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This paper presents an analytic time domain formulation for acoustic pressure gradient 

prediction in a moving medium, which has significant application potential in evaluating the 

acoustic scattering boundary condition. Based on the convective Ffowcs Williams–Hawkings 

equation, a semi-analytic time domain acoustic pressure gradient formulation with a form 

involving the observer time differentiation outside the integrals is first developed, and then 

the desired analytic time domain acoustic pressure gradient formulation is derived. Because 

the derived formulations are performed directly in the time domain, they are particularly 

applicable to the moving observer case. Simulation results for a stationary monopole source, 

a stationary dipole source, as well as a rotating monopole source in a moving medium 

demonstrate the effectiveness and accuracy of the proposed formulations for both stationary 

and moving sources with moving observers. 

Nomenclature 

A   =  amplitude of velocity potential, m
2
s

-1
 

0c   =  speed of sound in undisturbed medium, ms
-1

 

f   =  data surface function 

G   =  time domain Green's function in a steady, uniform subsonic flow, m
-1 

H   =  Heaviside function
 

L   =  source strength of the loading source, Pa 
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iL   =  strength of the loading source components, Pa 

iL   =  /iL , Pas
-1

  

RL   =  ii RL ~ , Pa 

RL   =  ii RL ~ , Pas
-1

  

*R
L   =  

*~
ii RL , Pa  

ML   =  iiML , Pa  

M   =  source Mach number vector  

iM   =  components of source Mach number vector  

iM   =   /iM   

RM   =  ii RM ~   

RM   =  ii RM ~   

*R
M   =  

*~
ii RM   

M   =  moving medium Mach number vector  

iM   =  components of moving medium Mach number vector  

RM   =  ii RM ~
   

*R
M


  =  

*~
ii RM   

MM   =  iiMM   

LM   =  iiLM , Pa  

in   =  components of unit vector normal to the data surface
  

p   =  sound pressure, Pa
  

p   =  pressure of local fluid, Pa
  

0p   =  pressure of undisturbed medium, Pa  

Q   =  source strength of the thickness source, kgm
-2

s
-1
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Q   =   /Q , kgm
-2

s
-2

  

RR ,*  =  acoustic radii, m  

*~
iR   =  ixR  /*  

iR~   =  ixR  /   

r   =  geometrical vector between source and receiver, yx  , m  

rs   =  rotating radius of source, m  

S  =  data surface  

T   =  source period, s  

ijT   =  Lighthill stress tensor, kgm
-1

s
-2

  

t   =  observer time, s  

U   =  velocity vector of moving medium, ms
-1

  

nU   =  local normal velocity of moving medium, ms
-1

  

iU   =  velocity vector components of moving medium, ms
-1

  

u   =  fluid velocity vector, ms
-1

  

iu   =  components of fluid velocity vector, ms
-1

  

nu   =  local normal velocity of fluid, ms
-1

  

iv   =  components of data surface velocity vector, ms
-1

  

nv   =  local normal velocity of data surface, ms
-1

  

x   =  observer position vector, m  

),,( 321 xxx  =  Cartesian coordinate for the observer  

y   =  source position vector, m  

),,( 321 yyy  =  Cartesian coordinate for the source 

)(   =  Dirac delta function  

ij   =  Kronecker delta  
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),( tx  =  velocity potential function of source, m
2
s

-1
  

   =  local fluid density, kgm
-3

  

   =  density perturbation of fluid, kgm
-3

  

0   =  undisturbed medium density, kgm
-3

  

i j   =  viscous stress tensor, kgm
-1

s
-2

  

   =  source time, s  

   =  source pulsation angular frequency, rads
-1

  

r   =  source rotating angular speed, rads
-1

  

Subscripts 

e   =  calculation at retarded time  

L   =  loading source  

O   =  observer point 

S   =  source point  

T   =  thickness source  

I. Introduction 

HE acoustic scattering effect in many engineering applications, such as the scattering by a fuselage boundary 

layer [1–6], the rotor noise scattered by the centerbody [7–9], and the noise scattered by a centrifugal volute [10], 

should not be neglected because it substantially influences the overall noise both in magnitude and directivity [11]. 

Based on the solutions of the Ffowcs Williams–Hawkings (FW–H) equation [12] or the Kirchhoff formulation 

[13], numerical methods such as the boundary element method [4, 14, 15] and the equivalent source method [16–18] 

have been developed to predict the acoustic scattering field in recent years. When solving acoustic scattering 

problems, the key aspect is obtaining the acoustic velocity on the scattering surface to serve as the boundary 

condition. Recently, Ghorbaniasl et al. [19] suggested the analytic formulations V1 and V1A for calculating the 

acoustic velocity directly in the time domain while the counterpart in the frequency domain was proposed by Mao et 

al. [20]. Given that the direct derivation of the acoustic velocity involved heavy algebraic manipulations, the 

acoustic pressure gradient can also be used as the boundary condition because it is related to the acoustic velocity 

T 
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through the acoustic velocity potential [21]. However, the direct numerical evaluation of the acoustic pressure 

gradient for a realistic scattering surface is computationally expensive, and therefore many researches have been 

done to obtain the analytic pressure gradient formulation. Farassat and Brentner [22] derived a semi-analytic 

formulation to calculate the acoustic pressure gradient. Lee et al. [23] first presented fully analytical formulation for 

the acoustic pressure gradient and implemented it into numerical codes. In that paper, the semi-analytical 

formulation was revisited and named formulation G1 and the fully analytic formulation was named formulation 

G1A. 

It should be noted that the medium is assumed stationary in the above studies. However, convection effects as in 

a wind tunnel experiment may be important in aeroacoustic calculations. To realize the more complex acoustic 

scattering prediction for wind tunnel experiments, the convective FW–H equation [24, 25] which explicitly takes 

into account the presence of the moving medium should be used and the acoustic scattering boundary condition in 

the moving medium should be calculated as well. Recently, Ghorbaniasl et al. [26] derived an analytic acoustic 

pressure gradient formulation in the frequency domain which accounts for the effect of a constant uniform flow with 

arbitrary direction. Considering that the time domain formulation can be useful in some cases of acoustic scattering 

prediction, for example the moving observer case, an analytic time domain acoustic pressure gradient formulation 

which explicitly takes into account the presence of the moving medium is developed in the present paper. Inspired 

by the earlier work of Lee et al. [23], we will use similar names for our analytic formulation in a moving medium in 

the current paper: G1A-M in which M stands for a moving medium. This formulation can be seen as the extension 

of formulation G1A to a moving medium case. At the same time, a semi-analytic acoustic pressure gradient 

formulation G1-M is also given as part of the present study. 

This paper is organized as follows. The convective FW–H equation and its time domain solution are first briefly 

reviewed in Sec. II A, and then the derivation of the formulation with a modified source term for acoustic pressure 

gradient is described in Sec. II B. Subsequently, three numerical test cases are used to examine the performance of 

the proposed formulations in Sec. III. Finally, conclusions are drawn in Sec. IV. 

II. Theory 

A. The Convective FW–H Equation and Its Time Domain Solution 
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Consider a uniform flow that moves at a constant velocity U  and the direction of the velocity is arbitrary. 

Reorganizing the continuity and momentum equations that include the constant convective velocity term, the 

acoustic pressure at the observer x  at time t could be described by the convective FW–H equation 
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where )( f  is the Dirac delta function and )( fH  is the Heaviside function; 0f  denotes the data surface; 

iin nUU    with the local unit outer normal ii xfn  /  in the direction ix  (i=1, 2, 3); ij  is the Kronecker 

delta; 0 , 0p , and 0c  are the density, pressure and sound speed in the undisturbed medium, respectively; p  is the 

local fluid pressure,   is the local fluid density, p  is the acoustic pressure; the local fluid velocity component is 

denoted by iu ; the local normal components to the data surface of fluid and the body velocities are nu  and nv , 

respectively; ijT  is the Lighthill stress tensor; i j  is the viscous stress tensor. 

The first two terms on the right hand side of Eq. (1) are the monopole and dipole source terms which are also 

known as the thickness and loading sources, respectively. The third term is the quadrupole source term, which is 

typically small compared to the other two terms when the fluid and moving body’s velocities are both small, and 

thus it is reasonably omitted in the subsonic calculations. By neglecting the quadrupole source term, the integral 

solution of the convective FW–H equation has been derived by Ghorbaniasl and Lacor in Ref. [27] as 

 ),,(),,(),,(   MxMxMx tptptp LT  (6) 

with the integral formulations over the data surface S 
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and 
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The mathematical background as well as the derivation procedure can be seen in Ref. [27]. In Eqs. (7) and (8), the 

acoustic radii *R  and R  are 

 2221
)(*

rM  

rR  (9) 

 )( *
rM  RR 2  (10) 

where 

 )1/(1 2
 M  (11) 

yxr                                                                              (12) 

The quantities in brackets should be evaluated at the retarded time 0/ cRt   and the symbol M  is the flow 

Mach number vector with 0/ cUM ii   , where M  is the magnitude of M  that is the body Mach number 
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vector with 0/ cvM ii  . The other nomenclatures are defined as follows: iiR RMM ~
  , 

*~
iiR

RMM 
* , 

ii xRR  /~ **
, ii xRR  /~ , iiM MMM   , iiR RMM ~ , iiR RMM ~  , 

*~
iiR

RMM * , 

iiL LMM   , iiM MLL  , 
*~* iiR

RLL  , iiR RLL ~ , iiR RLL ~  . The dots on the several quantities denote 

derivatives with respect to the source time   and the dots on the main variables do not imply the differentiation of 

any of the associated vectors implied by the subscripts, for example,  /ii LL  and 
*~
iiR

RMM  * . 

From a theoretical point of view, the analytic acoustic pressure gradient formulation can be derived by directly 

calculating the gradients of Eqs. (7) and (8), however, this process requires heavy mathematical operations. An 

alternative way to derive the analytic acoustic pressure gradient formulation will be presented in the next sub-section 

and this derivation is easily manipulated by adopting a modification of source term at the beginning of the derivation. 

B. Derivation Procedure of Formulations G1-M and G1A-M 

Starting from the convective FW–H Eq. (1) and omitting the quadrupole source term, we can obtain a simplified 

convective FW–H equation as 
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Employing Eq. (2) and adopting a modification of the source term recently suggested by Ghorbaniasl et al. [26] 
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Equation (13) can be further simplified to the following form 
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The Green's function used in a steady, uniform subsonic flow with the Mach number vector M  is 
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 0/ cRtg    (17) 

Using the above Green’s function yields the solution of the convective FW–H Eq. (15) 
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To obtain acoustic pressure gradient formulations, the gradient operation is performed to Eqs. (18–20), yielding 
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Since the integral variables S and   in Eqs. (22) and (23) are independent of the observer coordinates ix  (i=1, 2, 

3), the gradient operators can be moved inside the integrals. Using the following equation that has been derived in 

Ref. [27] 

 











































2*

*

*
0

*

)(~)(~1)(

R

gR

R

gR

tcR

g

x

ii

i


 (24) 

Equations (22) and (23) can be further rewritten as 
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In order to calculate the integral over d , the identity of generalized function [27, 28] should be used 
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With the help of Eq. (27), Eq. (25) can be written as 
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In order to avoid the numerical evaluation of the observer time differentiation outside the integral in Eq. (29), they 

are converted to the source time differentiation through the following identity [27] 
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Following the same steps used to obtain Eqs. (28) and (31) and employing an extra relation that is used to 

simplify the equations 
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Equation (26) would be further written as 
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It should be noted that Eqs. (21), (28), and (33) are together called formulation G1-M which can be seen as an 

extension of formulations G1 to moving medium cases. Comparing formulation G1-M with the acoustic pressure 

formulation Eqs. (6), (7), and (8), it is found that no more data are needed to calculate the acoustic pressure gradient 

than those used to predict the acoustic pressure in a moving medium, and therefore the two acoustic variables could 

be calculated at the same time. The observer time derivatives outside the integrals in Eqs. (28) and (33) can be 

evaluated numerically with various difference algorithm, such as the forward, backward, and central differences [29]. 

Compared with the direct numerical evaluation of the acoustic pressure gradient by using the acoustic pressure data 

of several observers, it is also an advantage that the formulation G1-M does save considerable computing resources 

because the integral data of only one observer are needed. 
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The main drawback of formulation G1-M is that it is inconvenient to deal with the cases where the observer is 

not stationary. If the observer is stationary, the numerical observer time derivatives of the integrals in formulation 

G1-M are easy to deal with because the time history of the integrals in formulation G1-M can be obtained together 

with the acoustic pressure data at each observer time step. However, if the observer is moving, several extra 

evaluations of the integrals are needed to calculate the numerical observer time derivatives at each observer time 

step. In order to eliminate the numerical observer time derivatives of the acoustic pressure gradient calculation, an 

analytic formulation called as G1A-M is deduced in the following. 

The procedure for eliminating the observer time derivatives is to apply Eq. (30) to formulation G1-M and then 

evaluate the source time derivatives of the relevant variables. Inspired by the work of Lee [23], some new functions 

and key source time derivatives are given in the following to make the formulation G1A-M more concise: 
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It should be noted that the second partial derivative with respect to the source time is denoted by two dots over 

the quantity and dots over the subscripts mean differentiation of the associated vectors implied by the subscripts, for 

example, iR RMM ~   and iiM MMM    . Taking the observer time derivatives inside the integrals of G1-M 

and using the above definitions, one obtains 
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The last step is to further rewrite Eqs. (51) and (52) as 
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where 1I  to 12I  correspond to each of the integrals in Eqs. (51) and (52). The forms of iI  are given as follows: 
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Equations (21), (53) and (54), together with the definitions of iI  are referred to as formulation G1A-M. The 

formulation G1A-M can be seen as an extension of formulation G1A to a moving medium case as it explicitly takes 

into account the effects of constant uniform flow. Compared with formulation G1-M, the observer time derivatives 

of the integrals in formulation G1A-M are no longer needed, and thus it is an advantage that only the time-

dependent input data of the flow field or at most, numerical differentiation of them are required. Moreover, the 

formulation G1A-M is more suitable to obtain the acoustic pressure gradient in cases where the observer is not 

stationary. However, it should be noted that a disadvantage of the suggested formulation G1A-M is its mathematical 

complexity, in spite of the fact that some new functions and key source time derivatives are defined to make the 

expression of G1A-M concise.  

III. Numerical Simulations 

In this section, numerical simulations of three test cases in a moving medium are presented to validate the time 

domain acoustic pressure gradient formulations developed in this paper. The first two test cases are the stationary 

monopole and dipole sources located in a moving medium with moving observers, while the third case consists of a 

rotating monopole with a moving observer for validating the corresponding moving source and moving observer 

case.  

In the first two test cases, the stationary spherical surfaces are used as the data surfaces. The acoustic pressure 

gradient time history at the observer is evaluated and compared against the analytic solution. In the third test case, a 

moving spherical surface enclosing the monopole source is used as the data surface and the predicted acoustic 

pressure gradient time history at the observer is also compared against the analytic solution. Moreover, the 

efficiency of formulations G1-M and G1A-M is compared in all three test cases. 

In order to avoid any error related to flow field simulation codes, all input flow field data on the data surface are 

obtained from the analytic solutions of the flow field generated by the sources. In this paper, the two order central 

difference algorithm is performed to obtain the results from the formulation G1-M. 

A. Test Case 1: Monopole Source in a Moving Medium 
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The first test case is to consider a single-frequency monopole source located at the origin of a Cartesian 

coordinate system in a uniform flow with an arbitrary orientation.  

The velocity potential for the monopole contains the uniform flow with an arbitrary direction is defined as [27]: 

)]/(exp[
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A
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
 ix                                                          (70) 

where the acoustic radii *R  and R  have been defined in Sec. II.A. The acoustic particle velocity can be obtained 

from the gradient of the velocity potential 
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The induced acoustic pressure and density in a uniformly moving flow with an arbitrary direction are given by the 

unsteady Bernoulli equation 
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The acoustic pressure gradient in the ix -direction is given by 
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The analytic solutions of acoustic pressure gradient at an observer point can be obtained through Eq. (74). 

In this test case, the velocity potential amplitude of the monopole is A 1 m
2
/s. The angular frequency is 

 10 rad/s. The ambient speed of sound 0c  is chosen as 340 m/s. The free stream flow density 0  is assumed 

to be 1.234 kg/m
3
. Two different mean flow Mach numbers M = (0, 0, 0) and M = (0.6, 0.1, 0.5) are considered. 

The radius of the spherical data surface S is 1 m and there are 15292 triangular elements uniformly distributed on S 

for fine enough spatial resolution. There are 30 time points used per source period )/2( T  to ensure enough 

temporal resolution. 
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Figure 1 shows the predicted acoustic pressure gradient time history at the moving observer with different mean 

flow Mach numbers. The observer is moving along the 1x -axis at a constant velocity ov = 30 m/s and its initial 

position is x (20, 0, 0) m. It can be seen that the predicted results obtained from the formulations G1A-M and G1-

M both accurately match the analytic solutions, and thus the accuracy of the proposed time domain formulations for 

the prediction of the acoustic pressure gradient is confirmed. When using a computer with an i7 CPU and 16 GB 

memory, the computation time for formulation G1-M is 3.255 s and that for formulation G1A-M is 1.402 s. The 

reason why the computation time of formulation G1-M is longer than that of formulation G1A-M is that the 

formulation G1-M needs to calculate several extra integrals at each time step when the observer is moving and the 

differentiation calculation is also time consuming. 

 

Fig. 1 (Color online) Comparison of the predicted stationary monopole acoustic pressure gradient time 

history with that of the analytic solution for different mean flow Mach numbers at the moving observer: a–c) 

M = (0, 0, 0); d–f) M = (0.6, 0.1, 0.5). 
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B. Test Case 2: Dipole Source in a Moving Medium 

The second test case is a dipole source located at the origin of a Cartesian coordinate system in a uniform flow 

with an arbitrary orientation and the dipole axis is aligned with the 2x -axis. The velocity potential for such dipole 

can be obtained by 
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The procedure for obtaining the analytic acoustic pressure gradient is similar to that in the monopole source case. 

The following relations may be used in the calculation: 
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where the spatial derivatives on the right hand sides of Eqs. (76–78) have been defined in Sec. II.A. 

In this test case, two different mean flow Mach numbers M = (0, 0, 0) and M = (0.8, 0.1, 0.4) are considered. 

The spherical data surface together with its mesh data used here are the same as those in the first test case and the 
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parameters A ,  , 0c , 0  as well as the time sampling points in one source period are also set to the same values 

as those in the first test case. 

Figure 2 shows the predicted acoustic pressure gradient time history at the moving observer which is moving 

along the 1x -axis at a constant velocity ov = 30 m/s and its initial position is x (50, 50, 0) m. The excellent 

agreement further validates the reliability and accuracy of the proposed formulations G1-M and G1A-M for acoustic 

pressure gradient prediction in the time domain. Because of the aforementioned reasons, the computation time for 

formulation G1-M, 3.505 s, is longer than that for formulation G1A-M, 1.541 s. 

 

Fig. 2 (Color online) Comparison of the predicted stationary dipole acoustic pressure gradient time history 

with that of the analytic solution for different mean flow Mach numbers at the moving observer: a–c) M = 

(0, 0, 0); d–f) M = (0.8, 0.1, 0.4). 

C. Test Case 3: Rotating Monopole Source in a Moving Medium 



21 

 

In order to show the feasibility and applicability of the proposed formulations for a moving source in a moving 

medium, a rotating monopole case is considered as shown in Fig. 3. 

 

Fig. 3 (Color online) The schematic of a rotating monopole in a moving medium. 

The monopole rotates counter-clockwise around the 3x -axis with an angular speed of r 2 rad/s at radius 

rs 1 m in the 21xx  plane and the initial position is sx (1, 0, 0) m when  =0. The corresponding parameters 

A ,  , 0c , 0  as well as the time sampling points in one source period are set the same values as those in the 

stationary monopole case. In this case, a spherical data surface, that is the same as the one used in the previous two 

test cases enclosing the monopole moving along with the source, is adopted to predict the acoustic pressure gradient 

time history at the observer. 

The observer is moving along the 1x -axis at a constant velocity ov = 30 m/s and its initial position is ox = (5, 5, 

0) m. In this test case there are two flow Mach numbers considered, corresponding to a medium at rest and a moving 

medium of M = (0.4, 0.3, 0.5). Figure 4 depicts the acoustic pressure gradient time history predicted by the 

formulations G1-M and G1A-M. The excellent agreement between the predicted results and the analytic solutions 

proves the capability of the derived formulations to predict accurately the acoustic pressure gradient in a moving 

medium. Here, the computation time for formulation G1-M is 9.410 s and that for formulation G1A-M is 3.947 s. 
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Fig. 4 (Color online) Comparison of the predicted rotating monopole acoustic pressure gradient time history 

with that of the analytic solution for different mean flow Mach numbers at the moving observer: a–c) M = 

(0, 0, 0); d–f) M = (0.4, 0.3, 0.5). 

IV. Conclusions 

In this paper, based on the convective FW–H equation, both a semi-analytic time domain formulation G1-M 

and an analytic time domain formulation G1A-M for the prediction of acoustic pressure gradient in a moving 

medium were derived. Although a moving medium, for example in a wind tunnel, can be equivalently solved in a 

stationary medium as well by using a moving observer, which was justified in Ref. [23], the formulations G1-M and 

G1A-M which explicitly take into account the presence of the uniform flow are more easily interpreted to examine 

the convective effects. 
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The validity and applicability of the derived formulations were verified through three computational test cases 

consisting of a stationary monopole source, a stationary dipole source as well as a rotating monopole source. 

Different flow configurations were considered to obtain the predicted acoustic pressure gradient data, and the 

agreement between the predicted results and analytic solutions was excellent. Meanwhile, the computational 

efficiencies of the formulations G1-M and G1A-M to deal with the moving observer cases were compared, and it 

has been found that the formulation G1A-M leads to a more efficient calculation than the formulation G1-M because 

it eliminates the observer time differentiation of the integrals. 

The derived formulations G1-M and G1A-M explicitly take into account the presence of the moving medium, 

and thus can be used to predict the acoustic pressure gradient on the scattering surface which can serve as the 

boundary condition in the aeroacoustic scattering calculation. In future work the authors will consider aeroacoustic 

scattering phenomena in the time domain using these formulations. 
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