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Nowadays, commercial aircrafts, invariably, use high-bypass-ratio dual-stream jets for propulsion. As yet, there
is still an urgent need for an accurate physics-based noise prediction theory for jets of this configuration. Thus,
an investigation is made to determine whether the Tam and Auriault theory (Tam, C. K. W., and Auriault, L.,
“Jet Mixing Noise from Fine Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 145–153), originally
developed for predicting the fine-scale turbulence noise of single-stream jets, is capable of predicting accurately
the fine-scale turbulence noise of dual-stream jets from separate flow nozzles operating at various bypass ratios.
The configuration of a separate flow nozzle is fairly complex. Hence, the jet flow and turbulence in the nozzle
region and in the region immediately downstream are also fairly complex. However, these are also the most
important noise source regions of the jet. To enable an accurate computation of the mean flow and turbulence
level in these regions, a computational aeroacoustics marching algorithm for calculating the parabolized Reynolds
averaged Navier–Stokes equations supplemented by the k–ε turbulence model is provided. It is shown that the
computed mean flow profiles are in good agreement with experiment. Extensive comparisons between computed
noise spectra and measurements are reported. They include dual-stream jets from separate flow nozzles with and
without an external plug. Jets operating at different combinations of primary and secondary jet Mach number
and temperature ratio are considered. The bypass ratios range from 1.5 to 8.0. Effects of forward flight are also
included in the comparisons. Good agreements are found not only in spectral levels but also in spectrum shapes
and directivities over many sets of data.

I. Introduction

P RESENT day commercial jet engines, invariably, use dual-
stream nozzles. The nozzle configuration can be fairly com-

plex. In most cases, the secondary nozzle is recessed back relative
to the primary nozzle. A popular design often includes an external
plug for the primary nozzle. The nozzle geometry of a dual-stream
jet has an important influence on the mixing and spatial evolution of
the jet flow. In turn, they exert a significant impact on the intensity
and spectral distribution of the noise radiated by the jet.

It is now established that there are large turbulence structures1,2

and fine-scale turbulence in a jet flow. The noise generated by the
large turbulence structures and that by the fine-scale turbulence are
different in directivity and spectral content.3−6 The purpose of this
investigation is to establish a theoretical/computational framework
by which the fine-scale turbulence noise of jets from dual-stream
nozzles can be calculated.

Panda and Seasholtz7 and Panda et al.,8 in a recent series of exper-
iments, appear to have provided the most direct evidence that there
are two sources of jet noise. One source of noise is the large-scale
turbulence in the jet flow. The principal direction of radiation is in the
downstream direction. The other source is the fine-scale turbulence.
This is the dominant noise component for radiation to the sideline
and upstream directions. Panda and Seasholtz7 and Panda et al.8

used a technique based on Rayleigh scattering to measure the tur-
bulent velocity and density fluctuations in a very localized volume
(almost point-like measurement) inside a jet. They correlated this
signal with the acoustic pressure measured by a far-field microphone
to determine the source of noise. They found significant normalized
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correlations for pointlike measurements at the end of the potential
core of the jet and far-field microphone at 30 deg (exhaust angle).
The normalized correlations for jets at Mach numbers 1.8, 1.4, and
0.95 were 22, 19, and 7%, respectively. The correlations maintained
at about the same level when the measurement point inside the jet
was moved radially over the half-width of the jet and axially over a
distance of a few jet diameters. On the other hand, when the far-field
microphone was at 90 deg, the correlation dropped to a very low
level (little correlation). Note that a far-field microphone receives
noise from all sources in a jet. If the sources are small and localized,
the correlation of far-field pressure with turbulence fluctuations of a
small blob of turbulence would be statistically insignificant. This is
the case of noise radiated by the fine-scale turbulence to the micro-
phone at 90 deg. However, the strong correlation measured at 30 deg
requires that the noise source be coherent over a sizable volume. In
this case, a good fraction of the noise receives by the far microphone
comes from the large coherent source. The experimental results of
Panda et al.8 are consistent with the earlier observations of Hurdle
et al.9 (Mach 0.99 and 0.85 jets) and Schaffar10 (Mach 0.98 jet). In
addition, the more recent correlation measurements by Bogey and
Bailly11 using numerical simulation data computed by large-eddy
simulation methodology also yielded very similar conclusions. Ev-
idently, all of these results are in support of the suggestion3−6 that
there are two noise sources in a high-speed jet. The dominant source
that is responsible for radiation in the downstream directions is the
large-scale turbulence, whereas that in the sideline direction is the
fine-scale turbulence.

In a recent work, Tam and Auriault12 developed a fine-scale tur-
bulence noise prediction theory for single-stream jets. The noise
source of the theory is the time fluctuation of the fine-scale turbu-
lence intensity. The theory also accounts for the source convection
effect, as well as the mean flow refraction effect. The turbulence
information required by the theory, including turbulence intensity,
timescale and spatial scale of fine-scale turbulence, are provided
by the k–ε turbulence model. Extensive comparisons between com-
puted noise spectra by the theory and experimental measurements
have been carried out over a large range of jet Mach numbers and
jet temperature ratios. Jets from nonaxisymmetric nozzles13 as well
as jets in simulated forward flight14 were also considered. Favorable
agreements were found for cold to moderate temperature jets.

It is known that because of the existence of a large density gradi-
ent in hot jets, the standard k–ε turbulence model is inadequate for
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predicting the evolution of the mean flow. The reasons for the inad-
equacy were recently investigated by Tam and Ganesan.15 Based on
their findings, they proposed a modification to the k–ε turbulence
model to remedy the shortcomings of the original model. Hot jet
mean flows calculated by the modified k–ε model were found to
agree well with experiments. The existence of a large density gradi-
ent in hot jets also affects the noise source strength and characteris-
tics. Doty and McLaughlin16 have measured two-point space–time
density gradient fluctuation correlation functions showing that the
noise source function for hot jets is qualitatively different from that
for cold jets. On taking into consideration the needed changes in the
k–ε turbulence model for the mean flow and turbulence calculation
and by adopting a more general noise source function for hot jets,
Tam et al.17 recently extended the Tam and Auriault jet noise theory
to hot jets. They showed that their extended jet noise theory was
capable of predicting the noise spectra of hot single jets accurately
over a wide range of Mach numbers and temperature ratios.

In this work, the extended fine-scale turbulence noise theory of
Tam et al.17 is applied, without any modification, to jets from dual-
stream nozzles. For jet flow calculations, the same modified k–ε tur-
bulence model used by Tam and Ganesan15 for their single-stream
hot jet computations is employed here without change. A set of
parabolized Reynolds averaged Navier–Stokes (RANS) equations
and a computer code using the modified k–ε turbulence model are
developed for calculating the jet mean flow and turbulence scales
and levels of dual-stream jets. The computation scheme uses a body-
fitted oblique Cartesian mesh. The computation starts at the exit
of the secondary (fan) nozzle and marches downstream. The code
has been found to be very efficient. Here details of the parabolized
equations, the computation mesh, and marching algorithm will be
reported. The computed mean flow profiles are compared with ex-
perimental measurements. Good agreements are found. The com-
puted mean flow and k–ε turbulence information are then used as
input for jet noise prediction through the extended jet noise theory.
Extensive comparisons between the calculated noise spectra at in-
let angles from 50 to 110 deg and measured data from the NASA
Langley Research Center and The Boeing Company are presented
in this paper. Jets issuing from nozzles with and without an exter-
nal plug are included in the study. Measured data with simulated
forward flight in an open wind tunnel are also used for compar-
isons. Good agreements between the computed noise spectra and
experimental measurements are found in all cases.

II. Computation of Nozzle Flow
The first step in computing the fine-scale turbulence noise of a

dual-stream jet by the Tam and Auriault theory12 is to calculate the
jet mean flow and relevant turbulence information. Given that the
nozzle geometry of these jets is fairly complex, such a computation
is not straightforward but is a rather demanding task. Figures 1a
and 1b are schematic diagrams of typical separate flow nozzles of
dual-stream jets with and without an external plug used in commer-

Fig. 1a Schematic of an axisymmetric dual-stream nozzle with
external plug.

Fig. 1b Schematic of an axisymmetric dual-stream nozzle with no
external plug.

cial aircraft engines. Most dual-stream nozzles are designed so that
the flow is unimpeded in the downstream direction. This suggests
that the nozzle geometrical parameters are chosen such that the jet
flow exerts its influence primarily in the downstream direction. In
other words, there is very little upstream influence. Under this cir-
cumstance, a parabolized marching computation of the mean flow
profile is permissible.

Computations of the mean flows of dual-stream jets were carried
out recently by Georgiadis and Papamouschou,18 Birch et al.,19 and
others. Georgiadis and Papamouschou confined their calculations
to nozzles without a center plug. Birch et al. found difficulties in
selecting turbulence models that would give accurate predictions
for the flow of even a simple axisymmetric jets. They introduced a
new zonal model for their jet flow calculations. However, they rec-
ognized that their turbulence model might have only a limited range
of applicability. Note that the flows of dual-stream jets in commer-
cial aircraft engines are, invariably, modified by the presence of a
bifurcation and noise suppression devices; for example, see Bhat,20

Nesbitt et al.,21 Mead and Strange,22 and Blackner and Bhat.23 In
this work, only axisymmetric nozzles are considered.

For separate flow nozzles, the jet flow is essentially parallel to
the nozzle wall. This fact will be taken advantage of in deriving the
governing parabolized mean flow equations. Adjacent to the nozzle
wall is a turbulent boundary layer. A complete resolution of the
turbulent boundary-layer profile all of the way to the wall would
require an exceedingly large number of mesh points. This is not
feasible for a practical jet noise computation. Fortunately, for noise
prediction purposes, the details of the turbulent boundary layer are
not important. This is because most of the noise is generated by the
turbulence in the free mixing layer between the secondary jet and
the ambient gas and the mixing layer in between the primary and the
secondary jet. Wall bounded turbulence is not an important source
of jet noise. In this work, as an approximation, a slip boundary
condition will be used at the nozzle walls in lieu of a turbulent
boundary layer. This is a reasonable approximation because the
length of the nozzle wall is short so that the boundary-layer thickness
remains very thin to the end of the wall.

In practice, the walls of separate flow nozzles, over which the
secondary and the primary jet fluids flow, are straight. This will be
assumed to be the case. If this is not true, an extra mapping may be
performed to transform the curved wall to a straight wall for compu-
tational purposes. For axisymmetric separate flow nozzles as shown
in Fig. 1, we propose to divide the computation domain into three
regions as indicated in Fig. 2. Region 3, which is downstream of the
nozzle, has no solid boundaries. The computation may be carried out
with existing parabolized mean flow algorithms.15,24 Here we will
consider only the development of a marching algorithm for mean
flow computation in regions 1 and 2. The parabolized computation
will start at the exit of the secondary jet. That is, at the upstream end
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Fig. 2 Computational domains for calculating mean flow of a separate
flow nozzle using a marching algorithm.

Fig. 3 Oblique Cartesian coordinates and local velocity component
(û, v̂).

of region 1. At this location, the mean flow conditions are given by
the exit parameters of the secondary jet. The marching algorithm
will use them as the starting conditions and compute the solution
in the downstream direction until the end of region 1 is reached. At
the upstream end of region 2, the exit conditions of the primary jet
are taken to be given by the design values. With this input and the
solution in region 1, the starting conditions for region 2 are now
complete. The mean flow computation may proceed downstream
through region 2 until region 3 is reached. For many nozzle designs,
the tip of the external plug is not pointed. A special treatment of
the flow just downstream of a blunt tip is required in computing the
mean flow in region 3. This will be discussed later.

A. Oblique Cartesian Coordinates
For the convenience of enforcing the no-flow penetration bound-

ary condition at the nozzle wall and the imposition of boundary-
layer-type approximation to the governing equations, the local ve-
locity component (û, v̂) in directions s and q will be used instead
of the regular velocity component (u, v) in cylindrical coordinates
(r, φ, x) as shown in Fig. 3. The s axis coincides with the nozzle
wall on the plane φ = constant. The q axis is normal to the nozzle
wall. The relationships between (u, v) and (û, v̂) are

u = û cos α + v̂ sin α, v = − û sin α + v̂ cos α (1)

where α is the angle of inclination of the nozzle wall with respect to
the x axis. The corresponding relationships between turbulent stress
components are

τrr = τss sin2 α − τsq sin(2α) + τqq cos2 α

τxx = τss cos2 α + τsq sin(2α) + τqq sin2 α

τr x = τxr = −τss sin α cos α + τsq cos(2α) + τqq sin α cos α (2)

A natural set of local coordinates useful for computing the jet
mean flow in region 1 is the oblique Cartesian coordinates (ξ, η)
as shown in Fig. 3. The origin of this coordinate system is at O
where the cylindrical coordinates are (r0, x0). The oblique Cartesian
coordinates (ξ, η) are related to the cylindrical coordinates by

η = (r − r0) + (x − x0) tan α, ξ = (x − x0)/ cos α (3)

The inverse is

x = ξ cos α + x0, r = η − ξ sin α + r0 (4)

B. Parabolized RANS Equations in Oblique Cartesian Coordinates
We consider the RANS equations with the k–ε turbulence model

as the governing equations of the mean flow of the jet. To cast these
equations into a parabolized form, the first step is to write out the
full set of equations in cylindrical coordinates. The second step is
to perform a change of variables from (u, v) to (û, v̂) by means of
Eq. (1). Similarly the stress components are replaced by the stress
components in the local coordinates by Eq. (2). The next step is to
transform the partial derivative from (r, x) to (ξ, η) as follows:

∂

∂r
= ∂

∂η
,

∂

∂x
= 1

cos α

∂

∂ξ
+ tan α

∂

∂η
(5)

Now it will be assumed that the jet flow is locally quasi parallel so
that ∂/∂ξ is small. This allows us to retain only the first derivative
terms in ξ and to drop all terms with higher ξ derivatives. To reduce
the number of equations in the system, the equation of state is used to
eliminate density ρ in favor of pressure p and temperature T . When
nondimensional variables are used with L ref as the length scale, uref

as the velocity scale, L ref/uref as the timescale, ρref as the density
scale, ρrefu2

ref as the pressure scale, Tref as the temperature scale, u2
ref

as the scale for k and τi j (although the actual turbulence stresses are
ρτi j ), u3

ref/L ref as scale for ε, and L refuref as scale for νt (the turbulent
eddy viscosity), the parabolized dimensionless RANS equations in
oblique Cartesian coordinates may be written out in full as

∂ û

∂ξ
= 1

û + v̂ tan α

[
− v̂

cos α

∂ û

∂η
− 1

ρ cos α

∂

∂η
(ρτsq)

+ 1

r
(τss sin α − τsq cos α − τφφ sin α)

]
(6)

∂v̂

∂ξ
= 1

û + v̂ tan α

[
− 1

ρ cos α

∂p

∂η
− v̂

cos α

∂v̂

∂η
− 1

ρ cos α

∂

∂η
(ρτqq)

+ 1

r
(τsq sin α − τqq cos α + τφφ cos α)

]
(7)

∂T

∂ξ
= 1

û + v̂ tan α

(
− v̂

cos α

∂T

∂η
− γ (γ − 1)M2

ref

p

ρ

[
∂ û

∂ξ
+ 1

cos α

∂v̂

∂η

+ 1

r
(−û sin α + v̂ cos α)

]
+ γ (γ − 1)M2

refε + γ

Pr

×
{

tan2α
∂

∂η

(
νt

∂T

∂η

)
+ 1

r

∂

∂η

[
(η − ξ sin α + r0)νt

∂T

∂η

]})

(8)

∂p

∂ξ
= 1

û + v̂ tan α

[
(û + v̂ tan α)

p

T

∂T

∂ξ
− p

(
∂ û

∂ξ
+ 1

cos α

∂v̂

∂η

)

− v̂

cos α

∂p

∂η
+ pv̂

cos αT

∂T

∂η
+ p

r
(û sin α − v̂ cos α)

]
(9)
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∂k

∂ξ
= 1

û + v̂ tan α

(
− v̂

cos α

∂k

∂η
− τsq

cos α

∂ û

∂η
− τqq

cos α

∂v̂

∂η

− τφφ

r
(−û sin α + v̂ cos α) − ε + 1

ρσk

×
{

1

r

∂

∂η

[
(η − ξ sin α + r0)ρνt

∂k

∂η

]
+ tan2 α

∂

∂η

(
ρνt

∂k

∂η

)})

(10)

∂εs

∂ξ
= 1

û + v̂ tan α

(
− v̂

cos α

∂εs

∂η
− Cε1

εs

k

[
τ (s)

sq

cos α

∂ û

∂η
+ τ (s)

qq

cos α

∂v̂

∂η

+ τ
(s)
φφ

r
( − û sin α + v̂ cos α)

]
− (Cε2 − χCε3)

ε2
s

k

+ 1

ρσε

{
1

r

∂

∂η

[
(η − ξ sin α + r0)ρv

(s)
t

∂εs

∂η

]

+ tan2 α
∂

∂η

(
ρν

(s)
t

∂εs

∂η

)})
(11)

χ = − k3

4ε3
s

[
− tan α

∂ û

∂ξ
+ ∂v̂

∂ξ
− 1

cos α

∂ û

∂η

]2

×
[
− sin α

∂ û

∂η
+ cos α

∂v̂

∂η
+ 1

r
( − û sin α + v̂ cos α)

]
(12)

ε = εs

(
1 + α1 M2

t

)
, M2

t = 2k

T
M2

ref, ρ = p

T
γ M2

ref (13)

tr = 1

cos α

∂v̂

∂η
− 1

r
û sin α + 1

r
v̂ cos α

τss = 2

3
k + 2

3
νt (tr), τqq = 2

3
k − 2νt

(
1

cos α

∂v̂

∂η
− 1

3
tr

)

τsq = − νt

cos α

∂ û

∂η
(14)

τφφ = 2

3
k − 2νt

[
1

r
( − û sin α + v̂ cos α) − 1

3
tr

]

νt = Cµ

k2

ε
+ νρ

νρ =




Cρ

k
7
2

ε2

1

ρ

∂ρ

∂η
, if

∂ρ

∂η
and

∂ û

∂η
have opposite signs

0, otherwise (15)

where τ
(s)
i j and ν

(s)
t are the same as τi j and νt with εs replacing ε.

There are nine empirical constants. Here the values recommended
by Thies and Tam24 and Tam and Ganesan15 are adopted:

Cµ = 0.0874, Cε1 = 1.40, Cε2 = 2.02, Cε3 = 0.822

γ σT = Pr = 0.422, σk = 0.324, σε = 0.377

α1 = 0.518, Cρ = 0.035

where Mref = uref/(γ RTref)
1/2 and γ is the ratio of specific heats.

In the derivation of Eq. (6), a ∂p/∂ξ term on the right-hand side is
omitted. This is necessary to eliminate upstream influence due to the
compressibility effect so that the system of equations is parabolic.
In the derivation of Eqs. (8) and (9), a boundary-layer-type approx-
imation has been invoked. Instead of the term (1/ cos α)(∂v̂/∂η)

on the right-hand side of the equations, there are two terms,
that is, [(1/ cos α)(∂v̂/∂η) + tan α(∂v̂/∂ξ)] originally. However,
boundary-layer argument suggests that (∂v̂/∂η) � (∂v̂/∂ξ). For
this reason, the tan α(∂v̂/∂ξ) term is dropped in both equations.
It turns out by neglecting this term there is an improvement on the
numerical stability of the system of equations. This allows the use
of a larger marching step in the ξ direction.

When the preceding system of equations is computed as a set of
parabolized equations in ξ , it is assumed that there is an outside flow
with û equal to 2% of the jet exit velocity unless there is a forward
flight velocity. This small external flow is necessary to maintain
a stable downstream marching solution. Previous experience15,24

indicates that the introduction of such a small outside flow only
leads to a small error in the calculated mean flow. This error does
not materially affect the intensity and directivity of the radiated
sound.

C. Numerical Stability Analysis
The numerical stability requirement is most stringent in the re-

gion outside the jet where there is a small artificially added mean
flow velocity. In this region k and ε are zero. Hence νt and the
stresses terms are zero. The linearized perturbation equations (6–9)
are, where subscript 0 denotes mean flow variables outside the jet,

∂ û′

∂ξ
= 0 (16)

∂v̂′

∂ξ
= 1

u0

[
− 1

ρ0 cos α

∂p′

∂η

]
(17)

∂T ′

∂ξ
= 1

u0

[
−γ (γ − 1)M2

ref

p0

ρ0

(
1

cos α

∂v̂′

∂η
+ 1

r
v̂′ cos α

)]
(18)

∂p′

∂ξ
= 1

u0

[
u0

p0

T0

∂T ′

∂ξ
− p0

(
1

cos α

∂v̂′

∂η
+ 1

r
v̂′ cos α

)]
(19)

When (∂T ′)/(∂ξ) is eliminated, it is found that

∂

∂ξ

[
v̂′

p

]
+ ∂

∂η

[
p′/(ρ0u0 cos α)

γ p0v̂
′/(u0 cos α)

]
+

[
0

v̂′γ p0 cos α/(ru0)

]
= 0

(20)
Let us temporarily neglect the last term of Eq. (20). We will

consider its presence later. For stability analysis, there is no loss of
generality by considering wavelike perturbations of the form

[
v̂′

p′

]
=

[
ṽ

p̃

]
ei(βη − ωξ) (21)

Substituting Eq. (21) into Eq. (20) and setting the determinant of the
coefficient matrix of the homogeneous system to zero, it is straight-
forward to find that the dispersion relation of the perturbation wave
solution is given by

ω2 = β2
/

M2
0 cos2 α or ω = ±β/M0 cos α (22)

where M0 is the Mach number of the artificial ambient flow.
In this work, the computations are carried out by the dispersion-

relation-preserving (DRP) scheme.25 One of the characteristics of
the DRP scheme is that the dispersion relation of the discretized
system is formally the same as that of the original partial differential
equations. Thus, if ω̄(ω) is the angular frequency and β̄(β) the
wave number of the discretized DRP finite difference equations, the
dispersion relation is

ω̄(ω) = ± β̄(β)

M0 cos α
(23)

With use of the four-level optimized multistep marching DRP algo-
rithm, it was proved in Ref. 25 that a stable and accurate numerical
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solution is assured if |ω̄�ξ | ≤ 0.2. That is, by means of relation (23)

|ω̄�ξ | =
∣∣∣∣ β̄�η

M0 cos α

∣∣∣∣�ξ

�η
≤ 0.2

so that

�ξ ≤ 0.2M0 cos α

(β̄�η)max

�η (24)

Formula (24) gives the maximum size of the marching step, �ξ ,
for a stable and accurate solution. If the last term of Eq. (20) is
included, it can be shown that it adds weak instability to the solution.
However, such weak instability can be eliminated by the addition
of artificial selective damping that will be discussed later. When
numerical values are inserted into inequality (24), it is found that
�ξ ≤ (�η/600). In the next section, we will discuss a way to speed
up the computation.

D. Mesh Design
For the marching scheme to be practical, we need to be able

to increase the size of the marching step �ξ as the computation
progresses in the downstream direction. Formula (24) suggests that
if a larger and larger �η can be used, then a corresponding larger and
larger�ξ may be used. The choice of�η is dictated by the resolution
requirement in computing the jet shear layer. Note that the thickness
of the shear layer increases downstream. Thus, the resolution needed
downstream is relaxed. In other words, as the shear layer thickness
doubles, the size �η used may also be doubled. This in turn allows
us to double the marching step �ξ . To make use of this strategy, a
multisize mesh in the η direction is adopted.

Figure 4 shows a multisize-mesh design that allows us to double
the mesh size in the η direction whenever such a move meets the
required resolution in the shear layer. In this design, the finest mesh
with size � is used in the region extending from the wall to a point
outside the shear layer of the jet. In Fig. 4, the center of the shear
layer is located at a distance (h + b) from the wall, where h is the
initial radius of the potential core of the jet and b is the half-width of
the shear layer. Let there be (N0 + N1) mesh spacings in this region.
Adjacent to this fine-mesh region is a mesh layer with mesh size
equal to 2�. Outside the layer with mesh size 2� is a layer of 4�
mesh. Outside the 4� mesh is a layer of 8� mesh and so on. Each
outside layer has a mesh size equal to twice that of the adjacent inner
layer.

Now as the computation proceeds downstream, it would reach a
point at which the shear layer thickness b is twice that of the initial
thickness. At the next step in ξ , we may remove every other mesh
line in the wall region. This doubles the mesh size but retains the
same spatial resolution as at the beginning of the computation. After
doubling the mesh size in the η direction, this layer merges with the
mesh layer immediately outside. The marching may resume using
a marching step size of 2�ξ . This procedure can be repeated again
and again until the desired downstream location is reached.

Fig. 4 Mesh design for downstream marching algorithm.

To implement the algorithm, special finite difference stencils
are needed at the mesh-size change interface. Such stencils have
been formulated and analyzed by Tam and Kurbatskii26 in their
development of a multi-size-mesh multi-time-step DRP scheme.
What remains to be decided in the marching scheme is the distribu-
tion of the number of mesh points N0, N1, N2, . . . . The choice of
N0, N1, N2, . . . , turns out to be fairly important. They are crucial
to the stability of the computation. As indicated in Fig. 4, the η
derivatives of the governing equations are to be approximated by a
15-point stencil DRP scheme27 in the innermost mesh layer. For all
of the outer mesh layers, the use of a 7-point stencil DRP scheme
will suffice.

Because, as mentioned before, the marching scheme is mildly
unstable, grid-to-grid oscillations are generated within the shear
layer where the velocity gradient is large. These spurious short waves
propagate through the shear layer until they are outside the shear
layer. They propagate at a high speed in the ambient region where
M0

∼= 0.02. On reaching the first interface where there is a change
in mesh size, they are reflected back with a considerable increase in
amplitude. When the reflected waves propagate back to the center of
the shear layer, they are again reflected back. In a sense, the spurious
waves are trapped between the shear layer and the first mesh-size
change interface. Each reflection results in higher wave amplitude.
Eventually, this could cause the numerical solution to blow up.

To render the numerical solution stable, it is necessary to add
artificial selective damping28 so that the grid-to-grid oscillations are
practically damped after propagating from the shear layer to the first
mesh-size change interface. When the artificial selective damping is
added, the dispersion relation of the discretized equations, instead
of given by solution (22), now becomes

ω̄ = ±(β̄/M0 cos α) − i[D(β�η)/Re��η] (25)

where Re� is the mesh Reynolds number and D(β�η) is the damp-
ing function.28 The speed of propagation is given by the group veloc-
ity, which can be estimated by using Eq. (25) without the damping
term. By differentiating Eq. (25) with respect to β and on taking
(dω̄)/(dω) ∼= 1.0 (small �ξ steps), we find

dω

dβ
= 1

M0 cos α

dβ̄

dβ
(26)

The total damping factor for spurious grid-to-grid oscillations
propagating from the shear layer to the first mesh-size change inter-
face, a distance of N1�η (Fig. 4), is, therefore, given by

exp

{
− D(β�η)

Re��η

N1�η

[(1/M0 cos α)(dβ̄/dβ)]

}
(27)

To ensure that the spurious waves are heavily damped but at the
same time, without materially damping the physical solution (the
long waves), we will use a 15-point optimized damping stencil.
(The coefficients of the damping stencil are provided in the Ap-
pendix.) The wave number for grid-to-grid oscillation corresponds
to β�η = π . We noted that D(π) = 1.0 and (dβ̄)/(dβ)|β = π = 5.0
for the 15-point stencil DRP scheme. By inserting these values into
exponent (27) and requiring a damping factor of e−5(=0.007), we
find

(1/Re�)(M0 cos αN1/5) = 5

When M0 = 0.02, α = 20 deg, and Re−1
� = 7.82 is used, it is easy to

find N1 ≥ 170. Therefore, to maintain sufficient distance between
the shear layer and the first mesh-size change interface after each
doubling of the mesh size � in the innermost mesh layer, we set
N1 = 170 and N j

∼= 110, j = 2, 3, 4, . . . .
The main purpose of adding artificial selective damping is to

remove spurious waves from the computation so as to maintain
accuracy and stability. However, artificial selective damping may
also cause slight damping to the physical solution with wavelength
β�η ≤ 1.0. It is straightforward to show, with D(1.0) ∼= 2 × 10−5 for
the 15-point damping stencil, that the damping is quite negligible.
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E. Wall and Outgoing Wave Boundary Conditions
As shown in Fig. 2, the jet mean flow solution is to be computed

by marching the solution starting at the left boundary of region 1
to the right boundary and then starting at the left boundary of re-
gion 2 and marching the solution to the right boundary. To complete
the marching scheme, we need to impose a wall boundary condi-
tion at the nozzle wall and an outgoing wave boundary condition
at the upper boundary of the computation domain. In this work,
a no-penetration boundary condition is enforced at the wall. This
is implemented by adopting the ghost point method of Tam and
Dong.29

For large η, Eqs. (16–19) are the linearized perturbation equations
of the governing RANS equations. The solution of Eq. (16) is û′ = 0.
Thus, the appropriate boundary condition for û is û = u0. For large
r , the asymptotic solution of Eq. (20), which represents outgoing
waves, has the form

p′ = F(η + r0 − ξ/M0 cos α)
/

r
1
2 + · · · (28)

Both v̂′ and T ′ have a similar form. When the unknown functions
are eliminated by differentiation and addition, it is straightforward
to find that an appropriate set of outgoing wave boundary conditions
for small α is

û = u0, M0 cos α
∂

∂ξ


 v̂

p

T


 + ∂

∂η


 v̂

p

T


 + 1

2r


 v̂

p − p0

T − T0


 = 0

(29)

F. Plug Nozzle with Blunt Nose
Downstream of the blunt nose of an external plug nozzle, the

flow reverses to form a recirculation region as shown in Fig. 5a.
Parabolized computation cannot be used to calculate reverse flow
because information is transmitted upstream. For noise prediction
purposes, this region is not of significance. We will approximate the
recirculation region by an almost stagnant region. It will be assumed
that there is a weak outflow from the blunt end of the nozzle as shown
in Fig. 5b. The flow moves slowly downstream and is then entrained
by the flow of the primary jet.

We switch to a cylindrical coordinate system with the x axis co-
inciding with the jet centerline right downstream of the plug nozzle.
To continue the parabolized solution farther downstream, we need
starting profiles for the flow variables. Let H be the radius of the
blunt nose of the plug nozzle. For r ≥ H , the u and v velocity pro-
files are given by the parabolized solution computed from upstream.
Suppose the u-velocity component at r = H is uH (Fig. 6a). In the
region r < H , we propose to use the following nearly stagnant flow

a)

b)

Fig. 5 Flow model downstream of blunt nose of plug nozzle: a) recir-
culation flow and b) nearly stagnant flow model.

a)

b)

Fig. 6 Starting profiles for velocity components downstream of blunt
nose of a plug nozzle: a) u component and b) v component.

model as the starting velocity profile for u:

u =




u as calculated by the parabolized r ≥ H
solution from upstream,

(uH − uN ) exp
{−(ln2)[(H − r)/bN ]2

}+ uN , r < H (30)

where uN = 2% of the velocity of secondary jet at nozzle exit,
bN = 0.1H , and uH is u at r = H .

Because of the plug nozzle geometry, vH (the radial velocity
component at r = H ) is negative. For r < H , we propose to use the
following starting profile for the v-velocity component (Fig. 6b)

v = vH exp
{−(ln 2)[(H − r)/bN ]2

}
(31)

Because the flow is assumed to be nearly stagnant immediately
downstream of the blunt nose of the plug nozzle, we will let the
starting values of p and T to be constants. Thus,

p = pH , T = TH , r ≤ H (32)

where pH and TH are the values at r = H of the parabolized solution
computed from upstream.

III. Comparison Between Computed
and Measured Mean Velocity Profile

Mean flow data of dual-stream jets from separate flow nozzles
are not readily available in the literature. However, recently a set
of high-quality total pressure and total temperature data, as well as
a companion set of jet noise data, were measured by Thomas and
Kinzie30 as a part of NASA jet noise data acquisition effort. The
data sets have not been published but they are made available to the
present investigation. When it is assumed that the static pressure in-
side the jet is equal to ambient pressure (boundary-layer argument),
it is possible to convert these data to mean velocity profiles. Let
ptotal be Ttotal the measured total pressure and temperature and p∞
be the ambient pressure; it is straightforward to derive the following
formula for the velocity u of the jet in terms of the measured data:

u2 = 2RTtotal(ptotal/p∞ − 1)

1 + [(γ − 1)/γ ](ptotal/p∞ − 1)

where R is the gas constant and γ is the ratio of specific heats.
Figure 7 shows comparisons of the calculated and measured mean

flow velocity profiles of a bypass ratio 8 dual-stream jet inside an
open wind tunnel at Mach number 0.28. The primary jet Mach num-
ber and temperature ratio are 0.69 and 2.82, respectively. The sec-
ondary jet Mach number and total temperature ratio are 0.8 and 1.2,
respectively. Figures 7a–7d show profiles at x/Dp = 2.5, 5.0, 10.0,
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a)

b)

c)

d)

Fig. 7 Comparisons of measured and calculated velocity profiles of jet mean flow, Mp = 0.69, Tp/Ta = 2.82, Ms = 0.8, Ts/Ta = 1.2, bypass ratio 8,
wind-tunnel Mach number 0.28: ——, measured and · · · ·, computed; a) x/Dp = 2.5, b) x/Dp = 5.0, c) x/Dp = 10.0, and d) x/Dp = 17.0 (data from Ref. 30).

and 17.0, where Dp is the diameter of the primary jet. The measured
data indicate a slight drift of the jet centerline in the downstream
direction. Figure 8 shows similar comparisons for a bypass ratio 5
dual-stream jet. The primary jet Mach number and temperature ratio
are 0.77 and 2.81, respectively. The secondary jet Mach number and
total temperature ratio are 0.86 and 1.2, respectively. The velocity
profiles at x/Dp = 2.0, 5.0, 10.0, and 17.0 are shown in Figs. 8a–8d.
Overall, the computed velocity profiles for both bypass ratio jets are
in good agreement with experimental data.

IV. Computation of Noise from Fine-Scale Turbulence
Once the mean flow and the κ and ε values are computed by

the parabolized algorithm described in Sec. II, the fine-scale turbu-
lence noise from the jet may be calculated by the extended Tam and
Auriault theory12 (also see Ref. 17). The far-field noise spectrum,
S[R, �, φ, ( f D j/u j )], at a point with polar coordinates (R, �, φ)
with respect to a polar coordinate system centered at the exit plane
of the primary nozzle is given by

S

(
R, �, φ,

f D j

u j

)
= 10 log

[
4π S(x, ω)

p2
ref(D j/u j )

]
(33)

where

S(x, ω) = 4π3

(ln 2)
3
2

∫∫∫
vjet

�
(
v + 1

2

)
�(v)

(
q̂2

s

c2

)
�3

s

τs

× |pa(x2, x, ω)|2 exp
[−ω2�2

s

/
ū24(ln 2)

]
{

1 + ω2τ 2
s [1 − (ū/a∞) cos �]2

}v + 1
2

dx2 (34)

For convenience, we will use subscript p to denote variables as-
sociated with the primary jet and subscript s to denote variables
associated with the secondary jet. For example, Dp and Ds are the
nozzle exit diameters of the primary and secondary jet, u p and us are
the fully expanded velocities of the primary and secondary jet. In
Eq. (34), pa(x2, x, ω) is the adjoint Green’s function and ω = 2π f
is the angular frequency. In this study, the locally parallel flow ap-
proximation is adopted in computing the adjoint Green’s function
as in Refs. 12–14 and 17. At the nozzle wall, the boundary condition
for the adjoint Green’s function, derived by Tam and Auriault,31 is
v(a) · n̂ = 0, where n̂ is the unit normal of the solid surface and v(a)

is the adjoint acoustic velocity. The quantities (q̂2
s )/(c2), ν, �s , and
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a)

b)

c)

d)

Fig. 8 Comparisons of measured and calculated velocity profiles of jet mean flow, Mp = 0.77, Tp/Ta = 2.81, Ms = 0.86, Ts/Ta = 1.2, bypass ratio 5,
wind-tunnel Mach number 0.28: ——, measured and · · · ·, computed; a) x/Dp = 2.5, b) x/Dp = 5.0, c) x/Dp = 10.0, and d) x/Dp = 17.0.

τs are related to k and ε of the k–ε turbulence model as follows:

ν = 1

2
+




cη

k
3
2

ε

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣
0

(35a)

(35b)

q̂2
s

c2
= A2q2 +




B
k

3
2

ε

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣q2

0

(36a)

(36b)

�s = c�

k
3
2

ε
+




c�ρ

k3

ε2

1

ρ

∣∣∣∣dρ
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∣∣∣∣
0

(37a)
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τs = cτ

k

ε
+




cτρ

k
5
2

ε2

1

ρ

∣∣∣∣dρ

dr
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0

(38a)

(38b)

In Eqs. (35–38), formulas (35a–38a) are to be used when (du)/(dr)
and (dp)/(dr) have opposite signs. Formulas (35b–38b) are used
when they have the same sign. The three constants A, c�, and cτ

were determined empirically by Tam and Auriault,12 and they were
assigned the values

A = 0.755, c� = 0.256, cτ = 0.233

The remaining four constants were given the values

cη = 2.1599, B = 0.806, c�ρ = −0.026, cτρ = −0.2527

in Ref. 17.

V. Comparisons with Experiments
We will compare the computed fine scale turbulence noise spectra

with dual-stream jet noise data measured at the NASA Langley Re-
search Center by Thomas and Kinzie30 and at The Boeing Company
by Bhat.20 The Boeing data have not been published but are made
available to this investigation by Bhat. They were measured as a part
of the effort described in Ref. 20. The nozzles used in the Boeing
experiments had no external plug. The nozzles used in the NASA
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experiment had external plugs. A list of the dimensions of the nozzle
geometry follows (Fig. 1).

Boeing nozzle configuration 2 (no external plug):

Dp = 2.45 in., Ds = 6.0 in., X = 5.0 in., α = 10.06 deg

Areasecondary exit/Areaprimary exit = 3.0

Boeing nozzle configuration 4 (no external plug):

Dp = 3.46 in., Ds = 6.0 in., X = 5.0 in., α = 8.09 deg

Areasecondary exit/Areaprimary exit = 1.0

a)

b)

c)

Fig. 9 Comparisons between calculated and measured noise spec-
tra, data from Boeing (Bhat20) nozzle configuration 2: 1) Mp = 0.99,
Tp/Ta = 2.78, Ms = 0.96, and Ts/Ta = 1.0; 2) Mp = 0.81, Tp/Ta = 2.78,
Ms = 0.71, and Ts/Ta = 1.0; and 3) Mp = 0.62, Tp/Ta = 2.78, Ms = 0.71, and
Ts/Ta = 1.0; a) Θ = 60 deg, b) Θ = 90 deg, and c) Θ = 110 deg.

NASA bypass ratio 5 nozzle with external plug:

Dp = 5.07 in., Ds = 9.45 in., X1 = 4.25 in., X2 = 9.57 in.

α = 14.19 deg, β = 12.78 deg

Areasecondary exit/Areaprimary exit = 2.65

NASA bypass ratio 8 nozzle with external plug:

Dp = 4.79 in., Ds = 9.45 in., X1 = 4.25 in., X2 = 9.77 in.

α = 14.19 deg, β = 13.27 deg

Areasecondary exit/Areaprimary exit = 4.16

Figure 9 shows comparisons between the computed noise spectra
for nozzle configuration 2 and the Boeing data measured by Bhat.20

(Bhat informed the authors that the low-frequency portion of the
measured noise spectra had been artificially rolled down.) Data
at three jet operating conditions and three directions are shown.
Figure 10 shows similar comparisons for nozzle configuration 4.
Data include measurements at two jet operating conditions. As can
be seen from Figs. 9 and 10, there are very favorable agreements
between computed noise spectra and measurements. Other cases in
addition to those displayed in Figs. 9 and 10 have also been calcu-
lated. They are not included here due to space limitation. However,
we would like to stress that, in each of these cases, the computed
spectra are in good agreement with experiment.

Figures 11 and 12 show comparisons of calculated noise spec-
tra with data measured at the NASA Langley Research Center by
Thomas and Kinzie.30 Figure 11 is for bypass ratio 5 jets at two oper-
ating conditions. The spectra are measured at inlet angle θ = 50, 70,
90, and 110 deg. Figure 12 shows similar data for bypass ratio 8 jets.
In the experiments, the jets were enclosed in an open wind tunnel
at a forward-flight Mach number of 0.1. The calculated spectra also
include the effect of the open wind tunnel at the same wind-tunnel
Mach number. It is self-evident that the computed noise spectra are
in good agreement with experimental measurements. This is true
for spectrum levels and shapes as well as directivities.

It is known that forward flight can cause significant reduction
in jet noise. A general rule of thumb is that for every 0.2 increase
in forward flight Mach number, there is an approximately 4-dB
decrease in sound pressure level. Figure 13 shows the calculated and
measured noise spectra at a simulated forward flight Mach number

Fig. 10 Comparisons between calculated and measured noise spec-
tra, data from Boeing (Bhat20) nozzle configuration 4: ���, Mp = 0.99,
Tp/Ta = 2.75, Ms = 0.71, Ts/Ta = 1.0; and ���, Mp = 0.81, Tp/Ta = 2.75,
Ms = 0.71, Ts/Ta = 1.0.
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Fig. 11 Comparisons between calculated and measured noise spectra,
bypass ratio 5, wind tunnel Mach number 0.1, data from Ref. 30: ���,
Mp = 0.77, Tp/Ta = 2.81, Ms = 0.86, Ts/Ta = 1.22; and ���, Mp = 0.55,
Tp/Ta = 2.45, Ms = 0.74, Ts/Ta = 1.15.

Fig. 12 Comparisons between calculated and measured noise spec-
tra, bypass ratio 8, wind tunnel Mach number 0.1, data from Ref. 30:
���, Mp = 0.74, Tp/Ta = 2.45, Ms = 0.8, Ts/Ta = 1.2; and ���, Mp = 0.51,
Tp/Ta = 2.49, Ms = 0.66, Ts/Ta = 1.2.

0.28 for a dual-stream jet at bypass ratio 5. When the spectra are
compared with those of Fig. 11, it is clear that there is, indeed, a
noise reduction of about 4 dB. Figure 14 shows similar comparisons
at bypass ratio 8. Again good agreements are obtained between
predictions and measurements in both cases.

In addition to predicting the far-field noise, the Tam and Auriault
theory12 can also calculate the noise source distribution inside the
jet plume. In a recent work, Tam et al.32 demonstrated that the theo-
retical predictions of the noise source distribution in supersonic jets
of Mach number 1.47, 1.97, and 2.47 were in good agreement with

Fig. 13 Comparisons between calculated and measured noise spectra,
bypass ratio 5, wind tunnel Mach number 0.28, data from Ref. 30: ���,
Mp = 0.77, Tp/Ta = 2.81, Ms = 0.86, Ts/Ta = 1.22.

Fig. 14 Comparisons between calculated and measured noise spectra,
bypass ratio 8, wind tunnel Mach number 0.28, data from Ref. 30: ���,
Mp = 0.74, Tp/Ta = 2.45, Ms = 0.8, Ts/Ta = 1.2.

the experimental measurements of Schlinker33 and Laufer et al.34

This is true for both noise intensity (integrated over all frequencies)
as well as at selected Strouhal numbers. For a dual-stream jet, the
shear layer between the secondary jet and the ambient gas (region 1
of Fig. 15), the shear layer between the primary and the secondary
jet (region 2), the fully developed jet (region 3), and the wake down-
stream of the plug nozzle (region 4) are plausible noise sources of
the jet. To assess the relative importance of these noise sources, the
noise radiated in the θ = 90 deg direction from the four regions are
calculated. Figure 16 shows the noise spectrum from each of the
four regions as well as the total noise spectrum for a bypass ratio
5 jet. It is readily seen from Fig. 16 that the fully developed jet
(region 3) produces almost all of the low-frequency noise of the
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Fig. 15 Four noise source regions of dual-stream jet from separated
flow nozzle with external plug.

Fig. 16 Contributions to noise spectrum of bypass ratio 5 jet with
wind-tunnel Mach number 0.1, at Θ = 90 deg from various source re-
gions: ���, Mp = 0.77, Tp/Ta = 2.81, Ms = 0.86, Ts/Ta = 1.2; ——, noise
spectrum of the entire jet; —·—, noise from region 1; ���, noise from
region 2; and – – –, noise from region 3.

Fig. 17 Contributions to noise spectrum of bypass ratio 8 jet with wind
tunnel Mach number 0.1, at Θ = 90 deg from various source regions;
Mp = 0.77, Tp/Ta = 2.81, Ms = 0.86, and Ts/Ta = 1.2: ——, noise spectrum
of the entire jet; —·—, noise from region 1; ���, noise from region 2;
and – – –, noise from region 3.

jet. The shear layer between the secondary jet and the ambient gas
(region 1) is responsible for most of the high-frequency jet noise.
Region 2 contributes only a small fraction of high-frequency noise.
Region 4 is an unimportant source of jet noise. Figure 17 is a similar
plot for a bypass ratio 8 jet. The conclusion is the same. Thus, for
noise suppression purposes, attention should be concentrated on the
turbulence in the fully developed region of the jet, as well as the
outer shear layer of the secondary jet.

VI. Conclusions
In this work, a method to compute the mean flows of dual-

stream jets from separate flow nozzles is provided. This method
uses the parabolized RANS equations with the modified k–ε turbu-
lence model. The method is stable and efficient. Computed results
are in good agreement with experimental measurements.

The Tam and Auriault fine-scale jet turbulence noise theory12

as extended by Tam et al.17 is used to calculate the noise from
dual-stream jets. In all of the computations, the same empirical
constants established in Refs. 12 and 17 for single-stream jets are
used. Comparisons with noise spectra measured at Boeing by Bhat20

and at NASA Langley Research Center by Thomas and Kinzie30 are
made. The Boeing data are from nozzles without an external center
plug. The NASA data are from nozzles with an external plug at
bypass ratios of 5 and 8. Good agreements are found in all cases.

In developing their fine-scale turbulence noise theory of high-
speed jets, Tam and Auriault12 used exclusively data from single-
stream round jets. However, as already mentioned, the theory was
found to provide good predictions for nonaxisymmetric jet noise13

as well as noise from jets in simulated forward flight.14 In the present
investigation, the theory is applied to dual-stream jets from separate
flow nozzles with and without an external center plug. This applica-
tion involves flow configurations that are beyond the database of the
original formulation. We believe this offers a critical test of the va-
lidity and accuracy of the theory for more general applications. The
good agreements found in all of the test cases for dual-stream jets
may be considered as providing confidence in the use of the semi-
empirical theory for routine engineering predictions and designs.

Appendix: Coefficients of 15-Point Damping Stencil
The coefficients are

d(0) = 0.2042241813072920
d(1) = d(−1) = −0.1799016298200503
d(2) = d(−2) = 0.1224349282118140
d(3) = d(−3) = −6.3456279827554890E−02
d(4) = d(−4) = 2.4341225689340974E−02
d(5) = d(−5) = −6.5519987489327603E−03
d(6) = d(−6) = 1.1117554451990776E−03
d(7) = d(−7) = −9.0091603462069583E−05
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