the temperature dependence of the
macroscopic fluid properties. This is due to an overestimation of the
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potential change over the particle separation r,, ~ o,,. Sutherland
(see Ferziger and Kaper) suggests to include a weak, but rapidly
decaying, repulsive potential, ~(0,,/r,)" (n being the index of
repulsion), in the interaction and successfully provides a more
realistic description of the dependence of i on T'. The effects of this
weak potential might be more pronounced in the relaxation of a
diatomic gas, due to its more complicated molecular structure.

An attempt to account for the weak potential is made by including
the relaxation times associated with both the intermolecular potential
and the weak repulsive potential in the estimate of t. Therefore, it is
suggested to account for the translational and rotational degree of
freedom, Dy and Dy, in the derivation of an effective relaxation time
T to replace 7. This 7 was assumed to be made up of two
relaxation times, 7, and 1,; 7, is representative of the translational
relaxation and is given by the rigid-sphere model, whereas t, is
chosen to represent the rotational relaxation and could be determined
by stipulating a constraint specified by imposing the Sutherland law
for p. Thus formulated, p is given by

PRTT, ~ JT
I+7/n) (+71/1)

H=pRTT g = )

where R is the universal gas constant and 7. = 7, /(1 4+ 7,/7,). In
deriving Eq. (1), the assumption has been made that 7, is given by the
rigid-sphere model and its dependence on T is therefore given by
7, o (T)~'/2. The constraint imposed by the Sutherland law then
leads to 7, /1, = S,/T, where S,, is the Sutherland constant and an
exact determination of 7,. In other words, i as given in Eq. (1) is
modified by the factor 1/(1 + S,/T) compared with the expression
derived assuming the relaxation time to be given by 7; = t. Once pu is
calculated correctly, the determination of the Reynolds number is
also correct. In this two-relaxation-time approach, the ratio of the
specific heats is given by y = (D + Dy + 2)/(Dy + Dg), which
yields y = 1.4 for diatomic gases. This implies that the speed of
sound, as well as the Mach number, of the aeroacoustic problem can
be correctly resolved. However, k = c,, 1 is obtained, implying that
Pr=1. This means that the thermal energy exchange between
particles has not been replicated properly and the modified BGK
model needs further improvement to account for the thermal energy
exchange during the collision process.

Recovery of k

In an attempt to further rectify «, a modification based on Eucken’s
theory of heat conduction [13,14] is proposed. The use of Eucken’s
theory to recover the Fourier law of heat conduction has been
attempted before [15,16] and good results were obtained. Eucken
suggested splitting the thermal conductivity of a dense gas into two
noninteracting parts; one is due to the transport of translational
energy and the other is due to the transport of internal energy.
Because only the contribution of the rotational degree of freedom to
the internal energy transport is considered in the present study, the
specific energy e’ of a diatomic gas might be expressed as
€ = e + e = ¢y T + ¢y T, where the specific heats at constant
volume are given by ¢}, = 3R/2 and ¢}, = RDy/2,respectively [14].
In general, the local heat flux ¢ of a gas can be expressed as
q = qunc + Gin» Where g, = puu®/2 is the uncollided heat flux and
¢ = pue is the heat flux due to particle interaction. Starting from
Eucken’s theory of heat conduction [13,14], it can be shown that the
heat flux q is related to the local temperature gradient V7, as follows:

qd = Gunc + Qint = _[%C/Vpreff + C/\//p‘[eff(l + g‘)]VT (2)

where ¢ is a correction factor for thermal relaxation [14]. Using the
Fourier law of heat conduction, together with expressions for gas
physical properties obtained from the modified BE [6], Eq. (2) could
be shown to lead to an expression for «, as follows:

>

q|_5, p pe
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Eucken suggested that the ratio fr = k/cy 1 between , ¢y, and
should be constant for a specific gas. This ratio is known as Eucken’s
factor. For diatomic gases, its value is given by fr = (9y —5)/4+
(5 —3y)/2. For air, y =14 and ¢{=0.15; this gives rise to
fr ~ 196, in agreement with the value obtained experimentally
[13]. Consequently, the Prandtl number can be expressed in terms of
fE, as follows:

Hep _ HYev _ V. @)

Pr—= -
d K K fE

According to Eq. (4) and using f; &~ 1.96, Pr  0.71, thus showing
that the Prandtl number is recovered using this approach to evaluate
heat conduction between particles. From Eq. (3), it can be seen that
the derived expression for k is modified by the factor (9y + 10¢ —
6y¢ — 5)/4y compared with the uncorrected case, and this factor is
only dependent on y and a correction factor ¢ for thermal relaxation.
It should be noted that the expression for the thermal diffusivity «” is
given by k' = fruu = k/cy = fp(y — 1) petes. The net result again
is a correction factor given by f5/y. Therefore, this approach to
model heat conduction does not require the introduction of another
relaxation time to account for thermal energy exchange during the
particle collision process.

Discussion

It can be seen that the introduction of 7; and 7, is sufficient to
account for translational, rotational, and thermal energy exchanges
during the particle collision process, and this gives rise to a correct
calculation of y and the transport coefficients u and « (i.e., the
Reynolds, Mach, and Prandtl numbers can be determined correctly in
the process of solving the modeled BE). The specific heat ratio y is
replicated exactly by taking into account the weak repulsive potential
in the collision process. This, together with Sutherland’s law, leads to
a relation between 7, and 7, and to the result 7. = 7, /(1 + S, /7).
The factor 1/(1 4+ S,/T) can be interpreted as a correction factor for
7;. This correction factor allows p (Reynolds number) to be
recovered; whereas another correction factor given by (9y + 10¢ —
6y¢ — 5)/4y permits k (Prandtl number) to be replicated exactly.
Physically, this means that the exchange of linear and angular
momentum, and the exchange of thermal energy, occur in the same
time scale t;; the net exchange results only differ by a correction
factor. Furthermore, these results imply that the correct calculation of
y is crucial to the recovery of the NS equations and their transport
coefficients. This interpretation is drawn because of the interrelation
between y and T and the fact that T can be expressed as ¢?/yR.

The successful recovery of the Reynolds and Mach numbers has
been validated by Li et al. [12,17] In their approach, a lattice
Boltzmann method was used to solve the modeled BE using aD2Q13
velocity lattice. Aeroacoustic problems were used to carry out the
validation and these include the propagation of plane and circular
pressure pulse, interaction of acoustic, entropy and vortex pulses,
plane sinusoidal wave propagation in a quiescent fluid, and a
Gaussian sound pulse. Together, these cases test the ability of the
model in their prediction of the propagation speed of sound, the
isotropic behavior of sound propagation, and the accuracy of the
model. The D2Q13 velocity lattice was sufficient to replicate the
aerodynamic and acoustic properties, and they show excellent
agreement with either theoretical solutions or with direct numerical
simulation results obtained with a sixth-order finite difference
scheme, similar to that proposed by Lele [18]. In particular, the Mach
number was replicated exactly over arange, 0.01 < M < 0.9. Some
of the cases treated by Li et al. were also reported by Tsutahara et al.
[9] and Kang et al. , in which a velocity lattice of D2Q21 was
assumed. However, their results were not as clean and not as accurate
as those obtained by Li et al.; this surprisingly good result could be
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attributed to the correct recovery of p and y in spite of a relatively
coarse velocity lattice.

The effect of nonreflecting boundary conditions on aeroacoustic
simulations was investigated and good results were obtained [19].
Further verification of this modeled BE by considering acoustic
scattering of a sinusoidal pulse by a zero circulation vortex and
acoustic interaction with a line heat source is also carried out. This
way, the ability of the modeled BE to replicate sound scattering and
the effect of the Prandtl number on sound propagation could be
assessed.

Conclusions

It has been shown that the complete set of unsteady compressible
Navier-Stokes equations can be derived from an improved BGK
modeled Boltzmann equation. Thus formulated, the first coefficient
of viscosity and the thermal conductivity are recovered correctly,
together with the specific heat ratio for diatomic gases.
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