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Fine-Scale Turbulence Noise from Hot Jets
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Experimental measurements indicate that the noise radiated from a jet depends not just on the jet-exit velocity
alone, but is significantly affected by the jet temperature. Now, there is evidence to support the proposition that
jet mixing noise consists of two principal components. These are the noise from the large turbulence structures of
the jet flow and the fine-scale turbulence. The prediction of fine-scale turbulence noise from hot jets is considered.
Earlier Tam and Auriault (Tam, C. K. W., and Auriault, L., “Jet Mixing Noise from Fine-Scale Turbulence,” AIAA
Journal, Vol. 37, No. 2, 1999, pp. 145–153) developed a semi-empirical theory capable of predicting the fine-scale
turbulence noise from cold to moderate temperature jets. In this work, their semi-empirical theory is extended
to high-temperature jets, up to a temperature ratio above that of present day commercial engines. The density
gradient present in hot jets promotes the growth of Kelvin–Helmholtz instability in the jet mixing layer. This
causes a higher level of turbulent mixing and stronger turbulence fluctuations. In addition, recent experiments
reveal that the two-point space–time correlation function of turbulent mixing for hot jets is substantially different
from that for cold jets. The eddy decay time is shorter, and the eddy size is slightly reduced. These changes have
an appreciable impact on the noise radiated. In the present extended fine-scale turbulence theory, both effects are
taken into account. Extensive comparisons between computed noise spectra and measurements for hot jets over the
Mach-number range of 0.5–2.0 are reported here. Good agreements are found over inlet angle from 50 to 110 deg.
This is the directivity for which fine-scale turbulence noise is dominant.

I. Introduction

J ET engines are, invariably, operated at an elevated temperature.
As yet, there is no theory or method, other than those entirely

dependent on empirical correlations, to predict the noise intensity,
directivity, and spectrum of hot jets. Experimental measurements1,2

have clearly shown that the noise radiated by a turbulent jet is not
completely determined by the jet velocity alone. The temperature
ratio of a jet (jet total temperature to ambient temperature) also
plays an important role. The objective of this investigation is to
improve the prediction capability of the semi-empirical fine-scale
turbulence noise theory of Tam and Auriault.3 The Tam and Auriault
theory was developed primarily for predicting the noise of cold to
moderate temperature jets. The present effort extends its range of
applicability to jets at temperature ratios higher than that of the
present-day commercial jet engines.

Evidence is now available indicating that jet mixing noise con-
sists of two independent components. One component is generated
by the large turbulence structures of the jet flow. At high subsonic
or supersonic Mach number, this is the stronger noise component.
It radiates primarily in the downstream direction, generally in di-
rections with inlet angle greater than 120 deg. The other component
is generated by fine-scale turbulence. It has a fairly uniform di-
rectivity. It is the dominant noise component in the sideline and
upstream direction. The existence of both large turbulence struc-
tures and fine-scale turbulence in jet flows is well established by
experimental measurements, especially optical observations.4,5
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In the study of Tam et al.,1 the noise spectrum of each of the two
noise components was found to fit a seemingly universal similarity
spectrum. They reasoned that because there was no intrinsic length
and timescales in the mixing layer of a high-Reynolds-number jet
(up to the end of the core region), not only the mean flow and tur-
bulence statistics must exhibit self-similarity, the same might also
be true for the radiated noise. By examining the entire data bank
of the Jet Noise Laboratory of NASA Langley Research Center,
they were able to identify two similarity noise spectra. One of the
spectrum fitted all of the noise spectra radiated in the downstream
direction regardless of jet Mach number and temperature. The strong
directivity of this noise component is consistent with Mach wave ra-
diation from the large turbulence structures/instability waves of the
jet flow.6,7 The other spectrum fitted all of the noise spectra radiated
in the sideline and upstream directions. This is noise from the fine-
scale turbulence. More recently, Tam8 and Tam and Zaman9 showed
that even the noise spectra of nonaxisymmetric jets including jets
from rectangular, elliptic, plug, and suppressor nozzles fitted the
same two similarity spectra. Dahl and Papamoschou10 reported that
their coaxial jet noise spectra were good fits of the similarity spectra.
Viswanathan11,12 provided further data to confirm the two similar-
ity spectra and the existence of two mixing noise components. He
further used the similarity spectra to test the quality of hot jet noise
spectra.

For supersonic jets, Laufer et al.13 provided direct experimental
evidence that there were two independent noise sources (see also
Ref. 14). They used a spherical mirror to measure the axial noise
source distribution of Mach 1.47, 1.97, and 2.47 jets. For the high-
Mach-number jets, the measured data revealed that the noise source
responsible for radiation in the 90-deg direction was distinctly dif-
ferent from the noise source responsible for radiation in the peak
direction at approximately 135- to 150-deg inlet angle. The noise
spectra radiated in the 90-deg direction had the same shape as the
similarity spectra for the fine-scale turbulence noise. The noise spec-
tra radiated in the peak noise direction had the same shape as the
similarity spectrum for large turbulence structures noise.14

The existence of large turbulence structures and fine-scale turbu-
lence in a jet is, by now, well established. However, the proposition
that the large turbulence structures and fine-scale turbulence both
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radiate noise but with very different spectral and directional char-
acteristics (in other words, jet mixing noise consists of two compo-
nents) has not been accepted by the entire jet noise community. A
number of investigators, for example, Morris and Farassat,15 believe
that jet noise is generated by quadrupoles, which implies that there is
only one noise component. It is possible that their belief is restricted
to subsonic jets, for otherwise it would be in conflict with the super-
sonic jet noise experiment of Laufer et al.13 and Schlinker.16 In the
past, experimental efforts to identify the sources of jet noise have
not been successful because of instrumentation difficulty. Recently,
Panda et al.17 succeeded in measuring directly the correlation of
density and velocity fluctuations inside a jet and the radiated noise.
They used a Rayleigh scattering technique to measure the fluctua-
tions inside the jet (this avoids the problem of probe interference
with the flow) and a microphone to measure the far-field sound.
They found good correlation when the microphone was located in
the downstream direction (150 deg from the jet inlet axis) but poor
correlation at 90 deg. In addition, by decomposing the flow vari-
ables into a mean and a random fluctuating part, they found, at
inlet angle 150 deg, good correlations between linear fluctuations
in the jet flow and far-field sound or good correlation between large
turbulence structures/instability waves in the jet flow and radiated
sound such as 〈ρ ′

jet, p′
sound〉 (primed variables are fluctuations from

the mean value; angle brackets represent correlation). On the other
hand, they found correlations of the form 〈ρ̄u′u′

jet, p′
sound〉 or cor-

relations between quadrupole terms and far-field sound to be poor.
They interpreted their measurements of large correlations of linear
fluctuations and the radiated sound field in the downstream direction
to mean that there was strong noise radiation from the large turbu-
lence structures/instability waves of the jet in this direction. As to
the lack of correlation in the 90-deg direction, they interpreted this to
mean that the noise source for 90-deg radiation was not organized
spatially, consistent with the suggestion that the source of noise
was randomly distributed small-scale turbulence. Thus their experi-
ment offers support to the concept of two noise components. Further
experimental investigation is underway. It is hoped that their con-
tinuing effort would provide a definitive resolution to the question
of what really are the sources of jet noise.

In this work, only the prediction of the fine-scale turbulence noise
from hot jets is considered. Prediction of the large turbulence struc-
tures noise is beyond the scope of the present investigation.

Recently, Tam and Auriault3 developed a semi-empirical theory
for predicting the fine-scale turbulence noise of high-speed jets. This
theory is not based on acoustic analogy.18,19 In formulating their
theory, Tam and Auriault incorporated the k–ε turbulence model as
a part of the theory. The k–ε model provides turbulence information
such as the intensity of turbulence kinetic energy, the length scale
of fine-scale turbulence, and decay time of turbulent eddies. They
are essential to the noise source model.

Two effects that are crucial to jet noise prediction are incorpo-
rated in the Tam and Auriault theory. They are the source convection
effect and the mean flow refraction effect. It is well known that a
moving noise source emits more sound in the direction of motion.
Because all of the noise sources move downstream, more noise is
radiated in the downstream direction. Earlier Atvars et al.20 and
Grande21 demonstrated experimentally that sound radiated from lo-
calized sources inside a jet underwent refraction as a result of the
presence of mean flow velocity and density gradients. For high-
speed jets, especially those at a high temperature, mean flow refrac-
tion effectively prevents sound from radiating in the downstream
directions close to the jet axis. As a result, there is little fine-scale
turbulence noise within a cone enclosing the downstream jet axis.
This is often referred to as the cone of silence. Theoretically, the
mean flow refraction effect can be adequately taken into account
through the use of the linearized Euler equation. To incorporate the
mean flow refraction effect into their prediction scheme, Tam and
Auriault3 used an adjoint Green’s function of the linearized Euler
equations. The adjoint Green’s function formulation has proven to
be very efficient computationally.

Tam and Auriault3 demonstrated by comparing with Seiner’s
NASA data1 that their theory can predict cold and moderately hot

supersonic jet noise spectra well. At a subsonic Mach number, their
predictions are in good agreement with the measurements of Norum
and Brown22 and others. In a recent work on jets in forward flight,
Tam et al.23 applied the theory to jets in simulated forward flight.
Their computed spectra compared well with the experimental data of
Norum and Brown as well as earlier data of Plumblee24 (Lockheed
open wind-tunnel data) over an extended range of flight Mach num-
bers. Recently, Tam and Pastouchenko25 extended the original the-
ory to noncircular jets. They found good agreement between theoret-
ical predictions and experimental measurements. The cases studied
included a Mach 2 elliptic jet of aspect ratio 3, a Mach 2 rectangu-
lar jet of aspect ratio 7.6, an elliptic and rectangular jet of aspect
ratio 3 at Mach 0.82, and a Mach 0.82 rectangular jet of aspect
ratio 8. The noise fields of large-aspect-ratio rectangular jets, be
they supersonic or subsonic, are quite complex. To be able to pre-
dict the noise spectra correctly, a theory must have the essential
physics.

It turns out the Tam and Auriault theory can be used to calculate
the noise source distribution inside a jet. In a recent work, Tam
et al.14 compared the predicted noise source distribution of Mach
1.47, 1.97, and 2.47 jets with the measurements of Laufer et al.13 and
Schlinker.16 The comparisons included noise source distribution at
selected Strouhal numbers as well as noise intensity (integrated over
all frequencies). Good agreements were found providing further
support for the usefulness of the theory.

In this paper, the principal differences between the mean flow
and turbulence noise source characteristics of hot and cold jets will
first be examined. They are then incorporated into the Tam and
Auriault theory by making appropriate modifications. A noise spec-
trum formula applicable to both hot and cold jets is derived. The
results of extensive comparisons between predictions and experi-
mentally measured noise spectra will be reported. Good agreements
are found, indicating that the extended theory is useful for jet noise
prediction at elevated jet temperature.

II. Temperature Effect on Jet Mean Flow
and Noise Source

When a jet is hot, a large density gradient exists in the jet flow.
This density gradient exerts a strong influence on the mean flow
and turbulent mixing noise of the jet. The effect of a large density
gradient on the mean flow of a jet has recently been studied by Tam
and Ganesan.26 The effect on turbulent mixing noise is the subject
of this investigation.

Tam and Ganesan26 began their study by analyzing the effect of
density gradient on the stability of a shear layer. By using a simple
vortex sheet shear-layer model, they found that the density differ-
ence between a jet and the ambient air tended to increase the spatial
growth rate of the intrinsic Kelvin–Helmholtz instability when the
lighter fluid was in motion. This means that there would be an en-
hancement of turbulent mixing when a jet is hot. It follows that
there is an increase in the jet spreading rate. To mimic this effect,
Tam and Ganesan proposed to modify the k–ε turbulence model
by adding a density gradient dependent term to the eddy viscosity.
Dimensional reasoning was then invoked to determine the correct
form of the added viscosity term. The addition of a density gradi-
ent term introduced a new empirical constant. This constant was
determined by best fit to the data. Extensive comparisons between
computed and measured axial velocity profiles as a function of ra-
dial distance were carried out and reported. Good agreements were
found for high-temperature jets at both subsonic and supersonic
Mach number.

In addition to bringing about a density gradient effect, an increase
in jet temperature also affects the convective Mach number. It is
known that an increase in convective Mach number tends to stabilize
turbulent mixing. This effect has a tendency to counterbalance the
density gradient effect. In this work, the Sarkar convective Mach-
number correction27 to the k–ε model is included in the mean flow
calculation.

In the present study, the modified k–ε turbulence model will be
used for mean flow and turbulence calculation. By using the re-
sults of the modified k–ε model, the change in turbulence intensity,
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Fig. 1 Two-point space–time correlation of the axial velocity component in a jet: ——, measured data27 and · · · ·, model function.

length, and decay timescales caused by density gradient are taken
into account. However, for noise prediction purposes there is also a
change in the two-point space–time noise source correlation func-
tion. In other words, there is direct density effect on the noise gener-
ation process. This must be incorporated into the theory in order to
be able to predict correctly the noise from the fine-scale turbulence
of hot jets.

In the Tam and Auriault fine-scale turbulence noise theory,3 the
functional form of the two-point space–time correlation function〈

Dqs(x1, t1)

Dt1

Dqs(x2, t2)

Dt2

〉

was modeled after the measurements of Davies et al.28 Figure 1
shows the measured axial velocity space-time correlation function.
One important characteristic is that all of the two-point time correla-
tion curves lie below an overall envelope that decays exponentially
with an increase in spatial separation. The model function used by
Tam and Auriault is〈

Dqs(x1, t1)

Dt1

Dqs(x2, t2)

Dt2

〉

= q̂2
s

c2τ 2
s

exp

{
− |ξ |

ūτs
− �n2

�2
s

[(ξ − ūτ)2 + η2 + ζ 2]

}
(1)

where ξ = x1 − x2, η = y1 − y2, ζ = z1 − z2, τ = t1 − t2; ū is the
mean flow velocity; c is a constant; q̂2

s , �s , and τs are the three
parameters of the model; q̂2

s is the kinetic energy of fine-scale tur-
bulence per unit volume; �s is the characteristic size; and τs is the
characteristic decay time of the fine-scale turbulence. The model
parameters are given by the k–ε turbulence model as follows:

q̂2
s

/
c2 = A2q2

(
q = 2

3 ρk
)

(2)

�s = c�(k
3
2 /ε), τs = cτ (k/ε) (3)

The three constants A, c�, and cτ were determined empirically. They
were assigned the values

A = 0.755, c� = 0.256, cτ = 0.233 (4)

In Fig. 1, the dotted curves are the two-point space–time model
function (1) with �s = 0.1758 in. (0.447 cm), τs = 447.4 µs, and
ū = 3.515 × 10−3 in./µs (8.928 cm/µs). As can be seen, the agree-
ment is quite good.

Recently, Doty and McLaughlin29 measured two-point space–
time correlations of density gradient fluctuations of high-speed jets

Fig. 2 Space–time correlation of various probe separation distances
for a Mach 0.9 jet at temperature ratio (Tr/Ta) = 2.0: for ξ/uτs = 0.0: ∇,
experiment and ——, model function (ν = 1); for ξ/uτs = 1.25, ξ/ls = 0.92:
�, experiment and – – –, model function; and for ξ/uτs = 2.05, ξ/ls = 1.51:
�, experiment and –·–·–, model function.

by using optical deflectometry. For cold jets, their measurements
were in excellent agreement with the data of Davies et al.28 How-
ever, they found significant differences for simulated hot jets. Their
simulated hot jets used a mixture of air and helium. Figure 2 shows
their measured two-point correlations at various probe separation
distances for a Mach 0.9 jet at jet temperature ratio (Tr/Ta) of 2.0.
As can be readily seen, unlike the case of cold jets, the two-point
time correlation curves decay rapidly with increase in time and space
separations. The rate of decay is so rapid that no overall envelope is
possible. Physically, this suggests a rapid decay of turbulent eddies,
a process that would greatly affect noise radiation. Figure 3 shows
the two-point correlations for a Mach 1.47 jet at a temperature ratio
of 1.79 measured by Doty and McLaughlin. This is qualitatively
very similar to Fig. 2. Figures 2 and 3 strongly suggest a need to
modify the two-point space–time correlation function of the Tam
and Auriault theory to account for the change in fine-scale turbu-
lence noise generation process caused by the presence of strong
density gradient.

III. Noise Spectrum for Hot Jets
We will now consider the following more general two-point

space–time correlation function as a source model for fine-scale
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Fig. 3 Space–time correlation of various probe separation distances
for a Mach 1.47 jet at temperature ratio (Tr/Ta) = 1.79: for ξ/uτs = 0.0:
∇, experiment and ——, model function (ν = 1); for ξ/uτs = 1.62,
ξ/ls = 1.1: �, experiment and – – –, model function; and for ξ/uτs = 2.55,
ξ/ls = 1.735: �, experiment and –·–·–, model function.

turbulence noise of high-speed jets:

〈
Dqs(x1, t1)

Dt1

Dqs(x2, t2)

Dt2

〉
= q̂2

s

c2τ 2
s

2

�(ν)

( |ξ |
2ūτs

)ν

Kν

( |ξ |
ūτs

)

× exp

{
−�n2

�2
s

[(ξ − ūτ)2 + η2 + ζ 2]

}
(5)

where Kν(z) is the modified Bessel function of order ν. The decay
rate of the function zν Kν(z) is affected by the choice of ν. �(ν) is
the gamma function, and ν is an additional parameter of the new
correlation function. It provides the function an extra degree of
freedom to mimic the decay of hot jet correlation function. In the
special case of ν = 1

2 , we note that

(2|ξ |/π ūτs)
1
2 K 1

2
(|ξ |/ūτs) = e−|ξ |/ūτs (6)

so that Eq. (5) reduces to Eq. (1), the original two-point space–time
correlation function used by Tam and Auriault.3 In other words,
Eq. (5) is a generalization of Eq. (1) with added capability to behave
like the two-point space–time correlation function of hot jets.

To test the suitability of using Eq. (5) as hot jet noise source
function, we will first check whether this function with properly
chosen values for its parameters can fit the measured data of Doty
and McLaughlin29 well. The three curves in Figs. 2 and 3 are the
correlation curves of the generalized model function (5). The values
of the parameters are given in the legends of the figures. In both
cases there are satisfactory agreement if the separation time is not
too large. For large time separation the correlation is small. This
part of the correlation function would, therefore, contribute little to
the radiated noise of a jet; hence, a good fit is not critical.

Now according to the Tam and Auriault theory,3 the noise spec-
trum at a far-field point x is given by

S(x, ω) =
∫∫ ∞

· · ·
−∞

∫∫
pa(x1, x, ω1)pa(x2, x, ω2)

〈
Dqs

Dt1

Dqs

Dt2

〉

× exp[−i(ω1 + ω2)t + iω1t1 + iω2t2]

× δ(ω − ω2) dω1 dω2 dt1 dt2 dx1 dx2 (7)

where pa(x1, x, ω) is the adjoint Green function with source point at
x and observation point at x1. By substitution of Eq. (5) into Eq. (7),

it is found that

S(x, ω) =
∫∫ ∞

· · ·
−∞

∫∫
pa(x1, x, ω1)pa(x2, x, ω2)

q̂2
s

c2τ 2
s

2

�(ν)

×
( |x1 − x2|

2ūτs

)ν

Kν

( |x1 − x2|
ūτs

)
exp

{
−�n2

�2
s

[
(x1 − x2

− ū(t1 − t2))
2 + (y1 − y2)

2 + (z1 − z2)
2
]}

× exp[−i(ω1 + ω2)t + iω1t1 + iω2t2]

× δ(ω − ω2) dω1 dω2 dt1 dt2 dx1 dx2 (8)

It turns out that all of the integrals except the last volume integral
over the jet flow can be integrated in closed form. The following
steps will facilitate the integration process.

Let us first integrate over t1. To do so, we will make a change of
variable to s defined by

s = t1 − t2 − (x1 − x2)/ū

On separating out the s integral, we find

∫ ∞

−∞
exp

[
− (�n2)ū2

�2
s

s2+iω1s

]
ds =

(
π

�n2

) 1
2 �s

ū
exp

[
− ω2

1�
2
s

ū24(�n2)

]

Next, the t2 integration can be carried out to yield∫ ∞

−∞
exp[i(ω1 + ω2)t2] dt2 = 2πδ(ω1 + ω2)

Because of the presence of the δ functions, the ω1 and ω2 integrals
can readily be evaluated to give

S(x, ω) =
∫∫ ∞

· · ·
−∞

∫
q̂2

s

c2τ 2
s

4π

�(ν)

(
π

�n2

) 1
2 �s

2ν ū

× exp

[
− ω2�2

s

ū24(�n2)

]( |x1 − x2|
ūτs

)ν

Kν

( |x1 − x2|
ūτs

)

× exp

[
− iω(x1 − x2)

ū

]
pa(x1, x, −ω)pa(x2, x, ω)

× exp

{
−�n2

�2
s

[
(y1 − y2)

2 + (z1 − z2)
2
]}

dx1 dx2 (9)

At this point, we invoke the phase factor approximation proposed
and justified by Tam and Auriault:

pa(x1, x, −ω) ∼= pa(x2, x, −ω) exp[i(ω/a∞)(x1 − x2) cos ] (10)

where  is the polar angle of x in a spherical coordinate system
(R, , φ) centered at the nozzle exit with the polar axis pointing
in the direction of jet flow. In other words  is the exhaust angle.
On substituting Eq. (10) into Eq. (9), the dx1 = dx1 dy1 dz1 integrals
become separated. The dy1 and dz1 integrals are standard Gaussian
integrals. The dx1 integral can be evaluated by first casting it into a
cosine transform and using a formula given in Ref. 30:∫ ∞

−∞

( |x1 − x2|
ūτs

)υ

Kυ

( |x1 − x2|
ūτs

)

× exp

[
−i

ω

ū

(
1 − ū

a∞
cos 

)
(x1 − x2)

]
dx1

= 2ūτs

∫ ∞

0

Re

{
ην Kν(η) exp

[
−iωτs

(
1 − ū

a∞
cos 

)
η

]}
dη

= π
1
2 2ν ūτs�

(
ν + 1

2

)
{

1 + ω2τ 2
s [1 − (ū/a∞) cos ]2

}ν + 1
2

(11)



TAM, PASTOUCHENKO, AND VISWANATHAN 1679

Upon integrating over dx1, the radiated noise spectrum is given
by

S(x, ω) = 4π3

(�n2)
3
2

∫∫
Vjet

∫
�
(
ν + 1

2

)
�(ν)

(
q̂2

s

c2

)
�3

s

τs

× |pa(x2, x, ω)|2 exp
[−ω2�2

s

/
ū24(�n2)

]
{

1 + ω2τ 2
s [1 − (ū/a∞) cos ]2

}ν + 1
2

dx2 (12)

where Vjet is the volume of the jet plume. The spectral density
S(x, ω) is per unit angular frequency ω. On converting to decibel per
Strouhal number ( f D j/u j ) based on fully expanded jet velocity u j

and diameter D j the spectral density of the sound field at (R, , φ)
is

S

(
R, , φ,

f D j

u j

)
= 10 log

[
4π S(x, ω)

p2
ref(D j/u j )

]
(13)

where pref is the reference pressure of the decibel scale. For ν = 1
2 ,

Eqs. (12) and (13) reduce to the spectral density formulas of Tam
and Auriault.

Now the noise spectrum formula (12) contains four parameters,
namely, q̂2

s /c2, �s , τs , and ν. For cold- to moderate-temperature jets,
explicit dependence of these parameters on the k–ε turbulence model
is given in Tam and Auriault. For hot axisymmetric jets, the density
gradient parameter is (1/ρ)(dρ/dr). We will assume that the density
parameter is small so that its first-order effect can be represented by
a perturbation term. That is, it can be represented by an additional
term that is linear in (1/ρ)(dρ/dr). On balancing the dimensions
using k and ε (k and ε are the only two parameters available in the
k–ε model for dimensional adjustment), the following formulas can
be easily established:

ν = 1

2
+




cη

k
3
2

ε

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣
0

(14a)

(14b)

q̂2
s

c2
= A2q2 +




B
k

3
2

ε

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣q2

0

(15a)

(15b)

�s = c�

k
3
2

ε
+




c�ρ

k3

ε2

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣
0

(16a)

(16b)

τs = cτ

k

ε
+




cτρ

k
5
2

ε2

1

ρ

∣∣∣∣dρ

dr

∣∣∣∣
0

(17a)

(17b)

In Eqs. (14–17) the (a) formulas are to be used when dū/dr and
dρ/dr have opposite signs. The (b) formulas are to be used when
they have the same sign. The reason for this is because of the effect of
density difference on the Kelvin–Helmholtz instability in the shear
layer of the jet. Tam and Ganesan26 have pointed out that enhanced
mixing arising from density effect occurs only when the lighter fluid
is moving.

For nonaxisymmetric jets, Eqs. (14–17) can be generalized by
replacing |dρ/dr | by |(∇ū) · (∇ρ)|/|∇ū| and that density gradient
correction is incorporated only if (∇ū) · (∇ρ) is negative. Here ∇ū
is taken as the reference direction as far as density gradient effect is
concerned.

Equations (14–17) contained four unknown constants, cη, B, c�ρ ,
and cτρ . They are to be determined empirically.

IV. Comparisons with Experiments
In this section, comparisons between the calculated noise spectra

based on formulas (12) and (13) and experiments are reported. At
the present time, hot jet noise data are not as readily available as they
should be. Until the recent work of Viswanathan,12 there is an ab-
sence of high-quality hot jet noise data at a high subsonic Mach num-
ber in the literature. In addition to comparing with Viswanathan’s
measurements, the supersonic hot jet noise data of Seiner (see Ref. 1)
will also be used.

Before noise spectrum formulas (12) and (13) can be used, values
of the four hot jet noise constants, that is, cη, B, c�ρ , and cτρ have to
be first determined. In this investigation, these four constants were
determined empirically by best fit to the noise data. For this purpose,
an iterative improvement procedure was used. First, a sample data
set was selected. The mean flow of the jets selected as well as the k
and ε distributions were then computed using the mean flow code
of Tam and Ganesan.26 This code incorporated their k–ε turbulence
model for hot jets. The next step was to compute the adjoint Green’s
function using the code of Tam and Auriault.3 The code computed
|pa |2. Once the computation of the adjoint Green’s function was
completed, formulas (12) and (13) were used to calculate the ra-
diated noise spectra at a preassigned set of directions. We defined
the prediction error for a specific jet Mach number, jet temperature
ratio, and direction of radiation as the sum of the squares of the
differences between the calculated and measured noise spectrum at
a number of chosen Strouhal numbers. The total error was easily
calculated by summing over all cases of test data. The values of the
four constants were changed incrementally by Newton’s iteration
method until the total error was minimized. By implementing the
preceding procedure, we found the best values of the constants are

cη = 2.1599, B = 0.806

c�ρ = −0.026, cτρ = −0.2527

Figure 4a shows comparisons between calculated noise spectra
and experimental measurements of Viswanathan.12 The jet Mach
numbers are 1.0, 0.8, and 0.6. The jet temperature ratio is 1.8. The
direction of radiation (inlet angle) is 50 deg. At this point, a brief
explanation about the spectral levels as measured in the experiment
is in order. Fine narrowband data, with a bandwidth of 23.4 Hz, were
acquired. However, the cutoff frequency of the anechoic chamber
is ∼200 Hz. The spectral levels in the first seven or eight bands
are artificially rolled down because accurate measurements are not
possible at these low frequencies. This filtering of the data causes
the levels to drop abruptly in the plots shown; this drop should be
ignored as this trend is artificially created and does not represent the
true spectral behavior at these low frequencies. Figure 4b is the same
as Fig. 4a except that it is for jet Mach number 0.9, 0.7, and 0.5.
Figures 4c–4h show similar comparisons at inlet angles 70, 90, and
110 deg, respectively. The fine-scale turbulence noise is expected to
be the dominant noise component in these directions. Figures 5a–5h
show comparisons at a jet temperature ratio of 3.2. We believe the
comparisons provided in these two sets of figures, covering the entire
high subsonic jet Mach numbers and temperature ratios up to values
higher than that operated by present-day commercial jet engines,
constitute a vigorous test of the accuracy of the prediction theory. On
considering that there are large variations in sound pressure level and
spectral shape with jet-exit velocity and temperature ratio over the
test range, it is fair to conclude, based on a detailed examination of
all of the comparisons, that there is good overall agreement between
theory and experiment.

Figures 6–8 are for Mach 2 supersonic jets at three temperature
ratios. They are T r/T a = 3.28, 4.08, and 4.89. These are very high-
temperature jets. Figure 6 shows comparisons between calculated
and measured noise spectra at 83-deg inlet angle. The data are taken
from the measurements of Seiner reported in Ref. 1. Figure 7 shows
similar comparisons at an inlet angle of 93 deg. Figure 8 shows
comparisons at an inlet angle of 107 deg. By and large, there appear
to be favorable agreements between computed and measured noise
spectra. Based on this observation, we would like to conclude that
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Fig. 4a Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 50 deg: a) Mj = 1.0, b) Mj = 0.8,
and c) Mj = 0.6.

Fig. 4b Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 50 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 4c Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 70 deg: a) Mj = 1.0, b) Mj = 0.8,
and c) Mj = 0.6.

Fig. 4d Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 70 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 4e Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 90 deg: a) Mj = 1.0, b) Mj = 0.8,
and c) Mj = 0.6.

Fig. 4f Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 90 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 4g Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 110 deg: a) Mj = 1.0, b) Mj = 0.8,
and c) Mj = 0.6.

Fig. 4h Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 1.8 and inlet angle = 110 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.
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Fig. 5a Comparisons between calculated noise spectra and exper-
iment, where Tr/Ta = 3.2 and inlet angle = 50 deg: a) Mj = 1.0 and
b) Mj = 0.6.

Fig. 5b Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 3.2 and inlet angle = 50 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 5c Comparisons between calculated noise spectra and exper-
iment, where Tr/Ta = 3.2 and inlet angle = 70 deg: a) Mj = 1.0 and
b) Mj = 0.6.

Fig. 5d Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 3.2 and inlet angle = 70 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 5e Comparisons between calculated noise spectra and exper-
iment, where Tr/Ta = 3.2 and inlet angle = 90 deg: a) Mj = 1.0 and
b) Mj = 0.6.

Fig. 5f Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 3.2 and inlet angle = 90 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.

Fig. 5g Comparisons between calculated noise spectra and exper-
iment, where Tr/Ta = 3.2 and inlet angle = 110 deg: a) Mj = 1.0 and
b) Mj = 0.6.

Fig. 5h Comparisons between calculated noise spectra and experi-
ment, where Tr/Ta = 3.2 and inlet angle = 110 deg: a) Mj = 0.9, b) Mj = 0.7,
and c) Mj = 0.5.
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Fig. 6 Comparisons between calculated noise spectra and experiment,
where Mj = 2.0 and inlet angle = 83 deg: a) Tr/Ta = 4.89, b) Tr/Ta = 4.08,
and c) Tr/Ta = 3.28.

Fig. 7 Comparisons between calculated noise spectra and experiment,
where Mj = 2.0 and inlet angle = 93 deg: a) Tr/Ta = 4.89, b) Tr/Ta = 4.08,
and c) Tr/Ta = 3.28.

the present modified jet noise theory is applicable to supersonic as
well as subsonic jets up to very high jet temperature.

Figures 4–8 consistently indicate that the best comparisons be-
tween theory and experiment are found for noise radiation to the
sideline around inlet angle 90 deg. At 90 deg, there is little mean
flow refraction as well as source convection effects. The accuracy
of prediction depends almost entirely on the noise source model. In
other words, the good agreement at and around 90 deg suggests that
the noise source model of Tam and Auriault,3 extended in this work,
must be essentially correct. At least, it has the correct turbulence
noise generation physics. Also, overall there is better agreement at
inlet angle 50 deg than at 110 deg. One possible reason for the slight
loss of accuracy at 110 deg is that this angle might be too close to the
cone of silence.20,21 For hot jets, the cone of silence for fine-scale tur-
bulence noise is quite large. In the prediction theory, the mean flow
refraction effect is taken into account through the adjoint Green’s
function. To calculate the adjoint Green’s function, we followed
Tam and Auriault3 and used a locally parallel flow approximation.
The locally parallel flow approximation is very accurate outside the

Fig. 8 Comparisons between calculated noise spectra and experi-
ment, where Mj = 2.0 and inlet angle = 107 deg: a) Tr/Ta = 4.89 and
b) Tr/Ta = 4.08.

cone of silence especially in the upstream direction. However, it is
inaccurate inside and close to the cone of silence. We believe that
this might be a principal reason for the loss of accuracy in predicting
the noise radiated at 110 deg.

V. Conclusions
Experimental measurements indicate that the mean flow and jet

noise are affected by the temperature of the jet through the associ-
ated density gradient. Hot jets tend to be dynamically more unsta-
ble leading to an increase in turbulent kinetic energy per unit mass.
However, this is countered by a decrease in gas density, which is a
stronger effect. The overall result is a decrease in turbulent kinetic
energy per unit volume. Thus, for a given jet-exit velocity an increase
in jet temperature leads to a decrease in radiated noise despite an
increase in turbulent mixing intensity (except for very low-Mach-
number jets); see the experimental data in Fig. 9 of Ref. 1. There
is also a decrease in thrust because of the decrease in density. On
the other hand, if one is interested in the effect of an increase in jet
temperature on jet noise at a fixed Mach number, then the decrease
in jet noise caused by a decrease in turbulent kinetic energy is coun-
teracted by an increase associated with an increase in jet velocity.
It turns out that the increase in noise arising from an increase in
jet velocity overwhelms the effect of decrease in turbulent kinetic
energy per unit volume. This conclusion can easily be seen in the
data of Figs. 6–8. Thus the temperature of a jet exerts a complex
influence over its noise. Therefore, a general statement on the effect
of an increase in jet temperature on its noise cannot be made without
a clear specification of the constraints.

The Tam and Auriault theory3 of noise from fine-scale turbulence,
although known to provide good predictions for cold- to moderate-
temperature jets, has to be modified slightly for accurate prediction
of the noise from hot jets. The first modification is to take into ac-
count the increase in turbulent mixing and the change in mean flow
profile. This is incorporated into the theory by using the modified
k–ε turbulence model as proposed by Tam and Ganesan.26 The sec-
ond modification is based on the two-point space–time correlation
measurements of Doty and McLaughlin.29 Their optical deflectom-
etry data suggest that eddies in hot jets decay faster. In this paper a
generalized two-point space–time correlation function suitable for
noise prediction from hot jets is adopted. For isothermal and colder
jets, the model is designed to yield identical far field noise spectrum
as the Tam and Auriault theory.

Extensive comparisons between calculated noise spectra and
experimental measurements have been carried out over the jet
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Mach-number range of from 0.5 to 2.0 and jet temperature ratio
to as high as 4.9. Good overall agreements are found for inlet angle
50 to 110 deg. Beyond 110 deg, especially for very high-temperature
jets, there is significant contribution of radiated noise from the large
turbulence structures of the jet flow. Prediction of the noise from
large turbulence structures is beyond the scope of this investigation.

Preliminary computations of the noise spectra from dual-stream
jets using the present modified noise spectrum formula and identical
model constants appear to compare well with measurements. This
suggests that the present extended model might be applicable to jet
flows other than single-stream circular jets.
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