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It is known experimentally that a grazing flow has significant influence on the
performance of a resonant acoustic liner. As yet, detailed understanding of the effect in fluid
dynamics or acoustics terms is not available. One principal reason for this is the smallness of
the openings of the resonators of present day acoustic liners. The smallness of the holes
makes in-depth experimental observation and mapping of the fluid flow field around the
opening of a resonator in the presence of a grazing flow extremely difficult. As a result, there
is a genuine lack of data leading directly to a lack of understanding. In this study, numerical
simulations of the flow field around a slit resonator in the presence of a grazing flow under
acoustic forcing are carried out. It is observed that at high sound pressure level, vortices are
shed from the corners of the resonator opening. Some of these vortices merge together.
Others are absorbed by the wall boundary layer. The simulated results indicate that a strong
merged vortex is convected downstream by the grazing flow and persists for a long distance.
This suggests possible fluid mechanical interaction between neighboring resonators of an
acoustic liner when there is a grazing flow. This possible interaction, as far as is known, has
not been included in any theoretical or semi-empirical model of acoustic liners. Detailed
formulation of the computational model, as well as computational algorithm, are provided.
The computation code is verified by comparing computed results with an exact linear
solution and validated by comparing with measurements of a companion experiment. It is
shown that the computation code is of high quality and accuracy.

 I. Introduction
COUSTIC liner is, without doubt, one of the most effective means of suppressing ducted fan noise. The study
of the performance of acoustic liners and their damping mechanisms began in earnest with the introduction of

commercial jet aircrafts. A few of the influential early works are, Ingard et al.1,2, Melling3 and Zinn4. From that time
on, there have been numerous investigations on this subject. Many investigations were experimental. Others
involved the development of semi-empirical or theoretical models. More recently, there were also studies by direct
numerical simulation. It soon became clear that grazing flow inside a jet engine had a significant impact on acoustic
liner performance. As a result, a considerable body of research work was devoted to the effect of grazing flow5–11.

Recently, aircraft noise has become a sensitive environmental issue as well as a critical factor in aircraft
certification. The need to reduce fan noise became more urgent. This stimulated vigorous new research activities on
grazing flow effects on acoustic liner performance. Several approaches have been followed aiming to predict the
impedance of the liners in the presence of a flow. Semi-empirical models of flow effects were developed by Rice12,
Hersch and Walker13, Dupère and Dowling14, Elnady and Buden15, just to name a few. The use of a vortex sheet/thin
shear layer  model led to sophisticated mathematical analysis by Ronneberger16, Howe et al.17, Kaji et al.18, Grace
and Howe19, Howe20, and Jing et al.21. However, Jing et al. pointed out that some of the vortex sheet models had not
been verified experimentally. The effect of grazing flow on the resistance and reactance of an acoustic liner involves
fairly complex fluid mechanical phenomena. To deal with such complexities, a number of investigators, e.g., Kooi
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and Sarin9, Nelson et al.22, Worraker and Halliwell23, Malmary and Carbonne24, Walker and Hersh25, chose to take a
primarily experimental approach. However, because the openings of the resonators of a resonant acoustic liner are
very small, there has not been any detailed experimental measurements of the micro-fluid flow field around the
mouths of the resonators, even though there has been considerable agreement that most of the acoustic dissipation
takes place in these regions. Thus, even though a good deal of progress has been made in describing and quantifying
the gross properties of acoustic liners (e.g., the works of Watson et al.26,27), there is still a lack of basic
understanding of the dissipative mechanisms associated with the micro-scale fluid dynamics of individual
resonators, especially in the presence of a grazing flow.

With rapid advances in Computational Aeroacoustics (CAA) methodology and the availability of fast parallel
computers, it becomes possible to investigate the flow physics of acoustic liners by numerical simulation. In an
earlier work, Tam and Kurbatskii28 found that the flow around the mouth of a resonator of a resonant acoustic liner
could take on two distinct regimes. At low incident sound pressure level, acoustic dissipation was accomplished by
the development of strong unsteady shear layers adjacent to the walls at the opening of a resonator. Acoustic energy
was dissipated by viscous friction in the unsteady shear layers. At high level of incident sound, the flow was
dominated by vortex shedding from the corners at the mouth of the resonator opening. The kinetic energy associated
with the rotation of the shed vortices was subsequently dissipated by molecular viscosity. The transfer of acoustic
energy to the kinetic energy of the shed vortices and then dissipated by viscosity is the dominant dissipation
mechanism. This acoustic wave dissipation mechanism by vortex shedding was confirmed directly in the work of
Tam, Kurbatskii, Ahuja and Gaeta, Jr.29. In this work, experimental measurements of the absorption coefficients of a
resonator were found to agree well with numerical simulation results. The numerical simulation results were
determined by direct measurement of the kinetic energy transferred to the shed vortices using numerical data.

In a collaborative work between a NASA Langley Research Center team and a Florida State University team, a
detailed study of the fluid flow and the impedance of slit resonators in a normal impedance tube was carried out
experimentally and independently by numerical simulation30. Good agreements were obtained between experimental
results and simulation results in all cases considered. Of special interest is that in this study, broadband sound waves
were used as an input in addition to discrete frequency sound. It was observed that under broadband sound excitation
vortex shedding, although more random and chaotic, was still the dominant dissipation mechanism. Further, to
enhance vortex shedding, beveled slits were also used to form the openings of the slit resonator. It was observed that
there was, indeed, stronger vortex shedding and larger absorption coefficient.

The purpose of the present investigation is to examine the effect of grazing flow on the performance of slit
resonators by direct numerical simulation. Previously, Tam and Kurbatskii31 had simulated the flow field associated
with grazing flow over a slit resonator in an open domain. The present work may, therefore, be regarded as an
extension of this work. Here emphasis is on determining whether there could be fluid mechanical interaction
between neighboring resonators of an acoustic liner due to the convection effect of grazing flow. All previous semi-
empirical, as well as theoretical, models of acoustic liners do not account for such possible interaction. In addition, a
companion experiment was performed. The experimental results are used to validate the present numerical
simulation code. It will be confirmed that the earlier conclusion of Tam and Kuratskii28 that, depending on the sound
pressure level, the acoustic damping mechanism changes from unsteady shear layer viscous dissipation to chaotic
vortex shedding remains valid even in the presence of a Mach 0.2 grazing flow.

The remainder of this paper is as follows. In Section II, the computation model is presented. Verification of the
computation algorithm and computer code by comparing numerical solution with exact (linear) analytical solution is
discussed in Section III. The main results of this work are reported in Section IV. These consist of steady state flow
pattern, flow field behavior of shed vortices at high incident sound pressure level, and comparison between flow
patterns calculated from numerical simulation data and direct experimental measurements at low sound pressure
levels. A summary and conclusions are provided at the end of this paper.

 II. Computational Model
The companion experiment of the present numerical simulation effort uses a wind tunnel, which is 24” (61 cm)

wide and 10” (25.4 cm) high as shown in Fig. 1. It is 5” (12.7 cm) deep in the third dimension. A two-dimensional
resonator with a dimension of W = 2” and L = 2.262” is housed at the bottom of the wind tunnel. The resonator has
an opening of 0.25” width and 0.125” thickness, which spans the full 5” depth of the test section. These dimensions
were chosen to provide a Helmholtz resonance frequency near the planned 625 Hz test frequency. An acoustic driver
is mounted on the top of the wind tunnel. To begin an experiment or simulation, the acoustic driver is turned on. The
acoustic waves generated create an incident sound field impinging on the resonator. In the numerical simulation, the
geometry and dimensions of the experimental facility are used. The wind tunnel produces a nearly uniform flow
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except adjacent to a wall. On the bottom wall, a boundary layer is formed. This is the grazing flow condition
surrounding the resonator.

A. Mesh Design
In addition to a very accurate time

marching scheme, a well designed
mesh is necessary to ensure a high
quality numerical simulation. The
present grazing flow problem
involves some very large disparate
length scales. The smallest scale is
the viscous scale associated with the
Stokes layer. In the presence of an
oscillating pressure field, a Stokes
layer is formed adjacent to a wall.
Stokes layer consists of sheets of
fluid oscillating parallel to the wall
with a wavelength l given by (see
White32)

† 

lStokes =
4pn

f
Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

1
2

where n is the kinematic viscosity of the fluid and f is the frequency of oscillation. In this work, the 7-point stencil
Dispersion-Relation-Preserving (DRP) scheme33 is used for all time marching computations. This scheme is
designed to offer good accuracy if 7 to 8 mesh points per wavelength is used in the computation. Thus, the spatial
mesh spacing requirement for the resolution of the Stokes layer is,

† 

DxStokes =
1
8

4pn
f

Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

1
2

. (1)

To be able to provide adequate resolution in different parts of the
physical domain, a multi-size mesh is used in the numerical
simulation. The smallest size mesh is placed at the mouth of the
resonator as shown in Fig. 2. The mesh size is determined by
formula (1), with n = 0.0225 inch2/sec (kinematic viscosity for
air) and an incident sound frequency of 625 Hz. It is found DxStokes

= 0.002657 inches. The resonator opening has a width of 0.25
inches and a depth of 0.125 inches. Therefore, by using a square
mesh in an array of 120 ¥ 60 gives a mesh size D = 0.00208”. This
meets the requirement of providing sufficient resolution for the
Stokes layers adjacent to the wall. The notation D2, D4, D8, D16 and
D32 will be used to denote square mesh of size equal to 2, 4, 8, 16
and 32 times that of D. Fig. 2 shows the mesh design used inside
the resonator. The mesh size increases by a factor of 2 as one goes
into the next mesh block starting from the mouth of the resonator.

Figure 3 shows the mesh design inside the wind tunnel. Only
half the computation domain is shown. The other half is
symmetric about the centerline of the resonator and acoustic
driver. Away from the mouth of the resonator in the upstream and
downstream directions, rectangular meshes are used. The notation
D2n,2m denotes a rectangular mesh with mesh size 2nD  in the
vertical direction and 2mD in the horizontal direction. The largest

Figure 1. Flow configuration and computation domain.

Figure 2. Mesh design inside the resonator.
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size mesh used is D32 in the uppermost mesh layer adjacent to the top wall. With the mesh arrangement decided, it is
easy to check that the mesh size changes across
a boundary of any subdomain is 2.

B. Governing Equations
 Non-dimensional variables are used. The
following scales are adopted

             

† 

Length scale = width of slit 
         =  0.25 inches

             

† 

Velocity scale = a0
               (speed of sound)

             

† 

Time scale = width of slit
a0

             

† 

Density scale = r0
   (density of
     incoming flow)

               

† 

Pressure and stresses
        scale = r0a0

2

The compressible Navier-Stokes equations are,

† 

∂r
∂t + u

∂r
∂x + v

∂r
∂y + r

∂u
∂x +

∂v
∂y

Ê 
Ë 
Á 

ˆ 
¯ 
˜ = 0

(2)

† 

∂u
∂t + u

∂u
∂x + v

∂u
∂y = -

1
r

∂p
∂x +

1
r

∂txx
∂x +

∂txy
∂y

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

(3)

† 

∂v
∂t + u

∂v
∂x + v

∂v
∂y = -

1
r

∂p
∂y +

1
r

∂txy
∂x +

∂tyy
∂y

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

(4)

† 

∂p
∂t + u

∂p
∂x + v

∂p
∂y + gp

∂u
∂x +

∂v
∂y

Ê 
Ë 
Á 

ˆ 
¯ 
˜ = 0

(5)

† 

t xx =
2

Re
∂u
∂x

,  t xy = t yx =
1

Re
∂u
∂y

+
∂v
∂x

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ,  t yy =

2
Re

∂v
∂y (6)

where Re = (width of slit)a0/v is the Reynolds number based on T and a0. Viscous dissipation is neglected in the
energy equation. In the numerical computation, the full viscous equations are used only in regions with mesh size D
and 2D. These are regions closed to the bottom wall of the wind tunnel and the mouth of the resonator. Outside these
regions, the viscous terms are dropped (Euler equations are used) as the flow is nearly inviscid.

The governing equations are solved computationally using the multi-size-mesh multi-time-step DRP scheme34.
This is a variation of the original Dispersion-Relation-Preserving (DRP) scheme of Tam and Webb33. To ensure
numerical accuracy, a minimum of 7 mesh points per wavelength throughout the entire computation domain is used.
The time marching solution begins with zero acoustic disturbances inside the wind tunnel with the resonator blocked
off.  The solution with the given inflow is marched to a time steady state. At this time, the acoustic driver is turned

Figure 3. Mesh design in the wind tunnel.
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on and the resonator is unblocked. The numerical solution is then marched in time until a time periodic state is
attained.
C. Numerical Boundary Conditions

In the experiment, an acoustic driver is housed on the top wall of the wind tunnel. This acoustic driver sends
sound waves into the wind tunnel. The sound waves propagate across the wind tunnel impinging on the bottom wall
and the resonator. Part of the sound waves are reflected back. On reaching the acoustic driver or the wall on the top,
the reflected sound waves are once more being reflected. Because of the repeated reflection, a standing wave pattern
will eventually develop inside the wind tunnel. Since acoustic energy is pumped into the wind tunnel by the acoustic
driver, in order to establish a time periodic state, sound energy has to be leaked out from the two open boundaries of
the computation domain. This observation is taken into consideration in the choice of upstream and downstream
boundary conditions. Quality numerical treatment of the wind tunnel boundaries is crucial to the accuracy of
numerical simulation. This includes the prescription of numerical boundary condition on the top and bottom wall of
the wind tunnel as well as the open ends on the two sides as shown in Fig. 1.

The no-slip boundary conditions, u = 0 , v = 0, are used at the bottom wall and around the opening of the
resonator. On the top wall, the motion of the acoustic driver is modeled by the following boundary condition,

† 

y = H ,        v = Re
-Ae

- ln 2( ) x+(L / 2)
b( )

2
- iwt

, x < - L
2 ;

-Ae-iwt , - L
2 £ x < L

2 ;

-Ae
- ln 2( ) x-(L / 2)

b( )
2
- iwt

, L
2 £ x.

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

 (7)

where L is the size of the acoustic driver and b is a short transition width. In the numerical simulation, the wall
boundary conditions are enforced by the Ghost Point method. Two ghost values, namely, p and t (the shear stress)
are used for imposing the no-slip boundary conditions. For the top wall, only one ghost value of p is needed for
enforcing boundary condition (7).

D. Inflow Boundary Conditions
At the inflow boundary, the incoming mean flow is specified. The boundary layer on the top wall is ignored (see

Fig. 4). The boundary layer adjacent to the bottom wall is important
as it interacts with the slit resonator.

The boundary layer is assumed to have a Blasius profile; i.e., at x
= xL (the location of the left boundary of the computation domain),

                                  

† 

u y( ) =
u •, y > d

u Blasius y( ), y £ d
Ï 
Ì 
Ó .                                (8)

The boundary layer thickness d or the displacement thickness d*

is assigned the same value as that of the companion experiment
( d = 0.25”). Blasius profile is expressed in terms of similarity
variable 

† 

h = 5y /d

                                      

† 

u Blasius y( )
u•

= ¢ f h( )
.

f ’(h) is tabulated in many books32.
Now at the inflow boundary, there are outgoing acoustic

disturbances. To prevent them from reflecting back into the
computation domain, a Perfectly Matched Layer (PML) absorbing boundary condition is used. Let

Figure 4. Mean flow velocity profile used
by numerical simulation at the inflow
boundary.



American Institute of Aeronautics and Astronautics
6

† 

r

u
v
p

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

=

1
u y( )

0
1
g

È 

Î 

Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 

+

¢ r 

¢ u 
¢ v 
¢ p 

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ (9)

where the first column vector on the right is the mean flow and the second represents outgoing disturbances. Since
there is flow normal to the PML, the split variable PML method is unstable. In this work, the most recent PML
boundary method proposed by Hu35 is employed. According to the formulation, the PML equation is

† 

∂u
∂t + A ∂u

∂x + B ∂
∂y u + s xq( ) + s xu +

s xM
1- M2 Au = 0

(10)

where M is the flow Mach number and

† 

u =

¢ r 
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¢ v 
¢ p 

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

,        A =
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0 M 0 1
0 0 M 0
0 1 0 M

È 

Î 
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Í 
Í 
Í 
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˚ 

˙ 
˙ 
˙ 
˙ 

,        B =

0 0 1 0
0 0 0 0
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0 0 1 0

È 
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Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
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sx is the damping coefficient of the PML and

† 

∂q
∂t

= u
. (11)

In the boundary layer, M is replaced by 

† 

u (y) . Figure 5 shows the PML at the inflow and outflow boundaries of the
computation domain.

E. Outflow Boundary Conditions
The outflow boundary condition is

treated in a similar way as at the inflow
boundary. The first task is to determine
the mean flow profile.

It will again be assumed that the
boundary layer at the outflow boundary
has a Blasius profile. The length of the
computation domain is 24.33 inches. So
that there is little change in the boundary
layer thickness from the inflow to the
outflow. Similar to the numerical
treatment at the inflow boundary (exactly
as in (9)), let
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u
v
p

È 
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Í 
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Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

=

1
u y( )

0
1
g

È 
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Í 
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˘ 
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˙ 
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˙ 

+
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¢ u 
¢ v 
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Í 
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˘ 
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˙ 
˙ 
˙ 
˙ .

The unknown vector (second vector on the right side) is governed by an equation similar to equation (10). The
computation can also be carried out in the same way.

Figure 5. Perfectly Matched Layers (PML) at the inflow and
outflow boundaries of the computation domain.
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 III. Verification of Numerical Algorithm and Computer Code
When the acoustic driver is operating at low power, the acoustic wave amplitude inside the wind tunnel is small.

Under this circumstance, the problem is effectively linear. It turns out an exact analytical solution of the linear
problem without the resonator can be found. This analytical solution is used here to verify the numerical algorithm
and computer code.

A. Analytical Solution
The linear problem is as shown in Fig. 6. The governing equations are the linearized Euler equations. In

dimensionless form, they are (for clarity, a ^ denotes a variable of the linear problem),

† 

∂ ˆ r 
∂t + M

∂ ˆ r 
∂x +

∂ ˆ u 
∂x +

∂ ˆ v 
∂y

Ê 
Ë 
Á 

ˆ 
¯ 
˜ = 0

, (12)

† 

∂ ˆ u 
∂t + M

∂ ˆ u 
∂x = -

∂ ˆ p 
∂x

, (13)

† 

∂ ˆ v 
∂t + M

∂ ˆ v 
∂x = -

∂ ˆ p 
∂y

, (14)

† 

∂ ˆ p 
∂t + M

∂ ˆ p 
∂x +

∂ ˆ u 
∂x +

∂ ˆ v 
∂y

Ê 
Ë 
Á 

ˆ 
¯ 
˜ = 0

. (15)

The boundary conditions are

† 

y = 0,        ˆ v = 0
(16)

† 

y = H ,        ˆ v = Re
-Ae

- ln 2( ) x+(L / 2)
b( )

2
- iwt

, x < - L
2 ;

-Ae-iwt , - L
2 £ x < L

2 ;

-Ae
- ln 2( ) x-(L / 2)

b( )
2
- iwt

, L
2 £ x.

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

(17)

As x Æ  ±∞, the solution represents outgoing waves. Boundary conditions (17) is the same as that used in the
numerical simulation.

To solve the above problem, the first
step is to factor out the time dependence
e–iwt. Let

              

† 

ˆ u 
ˆ v 
ˆ p 

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

= Re
˜ u x, y( )
˜ v x, y( )
˜ p x, y( )

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
 e-iwt

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô .      (18)

The governing equations for 

† 

˜ u , 

† 

˜ v  and

† 

˜ p  can easily be found by substituting
(18) into (12) to (15). The corresponding
boundary conditions are found by
substituting (18) into (16) and (17). The

resulting problem has constant coefficients. The x-dependence may now be reduced to algebraic dependence by the
application of Fourier transform. The Fourier transform and its inverse are defined by,

Figure 6. Configuration of wind tunnel for the linear problem.
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† 

u y,k( ) =
1

2p
˜ u x, y( )e-ikx

-•

•

Ú dx;      ˜ u x, y( ) = u y,k( )eikx

-•

•

Ú dk
(19)

where k is the Fourier transform variable.
The transformed problem (denoted by an overbar) is

† 

-i w - Mk( )u = -ikp 
, (20a)

† 

-i w - Mk( )v = -
dp 
dy

, (20b)

† 

-i w - Mk( )p + iku +
dv 
dy = 0

. (20c)

By eliminating 

† 

u  and 

† 

p , an equation for 

† 

v  is found.

† 

d2v 
dy2 - 1- M2( ) k +

w
1- M

Ê 
Ë 
Á 

ˆ 
¯ 
˜ k -

w
1+ M

Ê 
Ë 
Á 

ˆ 
¯ 
˜ v = 0

.

The solution for 

† 

v  and its companion variable 

† 

p  is

† 

v y,k( ) = B e
1-M 2( )1/2

k + w
1-M( )1/2 k- w

1+ M( )1/2y
- e

- 1-M 2( )1/2
k + w

1-M( )1/2 k- w
1+ M( )1/2yÈ 

Î 
Í 

˘ 

˚ 
˙ 

, (21)

† 

p y,k( ) =
i w - Mk( )

1- M2( ) k +
w

1- M
Ê 
Ë 
Á 

ˆ 
¯ 
˜ k -

w
1+ M

Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

dv (y,k)
dy

. (22)

The unknown coefficient B is determined by the Fourier transform of boundary condition (17). It is easy to
verify that the Fourier transform of 

† 

ˆ v  at y = H is,
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v H,k( ) =
1

2p
ˆ v x, H( )e-ikx

-•

•

Ú dx = -
A
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p
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Ê 
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¯ 
˜ 

1/2
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Ë 
Á 

ˆ 

¯ 
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˚ 
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k
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Ì 
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Ó Ô 

¸ 
˝ 
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˛ Ô . (23)

where erf( ) is the error function. On combining (21) and (23), B is found to be,

† 

B =
v H,k( )

2sinh 1- M2( )1/2
k +

w
1- M

Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

1/2
k -

w
1+ M

Ê 
Ë 
Á 

ˆ 
¯ 
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1/2
H

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

. (24)

At this stage, the complete solution in Fourier space is known. On inverting the Fourier transform, the pressure
distribution inside the wind tunnel may be calculated,

† 

p x, y, t( ) = Re p y,k( )eikx- iwt

-•

•

Ú dk
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô . (25)
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The k-integral of (25) may be evaluated by
numerical integration along the slightly deformed
contour as shown in Fig. 7. The branch cuts of the
square root functions are also shown in this figure.
The evaluation of the integral is carried out
numerically.

B. Comparisons between Numerical and
Analytical Solutions

Comparisons will now be made between the
results of the numerical solution and the analytical
solution. The pressure contour distribution inside the
wind tunnel when the acoustic driver is operating at

625 Hz will be compared first. The wind tunnel has a Mach number of 0.15. In the numerical simulation the full
Navier-Stokes equations are solved. Because of molecular viscosity, a thin boundary layer associated with the mean
flow develops over the bottom wall. The boundary layer thickness at the inflow is 0.25 inches. The analytic model is
inviscid without a boundary layer. However, it must be pointed out that at 625 Hz the acoustic wavelength is over 21
inches. This is much longer than the height of the wind tunnel (10 inches) and is equal to many times the boundary
layer thickness. Since the acoustic scale is long, the velocity gradient associated with the sound waves is small.
Hence viscous effect is not expected to be important. Figure 8 shows two sets of pressure contours. One set is found
through numerical simulation the other set is from the analytic solution. As can be seen, there is good agreement

over the entire computation domain. The good
agreement provides a useful verification of the
computer code.

Another useful test of the accuracy of the
computer code is to make use of the transient
solution. When the acoustic driver is first turned
on, many acoustic duct modes of the wind tunnel
are excited. These duct modes, over time, exit the
computation domain through the two open ends
of the numerical wind tunnel. They are then
absorbed by the perfectly matched layers.
However, there are duct modes with zero group
velocity. These waves do not propagate and are
the last transient component to vanish from the
computation domain. If the frequency of the zero
group velocity duct mode differs slightly from
the forcing frequency, then the pressure time
history at any point inside the wind tunnel will
exhibit amplitude modulation. Figure 9 shows the
pressure time history at a point 2.25 inches
downstream from the center of the acoustic
driver on the bottom wall of the wind tunnel. For
convenience, the oscillation period of the
acoustic driver is used as time unit. The
phenomenon of amplitude modulation can clearly
be seen in this figure.

The frequency of the duct mode with zero
group velocity can be calculated from the
dispersion relation. The dispersion relation of all
the duct modes are given by the zeros of
denominator of 

† 

p  or that of equation (24) in the
k-plane. Since the zeros of sinh(z) are located at z
= i np  (n =  0,±1,±2,…), it follows that the
dispersion relations are

Figure 7. The inversion contour in the k-plane. Shown
also are branch cuts  and poles ƒ  of the
integrand.

Figure 8. Pressure amplitude contours inside the wind
tunnel. Acoustic driver frequency = 625 Hz, M∞ = 0.15.
———, numerical solution; – – – –, analytical solution.

Figure 9. Pressure time history measured on the bottom wall
showing amplitude modulation.
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† 

k 2 +
2M

1- M 2 wk -
w 2

1- M 2 +
n2p 2

1- M 2( )H 2
= 0

. (26)

By differentiating (26) with respect to k, the group velocity can easily be found to be,

† 

dw
dk =

k +
Mw

1- M2

w - Mk
1- M2 . (27)

Thus, the wavenumber k0 and angular frequency w0 of the zero group velocity duct mode is related by

† 

k0 = -
M

1- M 2 w0
. (28)

But k0 and w0 are also related by the dispersion relation (26). Substitution of (28) into (26), it is straightforward to
find,

† 

w0 =
np
H 1- M2( )1/2

. (29)

For the wind tunnel operating at Mach 0.15 the lowest frequency of the zero group velocity duct mode (n = 1) is
666.7 Hz.

Let us now examine the amplitude modulation phenomenon quantitatively. Suppose the pressure signal at a point
comes from two sources with angular frequencies w1 and w2. Suppose the corresponding amplitudes are A and e. It
is assumed that the amplitude of the second signal is very small. Thus the pressure is given by

† 

p t( ) = Re Ae-iw1t + ee-i w2t+f( ){ }
(30)

where f is an arbitrary phase. The envelop of the pressure time history is given by the absolute value of the
expression in the curly brackets. Thus,

† 

Envelop of p = Ae-iw1t +ee-i w2t +f( )

= A1+
e
A

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ei w1 -w2( )t-f[ ]

@ A +e cos w1 - w2( )t -f[ ] + O e 2( )
. (31)

Therefore, there is a small amplitude modulation at a frequency fmodulate given by

† 

fmodulate =
1

2p w1 - w2( )         or a period         Tmodulate =
2p

w1 - w2
=

1
f1 - f2 . (32)

For the problem under consideration, the forcing frequency is 625 Hz. The forcing period Tforcing = 1.6 ¥ 10–3 sec.
The frequency of the zero group velocity duct mode is 666.7 Hz. By (32) the period of amplitude modulation is 2.40
¥ 10–2 sec. or 14.99 Tforcing. By measuring directly the period of amplitude modulation of the numerical simulation
data (see Fig. 9), Tmodulation is found to be 14.93Tforcing. This is very close to the exact value.
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Since the data of the numerical
simulation is available, it is possible to
determine directly from the data the pressure
spectrum. In addition to the forcing
frequency, the frequency of the zero group
velocity duct mode should also be observed.
Figure 10 shows the computed noise
spectrum at a point on the bottom wall of the
wind tunnel 2.25 inches downstream of the
center of the acoustic driver. The dominant
spectral line at 625 Hz is the forcing
frequency. The much smaller spectral line is
the frequency of the zero group velocity duct
mode (n = 1). The measured value is 665 Hz,
which is very close to the theoretical value
of 666.7 Hz. It is worthwhile to point out
that duct modes are formed by the coherent
reflection of sound at the duct wall. In a
numerical simulation, the frequency of the
zero group velocity duct mode, therefore,
depends critically on the quality of the
computation scheme and numerical
boundary conditions. That the measured
frequency is so close to the exact value
verifies that the DRP marching scheme, the

ghost point boundary condition (imposed at the walls) and the PML absorbing boundary condition (enforced at the
two open ends of the computation domain) used in developing the computer code are accurate and of high quality.

C. Validation of Wind Tunnel Computational Code.
Pressure measurements were carried out along the bottom wall of the wind tunnel in the companion experiment.

In the experiment, the sound pressure level at the top was set at 130 dB. The wind tunnel speed was 30 m/s. The
acoustic driver operated at 625 Hz frequency. Figure 11 shows a comparison of the sound pressure level distribution
along the bottom wall from the simulation data and from the experiment. Figure 12 shows a corresponding
comparison of the phase distribution. As can be seen, there is good agreement overall. It is to be noted that the sound
pressure level differs by nearly 20 dB between the center of the wind tunnel and the farthest measurement point
downstream. This is a fairly large dynamic range. It is, however, well captured by the numerical simulation
providing further confidence in the accuracy of the computation code.

Figure 11. Distribution of sound pressure level along the bottom wall of the wind tunnel.
Speed = 30 m/s, frequency = 625 Hz.;  ——— numerical , p experiment.

Figure 10. Acoustic spectrum computed at a point 2.25"
downstream of the center of the acoustic driver on the bottom
wall of the wind tunnel. The dominant spectral line is at 625 Hz.
The secondary spectral line is at 665 Hz.
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Figure 12. Distribution of the phase of pressure signal along the bottom of the wind tunnel.
Speed = 30 m/s, frequency = 625 Hz.;  ——— numerical , p experiment.

 IV. Numerical Results and Comparisons with Experiments
Results obtained from numerical simulations are reported below. Comparisons between numerical results and

experimental measurements are also presented.

A. Steady Mean Flow

Figure 13a. Streamlines of steady flow inside and outside the slit resonator. Wind tunnel
speed = 30m/s.

The steady mean flow inside the slit resonator at a constant wind tunnel speed is found by time-marching the
numerical solution to a time independent state (without acoustic driver). Figure 13a shows the computed streamline
pattern at a wind tunnel speed of 30 m/s. Inside the resonator, the flow separates into two zones. At the month of the
resonator, the flow field is made up of a vortex with clockwise rotation. This vortical flow is driven by the ambient
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flow from left to right. Deeper inside the resonator a counter-clockwise vortical flow is formed. This vortical flow is
driven by the vortical flow at the month of the resonator. Figure 13b shows an enlarged streamline pattern of the
flow field at the mouth of the resonator. The separation streamline between the two vortical flows dips down inside
the resonator. In addition to the general counter-clockwise circulation inside the resonator, there are two secondary
flow regions at the upper corners of the resonator. The existence of these secondary circulation regions at the upper
corners of the resonator is not expected a priori.

Figure 13b. Enlarged streamline pattern at the mouth of the resonator.

B. High Level Incident Sound Waves
The flow field at the mouth of the resonator changes drastically as the incident sound pressure level (SPL)

increases. Above a certain SPL the flow field is dominated by vortex shedding. Vortices are shed at the corners of
the mouth of the resonator as fluid flows in and out in response to high and low pressure created by the incident
sound. Figures 14a and 14b are pictures of the density field of the flow. They show the vortices shed at two instants
of a cycle of the incident wave. The incident wave SPL is 140 dB. Figure 15 shows the sequence of vortex shedding
and subsequent merging. Figure 15a is at the beginning of a cycle when pressure outside the resonator increases.
Fluid starts the process of flowing into the resonator. The lone vortex A adjacent to the left wall is a trapped vortex.
It was shed at the lower left corner of the mouth of the resonator at the end of the previous cycle when the fluid
flowed out. The vortex was carried up by the flow but did not reach the outside to escape. The flow reversed
direction and now the vortex is being swept downward. As the flow velocity into the resonator increases, three
vortices C, B and E are shed at the three corners of the resonator opening. Vortices C and E have clockwise rotation.
Vortex B has counter-clockwise rotation. This is shown in Fig. 15b. Because of the general counter-clockwise
circulation inside the resonator, vortices A and C are convected to the left of the opening of the resonator and vortex
B moves to the center. At this time, flow reversal takes place. The reversed flow creates vortex D with a clockwise
rotation at the lower right corner as shown in Fig. 15c. The outflow ejects vortices B, D and E into the outside wind
tunnel flow as indicated in Fig. 15d. These three vortices are then swept downstream to the right of the opening by
the mean flow of the wind tunnel. This is shown in Fig. 15e. Vortices D and E have the same rotation. They merge
into a large vortex. The two surviving vortices are shown in Fig. 15f. Vortex B has a counter-clockwise rotation.
This is opposite to the natural rotation of the boundary layer fluid adjacent to the bottom wall of the wind tunnel. As
a result, it becomes weaker and weaker. Finally, it disappears or completely absorbed by the boundary layer flow.
The remaining vortex D + E is convected downstream. This vortex persists over a long distance downstream. In the
simulation, it can be observed even at a distance of 2 to 3 resonator widths downstream (see Fig. 16) This vortex
may interfere with the flow of a downstream resonator if one is there.
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                                          Figure 14a. Beginning of a cycle.

                                     Figure 14b. At a quarter of a period.

                      Figure 14. Vortex shedding at the mouth of the resonator.



American Institute of Aeronautics and Astronautics
15

            Figure 15. Shedding and merging of vortices at the mouth of the resonator.
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                           Figure 16. Vortex downstream of the resonator.

C. Low Level Incident Sound Waves
At low incident sound pressure level, e.g., 130 dB, there is no vortex shedding at the mouth of the resonator. The

changing streamline patterns during a cycle as computed are shown in Fig. 17. Shown in this figure also are the
streamline patterns measured experimentally by split film CT anemometry. Figure 17a is at the beginning of a cycle.
The flow in the opening of the resonator consists of a clockwise rotation. The outside flow simply slides over the
resonator opening. Figures 17b to 17h show the flow pattern at every 1/8 cycle later on. The experimental
measurements are confined to the space outside the resonator. They do not show the streamline pattern inside the
mouth of the resonator. By comparing the measured streamline patterns with the computed patterns, it is easy to see
that there is good agreement over the entire cycle of oscillation. The good agreement is regarded as a validation of
the present computer code.

                                                                Figure 17a. t = beginning of a period.
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                                                                   Figure 17b. t = 0.125 (T = period).

Figure 17c. t = 0.25 (T = period).

Figure 17d. t = 0.375 (T = period).
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Figure 17e. t = 0.5 (T = period).

Figure 17f. t = 0.625 (T = period).

Figure 17g. t = 0.75 (T = period).
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Figure 17h. t = 0.875 (T = period).

Figure 17. Changing streamline pattern at low incident sound pressure level. (A) Experiment, (B) Simulation.
T = period of oscillation. Wind tunnel speed = 30m/s. Forcing frequency = 625Hz.

V. Summary and Conclusions
A direct numerical simulation (DNS) code based on the dispersion-relation-preserving (DRP) scheme and

advanced computational aeroacoustics (CAA) numerical boundary treatments for simulating the flow and acoustic
fields of a slit resonator in a grazing flow has been developed. The code has been verified by comparison with exact
linear analytical solution. Direct numerical simulations of the grazing flow over a slit resonator with or without
acoustic excitation have been carried out. Steady state results show the existence of a vortex flow at the mouth of the
resonator. Inside the resonator, the flow consists mainly of a counter rotating vortex. At high incident sound pressure
level (SPL) the flow at the mouth of the resonator is dominated by vortex shedding. Vortex shedding is the principal
mechanism for the dissipation of acoustic energy.  The vortex shedding and merging sequence is documented.
Outside the resonator, a vortex with rotation compatible with the boundary layer flow persists for a long distance
downstream. This vortex might interfere with the flow field of a downstream resonator. This type of fluid
mechanical interaction between neighboring resonators of an acoustic liner has not be included in all previous liner
models. Future models should seriously consider taking this type of interaction into account. At low SPL, there is no
vortex shedding. The dominant acoustic damping mechanism is viscous dissipation in the unsteady boundary layer
around the mouth of the resonator. The streamline patterns found by numerical simulation agree well with
experimental measurements.

The present computational model is not perfect and definitely has room for improvement. First is that the
simulation is strictly speaking valid only for acoustic liners with large aspect ratio resonators. Second is that the
boundary layer in the present simulation is laminar. Recently, the authors have performed three-dimensional
simulations of an aspect ratio 1.5 resonator in a normal impedance tube. At high incident sound pressure level,
vortex shedding was observed as in the case of a two-dimensional slit resonator. However, three dimensional
vortices form closed loops. It is not clear how far such vortices could persist in the presence of a turbulent grazing
flow. The answers to these questions are obviously important to acoustic liner design. It is hoped that future work
will address and clarify these issues.
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