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Abstract

Recent engine test data and results of computational analysis show that the engine inlet acoustic liner splices have a

significant impact on aircraft flight noise certification and cabin noise levels. The phenomenon of scattering of acoustic

duct modes by axial liner splices is investigated. Previous studies, invariably, follow the frequency-domain approach.

The present study, however, uses the time-domain approach. It is demonstrated that time-domain computation yields

results that are in close agreement with frequency-domain results. The scattering phenomenon under consideration is very

complex. This study concentrates on the effects of four parameters. They are the width of the splices, the frequency of the

incident duct mode, the number of splices and the length of splices. Based on the computed results, the conditions under

which scattered wave modes would significantly increase the intensity of transmitted waves are identified. It is also found

that surface scattering by liner splices has the tendency to distribute energy equally to all the cut-on scattered azimuthal

modes. On the other hand, for each scattered azimuthal mode, the high-order cut-on radial mode, generally, has the

highest intensity. Moreover, scattering by liner splices is a local phenomenon. It is confined primarily to an area of the duct

adjacent to the junction between the hard wall near the fan face and the spliced liner.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Scattering takes place when an acoustic duct mode propagates into a region of a circular duct lined with
sound absorbing material and hard wall splices. An incident duct mode is often scattered into a multitude of
other azimuthal and radial modes depending on the number and width of the splices. If the frequency of the
incident duct mode is slightly higher than the cut-on frequency, the energy flux of the scattered acoustic modes
may be many decibels higher than that of the incident acoustic mode at the exit end of the spliced liner. This is
a most undesirable situation.

Recently, the phenomenon of duct mode scattering by axial liner splices has attracted a good deal of
interest. In an early work, Fuller [1,2] used duct mode expansions to investigate the scattering effect. More
recently, Regan and Eaton [3] studied the problem using finite element formulation in the frequency domain.
The finite element method leads immediately to a large matrix system as in the case of Fuller. To obtain an
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accurate solution of a very large matrix system, as it turns out, is non-trivial. Elnady et al. [4] devised a point
matching method to model the spliced liner surface. This method again results in the need to solve a large
matrix system. In a follow-up work, Elnady and Boden [5] used the point matching method to study the effect
of hard wall splices for both locally reacting and non-locally reacting liners. They concluded that non-locally
reacting liners were less affected by the presence of hard strips than locally reacting liners.

Bi et al. [6] studied sound propagation in ducts with varying cross-section and with non-uniform impedance.
They expanded their solutions using the propagating duct modes as basis functions. As in most eigenfunction
expansion methods, the proper choice of a set of basis functions is crucial. However, there is no obvious and
simple choice. Bi et al. considered the use of rigid wall duct modes. But they are not the natural modes of a
lined duct. The use of locally parallel duct modes with liners might seem to be a better choice. Unfortunately,
for eigenmodes of a lined duct, there is no guarantee that the computed modes form a complete set of basis
functions. In addition, the computation of these modes is by no means straightforward. Moreover, this
expansion method will once more lead to a large matrix that may be dense and not easy to solve. In a related
work by Bi et al. [7], this duct mode expansion method was used to analyze the scattering of duct modes by
rigid splices in lined ducts. Preliminary results for an incident mode at slightly above the cut-on frequency were
reported. The influence of liner length, the azimuthal mode order of the incident duct mode, as well as axial
non-uniformities were briefly considered.

McAlpine et al. [8] investigated the effect of spliced intake liner at supersonic fan tip speed. They employed a
numerical code named ACTRAN for their computation. The ACTRAN code is based on the finite element
method. For incident duct modes at typical blade passage frequency (BPF), their three-dimensional (3-D)
finite element simulation required considerable amount of computing resources. To reduce computing
requirements to a manageable level, they studied the problem at half-BPF of a typical commercial turbofan
engine. The number of splices was also reduced to half while the liner length increased to twice the typical
lengths. McAlpine et al. also used the Airbus-France boundary element code named ACTI3S in their study.
They reported that the finite element ACTRAN code and the boundary element ACTI3S code yielded similar
results for certain cases in their investigation. A major conclusion of their study is that fan speed is a critical
factor of the splice scattering phenomenon and that thinner splices would reduce the level of scattered tones.

Recently, Tester et al. [9] performed a validation test of the Cargill analytical method for duct mode
scattering by liner splices. The Cargill method is based on the Kirchhoff approximation. Its main advantage is
simplicity. The validation test was carried out by comparing the results obtained by the Cargill method with
those of the ACTRAN finite element code. Tester et al. reported that the ACTRAN and Cargill results agreed
well for the no-flow case except for some minor discrepancies in the back-scattered modes. The back-scattered
modes are of secondary importance compared to the forward scattered modes. When a mean flow up to Mach
0.4 was included, the agreement between the ACTRAN and Cargill results was still acceptable except again for
the field dominated by back-scattering. In addition to validating the analytical method, Tester et al. unlike
previous works, presented results for the axial variation in sound power level in each scattered azimuthal mode
as well as the incident mode. This allows one to see where the scattered power is generated. Further, they
showed that the scattered sound power level was almost independent of the azimuthal mode number.

In this work, a specially designed time-domain code based on the 7-point stencil time marching dispersion-
relation-preserving (DRP) scheme is used to compute the scattered and transmitted acoustic duct modes.
Previous works on this subject invariably use the frequency-domain approach. This study intends to
demonstrate that the accuracy of the time-domain solution is, at least, comparable to that obtained by
frequency-domain codes. One advantage of time-domain approach over frequency-domain method is that
multiple frequencies and broadband input can be calculated in a single computation. Further, nonlinear effects
may also be included. In this paper, however, the primary objective is to study the axial splice scattering
phenomenon. These other computational issues will not be considered and will be left to a future work. In
addition to the DRP scheme, advanced computational aeroacoustics (CAA) boundary conditions are used in
the computation. They include time-domain impedance boundary conditions, ghost-point method (for
enforcing boundary conditions) as well as the perfectly matched layer (PML).

The results of a parametric study are reported in this paper. The study focuses on four parameters of the
acoustic scattering phenomenon. First, is the width of the axial splices. Our interest is to examine its effect on
the energy flux of the scattered and transmitted wave modes. Our study suggests that if the width of the splices
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is not too narrow, the scattered modes essentially comprise of all the cut-on azimuthal modes and that the
Sound Power Levels (PWLs) of the scattered modes are nearly the same. This finding is consistent with the
equal energy assumption widely used in duct aeroacoustics. However, if the splice width is narrow, sound
power level of the scattered duct modes is negligible. The second parameter investigated is the frequency of the
incident duct mode. The results of our study show that the total sound power level of all the scattered modes
would be significant relative to the transmitted incident mode if the frequency is slightly above the cut-on
frequency. On the other hand, if the frequency is well above cut-on frequency, then the increase in the total
sound power level of the scattered modes is relatively negligible.

The third parameter examined in this study is the number of splices. The results of our investigation reveal
that a larger number of splices would result in a reduction in the sound power level of the scattered acoustic
wave modes. This is important from the point of view of minimizing noise radiation. An explanation for the
reduction is provided. The fourth parameter investigated is the length of the axial splices and the location at
which most of the scattering takes place. Extensive computed results show that acoustic scattering by axial
liner splices is a local phenomenon. Most of the scattering takes place primarily near the junction of the duct
where the incident wave mode first encounters the spliced liner. Thus a long axial splice and a medium length
splice have practically the same effect.

The rest of the paper is organized as follows. Section 2 presents the computational model and numerical
methods used in this work. Since a time-domain approach is followed, the formulation of the time-domain
impedance boundary condition and its implementation for spliced liner are described. To ensure the numerical
simulation is accurate and of high quality, the numerical code is validated by comparing the computed results
with those of Tester et al. [9]. Tester et al.’s results are calculated by the ACTRAN code. Section 3 reports the
results of a parametric study. This study focuses on the effects of splice width, the frequency of the incident
duct mode, the number and length of the splices on the scattering phenomenon. Section 4 summarizes the
overall results of this work.

2. Computational model and numerical methods

In this section, we will introduce the physical and computational model used in this investigation. This is
followed by a description of the computational methods. The present computer code is validated by
comparing computed results with those of Tester et al. [9]. Tester et al. employed the ACTRAN code that is
based on the finite element method.

2.1. Computational model

The computational model, consisting of a circular duct encased by spliced liner and hard walls, is shown in
Fig. 1. A 3-D sketch of the spliced liner section is given in Fig. 2. The model was used previously by Regan and
Eaton [3], McAlpine et al. [8] and Tester et al. [9]. The hard wall on the right represents the space between the
fan blade and the spliced liner. The hard wall on the left represents the hard wall segment at the inlet of the
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intake duct of a jet engine. The duct is assumed to have a constant diameter D (radius a ¼ D/2). The duct
carries a uniform mean flow at Mach number Md. A spinning duct mode of azimuthal mode number m and
frequency O (BPF or interaction tone frequency) propagates upstream from the fan face on the right of Fig. 1.
The length of the liner is taken to be L. The resistance and reactance of the liner are R and X, respectively. It
will be assumed that the number of hard wall splices is Nseg.

A spinning duct mode propagates upstream from the hard wall region of the duct on the right to the spliced
liner segment. Acoustic scattering takes place as soon as the incident duct mode reaches the junction between
the hard wall and the spliced liner. The Nseg rigid splices scatter the incident duct mode with azimuthal mode
number m into spinning duct modes of the same frequency but with azimuthal mode number equal to
m7jNseg (j ¼ 0,1,2,3,y). In addition to generating upstream propagating duct modes, there is back-scattering
of rigid wall duct modes. Of interest is the intensity of the transmitted acoustic waves in the hard wall region
upstream of the spliced liner.

2.2. Governing equations

Dimensionless variables are used in the computation. The scales used for non-dimensionalization purpose
are:

D ðdiameter of the ductÞ ¼ length scale;

a0 ðspeed of sound of gasÞ ¼ velocity scale;

D=a0 ¼ time scale;

r0 ðgas densityÞ ¼ density scale;

r0a2
0 ¼ pressure scale;

r0a0 ¼ impedance scale:

The duct is assumed to carry a uniform mean flow (in the positive x-direction) at a Mach number Md.
The acoustic disturbances inside the duct are governed by the linearized Euler equations. In cylindrical
coordinates (r,f,x) and velocity components (v,w,u), these equations are:
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Fig. 2. Spliced liner model.
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For a spinning duct mode with azimuthal mode number n, the solution may be written in the form:
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, (6)

where Re{ } is the real part of { }.
Substitution of Eq. (6) into Eqs. (1)–(5) gives the governing equations for (r̂n; ûn; v̂n; ŵn; p̂n)
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2.3. Time-domain boundary conditions at the spliced liner surface

At the spliced liner surface, part of the surface is liner material and part of the surface is hard wall. On the
part of the surface that is hard wall, the boundary condition is

r ¼ a; v ¼ 0 ða ¼ D=2Þ. (12)

On the part of the surface with liner materials, time-domain impedance boundary condition is used. Let the
surface impedance be (e�iot time dependence assumed)

Z ¼ R� iX , (13)

where R and X are the dimensionless resistance and reactance. Here the three parameters time-domain
impedance boundary condition of Tam and Auriault [10] will be used. The reactance, which may be positive or
negative, is parametrized by

X ¼
X�1

O
þ X 1O, (14)

where O is the angular frequency of the incident sound. Numerical stability requires that R40, X�1o0 and
X140. Here for a given impedance value Z and frequency O, the two parameters of the model X�1 and X1 are
computed by the following formulas:

X 1 ¼
1

ð2=jZjÞ � ðX=jZj2Þ
� �

O
; X�1 ¼

� 1� ðX=jZjÞ
� �2O
ð2=jZjÞ � ðX=jZj2Þ
� � . (15)
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It is easy to check that formula (15) satisfies Eq. (14) and the constraints on X�1 and X1. Upon
incorporating the Myers [11] convective term, the time-domain impedance boundary condition on the liner
surface in a grazing flow at Mach Md is

qp

qt
þMd

qp

qx
¼ R

qv

qt
� X�1vþ X 1

q2v
qt2

. (16)

Now Eqs. (12) and (16) will be combined into a single spliced liner boundary condition. Let Nseg be the
number of axial splices. Then the angle fHW subtended by a hard wall splice is equal to 2W/D, where W is the
width of a splice. Azimuthally, the spliced liner surface is a periodic function with period 2p/Nseg.

Let G(f) be a periodic function with period 2p/Nseg as shown in Fig. 3. G(f) takes the value of 1 for
0ofo(2p/Nseg�fHW) and zero for (2p/Nseg�fHW)ofo2p/Nseg. The graph of G(f) may be expanded in a
Fourier series in f,

GðfÞ ¼
X1

s¼�1

cs e
isNsegf, (17)

where

cs ¼

i

2ps
e�isð2p�fHWNsegÞ � 1
� �

; sa0;

1�
fHWNseg

2p
; s ¼ 0:

8>><
>>: (18)

Now the combined boundary condition of Eqs. (12) and (16) for the spliced liner may be written as

X 1
q2v
qt2
þ R

qv

qt
� X�1v ¼ GðfÞ

qp

qt
þMd

qp

qx

� �
. (19)

It is easy to verify that on the liner surface, where G(f) ¼ 1.0, Eq. (19) reduces to Eq. (16). On the surface of
the rigid splices, where G(f) ¼ 0, Eq. (19) reduces to

X 1
q2v
qt2
þ R

qv

qt
� X�1v ¼ 0. (20)

It is straightforward to show, if the initial conditions

v ¼ 0;
qv

qt
¼ 0 at t ¼ 0 (21)

are imposed, the solution of Eq. (20) is v ¼ 0, which is the rigid wall boundary condition.
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For convenience of enforcing boundary condition (19) at r ¼ D/2, we will rewrite this equation as a system
of first-order equation in t by introducing an auxiliary variable q defined by

qv

qt
¼ q. (22)

Eq. (19) may now be rewritten as

qq

qt
¼ �

R

X 1
qþ

X�1

X 1
v�

1

X 1
GðfÞ

qv

qr
þ

v

r
þ

1

r

qw

qf
þ

qu

qx

� �
. (23)

In deriving Eq. (23), use has been made of Eq. (5). Finally, by replacing the time derivative of v in Eq. (2) at
r ¼ D/2 by q according to Eq. (22), the following time derivative free boundary condition is derived:

qp

qr
¼ �q�Md

qv

qx
. (24)

In summary, the spliced liner surface boundary conditions at r ¼ D/2 are Eqs. (22)–(24).

2.4. Computational algorithm

Due to scattering by the liner splices, the sound field inside the duct would consist of many azimuthal
modes. The mode numbers are spaced by Nseg apart. The full solution inside the duct may be expressed in the
form:

uðr;f;x; tÞ

vðr;f; x; tÞ

wðr;f; x; tÞ

pðr;f;x; tÞ

qðf;x; tÞ

2
6666664

3
7777775
¼ Re

X
j

ûmþjðr; x; tÞ

v̂mþjðr;x; tÞ

ŵmþjðr;x; tÞ

p̂mþjðr; x; tÞ

q̂mþjðx; tÞ

2
6666664

3
7777775
eiðmþjNsegÞf

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (25)

where m is the azimuthal mode number of the incident duct mode.
The incident and scattered modes are coupled by the spliced liner surface boundary conditions (22)–(24). It

is easy to see that only surface boundary condition (23) causes mode coupling. The amplitude functions of the
incident and scattered duct modes of Eq. (25), i.e., ðûmþj ; v̂mþj ; ŵmþj ; p̂mþjÞ are calculated by Eqs. (8)–(11) with n

replaced by (m+jNseg). The values of v̂mþj at r ¼ D/2 are, however, not computed this way, since at this r

location Eq. (8) has been effectively replaced by boundary condition (24). Each value of v̂mþj is computed by a
time marching method according to Eq. (22). Upon equating the azimuthal Fourier components in f, Eq. (22)
becomes

qv̂mþj

qt
¼ q̂mþj. (26)

To enforce boundary condition (24), the ghost-point method [12] is employed. For this purpose, a row of
ghost value of p at k ¼M+1 is introduced. k is the mesh index in the r-direction. k ¼M corresponds to
r ¼ D/2 as shown in Fig. 4. In the boundary region, at or adjacent to k ¼M, 7-point backward difference
stencils are used to compute the r-derivative. The r-derivative stencils for all the variables, with the exception
for p, terminate at k ¼M (see Fig. 4). Those for p terminate at the ghost point k ¼M+1. The discretized form
of Eq. (24) for each azimuthal mode, is (‘ is the mesh index in the x-direction; superscript n is the time level),

1
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X1
s¼�5

a15
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.

Thus on solving for the ghost value, ðp̂mþjÞ
ðnÞ
‘;Mþ1, it is found
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Dr

a15
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� q̂mþj
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‘;M
�

Md

Dx

X3
s¼�3

as v̂mþj

� �ðnÞ
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�
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(27)
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(for stencil coefficients as and backward difference stencil coefficients a15
s see Ref. [12]). Eq. (27) is the formula

by which the ghost values are found.
To implement the remaining boundary condition (23), the first step is to substitute Eq. (25) into Eq. (23) and

equate terms according to the azimuthal mode number. This leads to an infinite system of equations. A finite
system may be derived by dropping the azimuthal modes outside the range of importance. Suppose the
scattered modes are limited to –JpjpK, then Eq. (23) leads to

qq̂mþj

qt
¼ �

R

X 1
q̂mþj þ

X�1

X 1
v̂mþj

�
1

X 1

X
�Jpðj�sÞpK
sum over s

cs

qv̂mþj�s

qr
þ

v̂mþj�s

r
þ

i½mþ ðj � sÞNseg�

r
ŵmþj�s þ

qûmþj�s

qx

� �
. ð28Þ

This is the equation for q̂mþj.
In this work, governing Eqs. (8)–(11) for each retained azimuthal mode (m�Jpnpm+K) as well as

Eqs. (26) and (28) are solved computationally by discretizing the system of equations according to the 7-point
stencil DRP scheme [13]. To suppress possible numerical instability and to remove spurious short waves,
artificial selective damping [14] is added to the discretized equations. It is known that time-domain impedance
boundary condition with Myers [11] convective term included is subjected to Kelvin–Helmholtz instability
[10]. This instability is suppressed by artificial selective damping. The computation is carried out on a
Cartesian mesh in the x�r plane within the computation domain as shown in Fig. 5. For each azimuthal
mode, the axis boundary treatment developed by Shen and Tam [15] is imposed. This boundary treatment
eliminates the apparent singularity of the system of Eqs. (8)–(11) at the axis (r ¼ 0). At the duct wall (r ¼ D/2)
outside the spliced liner region, boundary condition (12) is used. This boundary condition is again enforced by
the ghost-point method.

At the two open ends of the computation domain (see Fig. 5), perfectly matched layers (PML), as
proposed by Hu [16] are added. The PML absorb all outgoing waves. On the right boundary, split
variables are used to allow the incident duct mode to enter the computation domain from the PML
region.

To start the computation, all variables are set equal to zero inside the computation domain. The incident
acoustic wave mode propagates into the computation domain from the right. This begins the transient period
of the computation. The computation continues and the numerical solution is monitored at a number of well-
chosen locations. A stopping criterion is set based on how close the solution is to its former value at the
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monitoring stations after a period according to the incident wave. Numerical results are measured only after
further computation over a few more periods.

2.5. Code validation

For the purpose of validating the present time-domain code, the recently published results of Tester
et al. [9] are used. Tester et al. computed their results by means of the ACTRAN code. ACTRAN is
based on a finite element formulation. Details concerning mesh design and spatial resolution are provided in
their work.

The resolution of the present time-domain code was tested by comparing the numerical results with exact
solution for the case of a spinning acoustic mode propagating down a hard wall duct. Comparisons of the
mode shape including more than one radial mode were made. Excellent agreements were found. The tests were
conducted over a range of frequencies and azimuthal mode numbers. In addition to direct comparisons with
exact analytical solution for hard wall duct modes, grid refinement tests were also carried out for ducts with
spliced liners. The final mesh size adopted for the code yielded numerical solutions that were quite insensitive
to mesh refinement.

Two cases are considered in the paper by Tester et al. [9]. One is at zero flow Mach number. The other case
is at Md ¼ 0.4. The incident duct mode has a frequency equal to 1.1 cut-on frequency. Other details of their
model problem are as follows:

Radius of duct (denoted by a) ¼ 5000 (127 cm).
Impedance of liner, Z ¼ 2+i (time factor ¼ e–iOt).
Length of liner (L) ¼ 2400 or 60.96 cm (L/a ¼ 0.48).
Number of splices ¼ 2.
Width of splices ¼ 300 (7.62 cm).
Azimuthal mode number of incident wave ¼ 26.

2.5.1. No mean flow case

In this case, the frequency of the incident wave is 1331.9Hz. Fig. 6 shows a comparison of the results
of the present time-domain code and those of ACTRAN. This figure shows the axial distribution
of PWL (same definition as in Morfey [17]) in dB (Re: PWL of incident wave mode at x/a ¼ 0.48.) The
spliced liner extends from x/a ¼ 0.0 to 0.48. It is evident that the numerical results are in close agreement.
This is true for the sound power level of the total transmitted sound as well as the incident and the
individual scattered azimuthal modes. At the end of the spliced liner region (x/a ¼ 0.0), the incident wave
mode is significantly damped. Its sound power level is about 4 dB below that of the scattered wave modes.
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Fig. 5. The computational domain.
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In the present computation, a grid refinement has been performed. The results reported here are regarded as
grid converged.

2.5.2. Mach number 0.4 case

In this case, the frequency of the incident duct mode is 1220.7Hz. Fig. 7 shows a comparison of the present
computed axial distributions of sound power level and those of Tester et al. There are good agreements with
respect to the total transmitted acoustic power as well as the sound power level of individual scattered
azimuthal modes. This is true over the entire length of the acoustic liner. However, in the absence of error
estimates from the ACTRAN code computation, it is not possible to ascertain the reason for the slight
differences in the two sets of computed results.

3. A parametric study

A parametric study focused on four parameters of the spliced liner acoustic scattering phenomenon has
been carried out. The study concentrates on the following effects and questions.
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Fig. 6. Axial distribution of transmitted Sound Power Level (PWL). Flow Mach number ¼ 0: (———) total PWL, present result; (– – – –)

m ¼ 26, (— � — � —) m ¼ 24, (———) m ¼ 22, (— � � — � � —) m ¼ 20; and ( � � � � � � � ) ACTRAN results.

Fig. 7. Axial distribution of transmitted Sound Power Level (PWL). Flow Mach number ¼ 0.4. (———) total PWL, present result;

(– – – –) m ¼ 26, (— � — � —) m ¼ 24, (———) m ¼ 22, (— � � — � � —) m ¼ 20; ( � � � � � � � ) ACTRAN results.
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3.1. Effect of splice width

In this study, the effect of the width of the splices on the effectiveness of acoustic scattering is examined.
Fig. 8 shows a comparison of the axial distribution of the total transmitted PWL for the test case specified in
Section 2.5 (the same test conditions as Tester et al.) at a mean flow Mach number 0.4 and different splice
widths. In addition to the case with splice width equal to 300 or 7.62 cm (shown in Fig. 7), the cases of 100

(2.54 cm), 0.500 (1.27 cm) and 000 (uniform liner) are also shown. Clearly, as anticipated, the intensity of
scattered acoustic waves increases with splice width, all other variables are held fixed. For splice width 0.500

(1.27 cm) and narrower, there is little acoustic scattering.
To obtain a better understanding of the scattering phenomenon, the distribution of total transmitted

PWL for all azimuthal modes at the hard wall region upstream of the acoustic liner is plotted in Fig. 9
for the splices with 300 (7.62 cm) width. It is easy to see that the scattered wave energy is concentrated
in the propagating azimuthal modes (here a mode is loosely referred to as a propagating mode if
it is a propagating mode in a solid wall duct of the same diameter). The sound power level of the propagating
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Fig. 8. Comparison of the transmitted Sound Power Level (PWL) for liner with two splices. Splice width: (———) 300 (7.62 cm); (– – – –) 100

(2.54 cm); ( � � � � � � � ) 0.500 (1.27 cm); and (— � � — � � —) 000.

Fig. 9. Distribution of total transmitted Sound Power Level (PWL) in azimuthal modes in the region upstream of the spliced liner. Two 300

(7.62 cm) splices.
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modes of the scattered waves is almost the same. In this case, the level of each scattered mode is
higher than that of the incident wave mode. Figs. 10 and 11 show similar results for splices with a
width of 100 (2.54 cm) and 1/200 (1.27 cm), respectively. Again, most of the transmitted energy of the
scattered modes is concentrated on the propagating modes. The level of the propagating modes is again nearly
constant. In both of these cases, the incident wave mode has amplitude higher than that of the scattered
modes.

Figs. 12–14 show the distribution of sound power level in radial modes for the m ¼ 0, 8 and 16 azimuthal
modes of Fig. 9. These figures reveal that most of the acoustic energy of an azimuthal mode is concentrated
in the high-order propagating radial modes. This energy concentration in the high-order radial modes
turns out to be true in all the cases computed in the present parametric study. Since the energy of low order
modes is concentrated near the duct wall whereas that of the high-order modes is spread out more evenly
over the cross section of the duct, the scattering phenomenon has the tendency to equalize energy distribution
in a duct.
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Fig. 10. Distribution of total transmitted Sound Power Level (PWL) in azimuthal modes in the region upstream of the spliced liner. Two

100 (2.54 cm) splices.

Fig. 11. Distribution of total transmitted Sound Power Level (PWL) in azimuthal modes in the region upstream of the spliced liner. Two

0.500 (1.27 cm) splices.
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Fig. 13. Distribution of total transmitted Sound Power Level (PWL) in radial modes for azimuthal mode m ¼ 8 in the region upstream of

the spliced liner. Two 300 (7.62 cm) splices.

Fig. 14. Distribution of total transmitted Sound Power Level (PWL) in radial modes for azimuthal mode m ¼ 16 in the region upstream of

the spliced liner. Two 300 (7.62 cm) splices.

Fig. 12. Distribution of total transmitted Sound Power Level (PWL) in radial modes for azimuthal mode m ¼ 0 in the region upstream of

the spliced liner. Two 300 (7.62 cm) splices.
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3.2. Effect of frequency

How important is frequency as a parameter of the spliced liner scattering phenomenon? To examine the
effect of frequency, 3 cases are studied using the Tester et al. problem but at 1.5, 1.1 and 0.9 cut-on frequency.
Fig. 15 shows the axial distribution of the sound power level of the incident wave mode, the sum of the sound
power level of all waves and those of a few selected scattered waves at a 1.5 cut-on frequency. It is clear from
the results shown that at high frequency, because the spatial damping rate in the lined section is small, the
amplitude of the total acoustic wave is nearly the same as that of the incident wave mode (m ¼ 26). Thus
acoustic scattering is not important. Fig. 16 shows the distribution of sound power level of all the transmitted
waves in azimuthal modes. The sound power level of the scattered wave modes is over 30 dB below that of the
incident mode.

The case of incident wave at a slightly above cut-on frequency is shown in Fig. 17. It is to be noted that at
this frequency the total sound power level of the transmitted scattered waves is 19 dB higher than that of the
incident mode. Fig. 18 shows similar axial distribution at 0.9 cut-on frequency. In this case the incident wave

ARTICLE IN PRESS

Fig. 15. Axial distribution of Sound Power Level (PWL). Flow Mach number ¼ 0.4. Two 300 (7.62 cm) splices. Frequency ¼ 1664Hz;

frequency ¼ 1.5 cut-on frequency. (———) total PWL; (– – – –) m ¼ 26; ( � � � � � � � ) m ¼ 24; (— � — � —) m ¼ 22; (— � � — � � —)

m ¼ 20.

Fig. 16. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Frequency ¼ 1664Hz; frequency ¼ 1.5 cut-

on frequency.
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mode is heavily damped. At the end of the liner region, only the scattered waves remain. Fig. 19 shows the
distribution of sound power level of the total transmitted waves in azimuthal modes. The intensity of the
scattered waves is comparable to the case at 1.1 cut-on frequency. Acoustic scattering is, without question,
important for incident mode at below cut-on frequency. It is to be noted that sound power level for a cut-off
mode in the hard wall region is zero. However, the sound power level of the combined incident and reflected
cut-off modes is not zero. Here this is used as the reference level for computing relative sound power level in
Figs. 18 and 19.

3.3. Effect of number of splices

Suppose the total width of hard wall splices is fixed. Is it advantageous to use a larger number of narrower
splices? For instance, in the problem considered by Tester et al. the total splice width is 600 (15.24 cm). By
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Fig. 17. Axial distribution of sound power level. Flow Mach number ¼ 0.4. Two 300 (7.62 cm) splices. Frequency ¼ 1221Hz;

frequency ¼ 1.1 cut-on frequency: (———) total Sound Power Level (PWL); (– – – –) m ¼ 26; ( � � � � � � � ) m ¼ 24; (— � — � —)

m ¼ 22; and (— � � — � � —) m ¼ 20.

Fig. 18. Axial distribution of sound power level. Flow Mach number ¼ 0.4. Two 300 (7.62 cm) splices. Frequency ¼ 998.8Hz;

frequency ¼ 0.9 cut-on frequency: (———) total Sound Power Level (PWL); (— � — � —) m ¼ 22; and (— � � — � � —) m ¼ 20.
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keeping the total width at 600 (15.24 cm), one can use two 300 (7.62 cm) splices or four 1.500 (3.81 cm) splices.
Fig. 20 shows the axial distributions of the sound power level of the total transmitted waves for both cases. It
is evident that there is more than 3 dB less transmitted sound when four splices are used. In other words, there
is a definite advantage in using a larger number of splices for a fixed total width. As another example, Fig. 21
shows the results of the same problem but for a total splice width of 1200 (30.48 cm). In this figure, the axial
distributions of the sound power level of the transmitted waves for two 600 (15.24 cm) splices and four 300

(7.62 cm) splices are provided. It is clear that the use of more splices has an advantage of slightly over 3 dB.
The reason why there is an advantage in using a larger number of splices can be found by examining the

distribution of sound power level of the total transmitted waves in azimuthal modes. Figs. 22 and 23 show
the distribution for the case of two 300 (7.62 cm) spliced and four 1.500 (3.81 cm) splices. For both cases, the
transmitted acoustic energy is associated mainly with the propagating modes as mentioned before. It is to be
noted that the levels of the propagating azimuthal modes are about the same for both cases. Now for the four
splices configuration, the scattered azimuthal modes have mode numbers separated by 4 (i.e. m ¼ 2674j,
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Fig. 19. Distribution of total transmitted Sound Power Level (PWL) in azimuthal modes upstream of the spliced liner.

Frequency ¼ 998.8Hz; frequency ¼ 0.9 cut-on frequency.

Fig. 20. Axial distribution of sound power level. Flow Mach number ¼ 0.4. Total width of splices ¼ 600 (15.24 cm). Frequency ¼ 1221Hz;

frequency ¼ 1.1 cut-on frequency. (———) two splices, total Sound Power Level (PWL); ( � � � � � � � ) two splices, m ¼ 26; (– – – –) four

splices, total PWL; (— � — � —) four splices, m ¼ 26.
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j ¼ 0,1,2,y) while those for the 2 splices configuration have mode numbers separated by 2 (i.e. m ¼ 2672j,
j ¼ 0,1,2,y). Thus there are nearly twice as many propagation azimuthal modes for the two splices
configuration as the four splices configuration. This difference accounts for 3 dB less transmitted wave energy
for the four splices configuration. Figs. 24 and 25 show similar distribution of sound power level in azimuthal
modes for the two 600 (15.24 cm) splices and the four 300 (7.62 cm) splices configurations. Again, the two splice
configuration has nearly twice as many propagating azimuthal modes. This results in 3 dB more in the total
transmitted acoustic energy.

3.4. Effect of splice length

Extensive computation of the spliced liner acoustic scattering phenomenon suggests that scattering is
confined mainly to the region close to the junction between the hard wall and the spliced liner near the fan
face. To demonstrate that scattering is, indeed, a local phenomenon, the scattering problem of Tester et al. is
reconsidered with the modification that the splices have a length shorter than the acoustic liner. Fig. 26 shows
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Fig. 21. Axial distribution of sound power level. Flow Mach number ¼ 0.4. Total width of splices ¼ 1200 (30.48 cm). Frequen-

cy ¼ 1221Hz; frequency ¼ 1.1 cut-on frequency: (———) two splices, total Sound Power Level (PWL); ( � � � � � � � ) two splices,

m ¼ 26; (– – – –) four splices, total PWL; (— � — � —) four splices, m ¼ 26.

Fig. 22. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Two 300 (7.62 cm) splices.

Frequency ¼ 1221Hz.
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a 3-D view of the modified configuration of the spliced liner. Fig. 27 shows the computation domain of the
modified configuration. Fig. 28 shows the axial distributions of sound pressure level of the total transmitted
acoustic waves for the four cases with hard wall splice length equal to 2400 (60.96 cm, same length as the liner),
1200 (30.48 cm), 600 (15.24 cm) and 000 (no splice). It is readily seen that the transmitted acoustic energy is nearly
identical for splice length of 1200 (30.48 cm) and 2400 (60.96 cm). The axial distribution differs only slightly for
splice length of 600 (15.24 cm). This result strongly indicates that most of the acoustic scattering takes place
over a length of approximately 600 (15.24 cm) to 800 (20.32 cm).

Fig. 29 shows the distribution of the sound pressure level of the transmitted sound in azimuthal modes at
the upstream hard wall region of the duct for splice length equal to 600 (15.24 cm), 1200 (30.48 cm) and 2400

(60.96 cm). Again, it is readily seen the intensities of the scattered propagating wave modes are nearly the same
regardless whether the splice length is 1200 (30.48 cm) or 2400 (60.96 cm). The intensities are slightly reduced for
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Fig. 24. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Two 600 (15.24 cm) splices.

Frequency ¼ 1221Hz.

Fig. 23. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Four 1.500 (3.81 cm) splices.

Frequency ¼ 1221Hz.
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the 600 (15.24 cm) length splices. The fact that there is almost no difference between the 1200 (30.48 cm) and 2400

(60.96 cm) long splices further confirms the belief that acoustic scattering is quite local. There is little scattering
beyond the first 1200 (30.48 cm) measured from the downstream end of the acoustic liner.
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Fig. 25. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Four 300 (7.62 cm) splices.

Frequency ¼ 1221Hz.

Fig. 26. Modified spliced liner model.

Fig. 27. Modified computational model.
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4. Summary

The scattering of acoustic duct modes by axial liner splices is a rather complex phenomenon. It is influenced
by a host of parameters. This work concentrates on the study of four aspects of the phenomenon. The effect of
splice width is first examined. It is found that scattering increases with splice width. However, for a typical
modern day jet engine, scattering is not important if the splice width is less than 0.500 (1.77 cm). Extensive
computations indicate that scattering by liner splices tends to result in relatively uniform distribution of
scattered wave energy inside the duct. It is observed that all the scattered cut-on azimuthal modes, generally,
have nearly equal amplitude. In addition, for each cut-on azimuthal mode, the high-order cut-on radial mode
consistently has the high amplitude in all the computed results. These high-order radial modes have a more
even energy distribution across the cross-section of the duct whereas low order radial modes concentrate their
energy and fluctuations close to the duct wall.

Whether the scattering phenomenon under study significantly increases the transmitted wave energy
depends strongly on the incident mode frequency. For duct modes at a frequency much higher than the cut-on
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Fig. 29. Distribution of sound power level in azimuthal modes upstream of the spliced liner. Two 300 (7.62 cm) wide splices.

Frequency ¼ 1221Hz. Black filled bar: splice length 2400 (60.96 cm); hollow bar: splice length 1200 (30.48 cm); gray filled bar: 600 (15.24 cm).

Fig. 28. Axial distribution of sound power level. Flow Mach number ¼ 0.4. Two 300 (7.62 cm) wide splices. Frequency ¼ 1221Hz. Splice

length: (———) 2400 (60.96 cm); (– – – –) 1200 (30.48 cm); ( � � � � � � � ) 600 (15.24 cm); (— � — � —) 000.
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frequency, the amplitude of the incident mode is, generally, not damped by the liner. Because of this, the total
energy of the scattered modes is small compared to that of the incident mode at the inlet of the duct. Thus
scattering by liner splices have little effect on the radiated noise. At slightly above cut-on frequency, an
incident duct mode would be heavily damped unless the liner is very short. On the other hand, the cut-on
scattered modes would not experience significant damping by the liner. In this case, the scattered wave modes
could cause a large increase in the transmitted acoustic wave energy when compared with that of the liner
without splices. This is extremely undesirable. At below cut-on frequency, the energy of the scattered cut-on
modes at the duct inlet is usually larger than that of the incident mode. To minimize the effect of scattering, it
is recommended that liner splices be installed far away from the fan face.

If the surface area of liner splices is kept fixed, then it is advantageous to use a large number of narrow
splices. This is because the azimuthal mode number of the scattered mode are spaced further apart when there
is a larger number of splices. In other words, when there are more splices, although they are narrower, there
are fewer scattered cut-on azimuthal modes. Since the magnitudes of the energy of the scattered cut-on
azimuthal modes tend to be more or less the same, the result is that the transmitted wave energy is less when
there are more splices.

The present study establishes that acoustic scattering by liner splices is a local phenomenon. For modern
commercial jet engines, most scattering takes place over a short length of the splices (approximately 1200 or
30.48 cm in length). The remaining length of the splices does not seem to cause further increase in the energy of
the scattered waves.

Finally, a search of the literature reveals that most previous works on scattering by liner splices use the
frequency-domain approach in their computation. The present investigation is one of the first to perform all
computations in the time domain. It is demonstrated that time-domain results are as accurate as those of high
quality frequency-domain computation. Time-domain computation has the intrinsic advantages that
nonlinear effects as well as broadband sound may easily be included in the calculation. However, due to
the limited scope of this work, these advantages have yet to be demonstrated.
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